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Time-domain analysis for 
extracting fast-paced pupil 
responses
Alexandre Zénon

The eye pupil reacts to cognitive processes, but its analysis is challenging when luminance varies or 
when stimulation is fast-paced. Current approaches relying on deconvolution techniques do not account 
for the strong low-frequency spontaneous changes in pupil size or the large interindividual variability 
in the shape of the responses. Here a system identification framework is proposed in which the pupil 
responses to different parameters are extracted by means of an autoregressive model with exogenous 
inputs. In an example application of this technique, pupil size was shown to respond to the luminance 
and arousal scores of affective pictures presented in rapid succession. This result was significant in 
each subject (N = 5), but the pupil response varied between individuals both in amplitude and latency, 
highlighting the need for determining impulse responses subjectwise. The same method was also 
used to account for pupil size variations caused by respiration, illustrating the possibility to model 
the relation between pupil size and other continuous signals. In conclusion, this new framework for 
the analysis of pupil size data allows us to dissociate the response of the eye pupil from intermingled 
sources of influence and can be used to study the relation between pupil size and other physiological 
signals.

The response of the pupil to light intensity variations has been known for a very long time and used as a diagnostic 
tool in medicine. Photons activate the cones, the rods and the ganglion cells in the retina1, which then send pro-
jections to the pretectal olivary nucleus, whose signal is relayed to the Edinger-Westphal nucleus2. Preganglionic 
parasympathetic neurons then project to the ciliary ganglia, which control the constriction of the pupils by inner-
vating the pupillary sphincters. However, in addition to this well-known circuit, pupil size is also affected by 
other sources of influence, whose origins are less clear. Lesions of the pretectal olivary nucleus abolish the light 
reflex, but leave intact the response of the pupil to colour and grating stimuli3. Complex visual information such 
as the presence of the image of the sun4, and covert attention5 affect the pupil response. Cognitive tasks, such as 
mental calculation or working memory load also lead to very robust increases in pupil size6. Similarly, pupil size 
responds to physical effort7, violation of predictions8–10, shifts in the exploration/exploitation tradeoffs11, etc. The 
neural origin of these various sources of influence on pupil size remains an intense topic of study12,13 but is likely 
to involve the arousal system, including Locus Coeruleus and basal forebrain12,14–16.

From a methodological point of view, a common issue with the analysis of the pupil size data is the slowness of 
the pupil size variations, which impedes the analysis of the pupil response to fast-paced events. In a previous work 
addressing these issues, Hoeks and Levelt have proposed the use of a deconvolution technique to analyze the pupil 
size data17. In this method, the pupil size data is deconvolved with a canonical impulse response. Even though the 
method was initially used on very simple designs, it was later adapted and applied successfully to more complex para-
digms18,19. However, this method is limited in several ways. First and foremost, it does not take care of the very strong 
low-frequency noise found in pupillometric data. Baseline subtraction - i.e. subtracting the mean of the pupil size data 
taken from a portion of time preceding the event onset - is the most common method used to get rid of this noise but is 
of limited efficacy because it does not deal with the slope of the signal at the event onset. As a consequence, this method 
requires many trial repetitions in order for the noise to cancel out. Another issue with the deconvolution method for 
pupillometric data analysis relates to the high between-subject variability in the shape of the impulse response and in 
the delay between the event onset and the beginning of the response (as detailed below). Since the method relies on the 
use of a common canonical impulse response, this variability is not taken into account.
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Here I propose to use a system identification framework to optimize the analysis of pupillometric data (see ref. 20  
or refs 21–23 for applications of similar methods to neuroimaging and electroencephalographic data, respec-
tively). In particular, the low-frequency noise is modeled with an autoregressive model, in which each data point 
is predicted by the value of the data points that precede it, within a given time window. In addition, the pupillary 
response to specific events is modeled by adding exogenous inputs. I apply this approach in a passive task in 
which participants are presented with fast-paced affective pictures standardized in their arousal content, and in 
a rest recording session during which respiration is recorded concurrently. It is noteworthy that the objective of 
the present work is not to provide a biologically plausible model of pupil responses, which has been a very active 
topic of study in the context of the light reflex24,25, but only to propose a new approach to analyze the pupil signal 
in psychophysiological experiments. The scope of the present study is not either to propose an exhaustive valida-
tion of the technique with extended dataset, but simply to introduce its concept and illustrate it in two example 
applications.

Methods
Participants, procedure and tasks.  Five healthy subjects (1 female, age range 23–38) were recruited 
to participate in the present study after signing an informed consent form. All experimental procedures were 
approved by the local ethics committee (Comité d’Ethique Hospitalo-Facultaire, Saint-Luc hospital, Brussels, 
Belgium) and were in accordance with the Helsinki declaration.

Subjects were seated in front of a 19” CRT screen cadenced at 100 Hz, with their head resting on a chinrest. 
An Eyelink 1000 eye tracker was situated just below the screen, and centered on the dominant eye of the partici-
pant. The eye tracker recorded the diameter of the pupil and the gaze position at 500 Hz. Given that the absolute 
dimension of the recorded pupil is irrelevant to the present work, the diameter of the pupil was not calibrated and 
is therefore reported in arbitrary units.

Five participants participated in a passive image-viewing task, while one participant also underwent a rest 
recording session. In the passive image-viewing task, participants were presented with a series of 1055 images 
selected from the NAPS bank (i.e. all images with landscape orientation; see ref. 26 for details on the properties 
of the images). Each image was 19.3 degrees wide, 14.5 degrees high and was shown for 200, 300 or 400 ms. The 
presentation duration was randomized with a uniform distribution and the order of the images was pseudoran-
domized. There were 4 sub-blocks of image presentation including 263 or 264 images each, and separated by a 
fixation screen lasting 6 to 7 seconds. A similar fixation screen began and ended the image-viewing task. Within 
image presentation sub-blocks, there was no delay between successive image presentations. Participants were 
instructed to maintain their gaze on a central white fixation cross, superimposed on the images and to minimize 
the number of blinks executed during the tasks. The total duration of the task was 5′​45”. Participants performed 2 
blocks of this task: in the non-scrambled block, the images from the NAPS bank were not altered, whereas in the 
scrambled block, the images were phase scrambled27.

One participant underwent also the rest recording session, during which he had only to fixate a central fixation 
cross on the computer screen and to minimize blinks. This experiment was merely a proof of concept for the 
possibility of using ARX for linking physiological signals to pupil size data, which is why only one participant was 
included. An inflatable cuff was attached around participant’s waist and connected to a pressure transducer, which 
converted the pressure measured in the cuff into voltage. This signal was recorded at 100 Hz with a 16-bit data 
acquisition card (National Instruments, Austin, Texas, USA) connected to the computer running Matlab (data 
acquisition toolbox, The MathWorks, Inc., Natick, Massachusetts, USA). This recording session lasted 2 minutes.

Pupil signal pre-processing.  Blinks were tagged by the Eyelink blink detection algorithm. 100 ms of data 
were additionally tagged as blinks right before and after each automatically detected blink epochs, to ensure that 
no artifacts were left in the data. Blinks were then linearly interpolated. The pupil size data was downsampled to 
10 Hz by taking the mean of the pupil size in successive 100 ms bins. Different downsampling frequencies were 
tested and higher sampling rate did not improve the results.

All analyses were performed with Matlab and the system identification toolbox (The MathWorks, Inc., Natick, 
Massachusetts, USA). Since we were interested solely in the pupil responses to the stimulation and not in the 
baseline pupil size, the DC component of the signal was irrelevant and the mean was subtracted from the overall 
signal prior to time series analyses. All the functions used in the present paper are provided as a toolbox on a 
public repository: https://github.com/alexandre-zenon/pupil.

ARX model.  The autoregressive model with exogenous inputs (ARX) was as follows:

∑ ∑ϕ η ε= + +
=

−
= +

+

−X X U
(1)

t
i

p

i t i
j D

D q

j t j t
1 1

where Xt is the pupil signal at time t, Ut is the input matrix at time t, ϕ is the autoregressive parameter vector of 
length p, η is the input parameter vector of length D +​ q (D standing for delay), whose values between 0 and D 
are all zero, and εt is the noise at time t. ε is modeled as a gaussian noise with mean zero and variance σ, which is 
also an unknown parameter of the model. The inputs varied according to the analyses and are described below 
in the results section.

The orders (p,q) and delay (D) of the model were chosen so as to minimize the Akaike Information Criterion 
(AIC) and were fitted by minimizing the square error of the t +​ 1 prediction (maximum likelihood estimation, 
arx function in matlab), while ensuring stability (i.e. the roots of the polynomial expression of the ARX model 
remained within the unit circle). The same analysis was also conducted with the Scwharz criterion instead of 
the AIC (Lütkepohl 1985). This typically resulted in larger model orders but did not affect the main outcome of 
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the analysis (significant arousal response to image presentation in all participants, which was absent when using 
scrambled images).

One potential difficulty in using the ARX approach in practical applications is in the building of the design 
matrix. Similarly to general linear models, used for example in the context of functional neuroimaging analysis28, 
the matrix has to be full rank, which means that no column can be linear combinations of the other columns. 
Likewise, the columns of the matrix should not correlate too much with each other. In the present case, because 
the image presentation was divided in 4 sub-blocks, separated by 7-second breaks, all the vectors representing the 
image features correlated strongly with each other, since they were all equal to zero during the break period. To 
deal with this difficulty, a Stimulus ON vector was included in the matrix, which was equal to one during image 
presentation and zero during the breaks. In addition, all feature vectors, representing the luminance and arousal 
scores of the images, were standardized and their value during the breaks was set to their average value. This 
procedure removed the correlation between the feature vectors and accounted for the overall change in pupil size 
between breaks and image presentation epochs.

Results
I performed first a standard analysis of the pupil data. After baseline correction of the pupil signal recorded dur-
ing the image-viewing task, strong influence of the low-frequency noise remained (mostly because this method 
does not correct the slope of the signal; see example subject in Fig. 1). Correlation of this raw baseline-corrected 
signal with the image luminance was significant in all subjects for both scrambled and non-scrambled images (see 
Fig. 2a, significant time bins between 200 and 1100 ms, alpha =​ 0.05). In contrast, and as expected, correlation 
with arousal score was less consistent, with only 3 subjects showing significant correlations, between 400 and 
2000 ms (see Fig. 2b). Since the point of this first analysis was to compare it with the new proposed method, no 
correction for multiple comparisons was used. Despite this absence of correction, the sensitivity of the method 
was still inferior to the one obtained with the ARX technique (see below).

Then, in an attempt to determine which model to use for the pupil time series, autocorrelation (i.e. how 
much the signal at time t correlates with the signal at time t +​ lag) and partial autocorrelation functions (i.e. how 
much the signal at time t correlates with the signal at time t +​ lag, accounting for the correlations with the signal 
between time bins t to t +​ lag-1) were computed. In all 5 subjects, the autocorrelation function decreased slowly, 
without converging to zero, while the partial autocorrelation function converged after about 10 lags (see Fig. 3). 
In addition, an augmented Dickey-Fuller test (adftest in matlab) confirmed that all signals were stationary (all p 
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Figure 1.  Example pupil trace and baseline-corrected average. (a) Pupil trace of one example block 
illustrating the high-level of low-frequency noise in the data. (b) Baseline-corrected average of one example 
block. The actual pupil response to the image presentation is masked by the large upward slope, which failed to 
be suppressed by baseline subtraction. The shaded gray area illustrates the 95% confidence interval.
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values <​ 0.05). These results are the signature of a simple autocorrelative process29, calling for an autoregressive 
(AR) model, as opposed to autoregressive moving average (ARMA) or autoregressive integrated moving average 
(ARIMA) models, which lead to different aucorrelation and partial autocorrelation functions.
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Figure 2.  Correlation between the Lab luminance (a) and arousal score (b) of the affective pictures and the baseline-
corrected pupil response as a function of time. Subjects are color-coded, while non-scrambled and scrambled 
blocks are represented with the solid and dashed lines, respectively. Dots (square for non-scrambled and circles for 
scrambled blocks) on the top of each panel mark the bins in which the correlation was significant (alpha =​ 0.05).
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Figure 3.  Autocorrelation (a) and partial autocorrelation (b) of the pupil data. Same conventions as in Fig. 2.
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The order p of the AR model was chosen sessionwise so as to minimize the Akaike Information Criterion 
and the model was fitted by minimizing the square error of the t +​ 1 prediction (see Methods). The predicted 
signal was computed by taking p successive values, applying the parameters of the fitted model, and estimating 
the value at t +​ 1. The innovation error was the difference between the measured signal and the predicted signal. 
This innovation error thus represents the information in the signal that is not predicted from earlier values, and 
is assumed to be normally distributed in the AR model. The distribution of these innovation errors was inspected 
by means of Q-Q plots and by plotting them as a function of time. They tended to deviate slightly from normality 
with a negative skewness (−​0.6642 ±​ 0.0977, mean ±​ SE) and large kurtosis (i.e. heavy tails, 18.0621 ±​ 5.5236) but 
showed no systematic drift over time (Spearman correlations with time <​0.1). As expected, most of the autocor-
relation and partial autocorrelation functions of the innovation error were flat (all below significance threshold), 
indicating that the AR model accounted successfully for the autocorrelations in the signal. This was confirmed 
statistically by running a Ljung-Box Q-test for residual autocorrelations. All tests were negative (p values >​ .1) 
except for one innovation error signal (scrambled images, subject AA; p =​ 0.0079), for which autocorrelation and 
partial autocorrelation coefficients were barely above the significance threshold (0.0338) in time lags 7, 8 and 9. 
This signal was characterized by a larger blink rate than average (11% of the signal composed of blinks, compared 
to 6% on average), which may have explained the failure of the AR model to account for all the autocorrelation 
structure of the data. Overall, these deviations from normality and remaining autocorrelation structure of the 
innovation error were very small and considered negligible in the context of our particular application.
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Figure 4.  Correlation between the Lab luminance (a) and arousal score (b and c) of the affective pictures and 
the innovation error of the AR model as a function of time. Same conventions as in Fig. 2. While panel b. shows 
the correlation with the arousal score, panel c. illustrates the partial correlation, accounting for all the low-level 
features of the images.
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The correlation of the innovation error with the luminance parameter was very consistent across subjects, 
peaked negatively between 300 and 400 ms after image onset, and was followed by a positive peak, 500 to 800 ms 
after image onset (see Fig. 4a). The correlation with arousal showed also a consistent positive peak between 300 
and 800 ms (see Fig. 4b, all subjects show significant correlations within this time frame). However, it was present 
even for scrambled images, suggesting the presence of a confounding factor. Since the arousal score correlated 
with some of the low-level features of the images (significant only for the Lab a value: rho =​ 0.13, p <​ 0.001; all 
other p values >​ 0.05), partial correlations between pupil response and arousal were performed to account for this 
putative confound, removing the effect of all the low-level features of the image (Lab luminance, a and b values, 
image contrast and entropy). However, the results were very similar, and significant correlations with the arousal 
score were still present for scrambled images (see Fig. 4c). This suggests complex influences of the low-level image 
features on the pupil response, which failed to be removed by simple partial correlations.

Finally, exogenous inputs were added to the model. Impulse responses (i.e. the modeled responses of the pupil 
to an input of value 1 with a duration of 1 sample) with confidence intervals were extracted for each exogenous 
input, each subject and for both scrambled and non-scrambled images. In all 5 subjects, the pupil showed very 
clear impulse responses to the luminance of the image, which differed very little within and between subjects 
(see Fig. 5; note that since impulse responses are issued from the model, they can be displayed with arbitrarily 
long duration, without interference from subsequent stimuli). In addition, in all subjects, the impulse response to 
the arousal score was significant (i.e. the confidence interval on Fig. 5 did not cross zero, alpha =​ 0.01) in blocks 
during which non-scrambled images were presented, but not in blocks showing scrambled images. From these 
results, various second-level population analyses could be performed, such as analyses of variance on the peak 
amplitude of the impulse responses or on their latency. Here, as an example of second-level analysis, I computed 
the population average of the impulse response, combining the errors in the individual estimates by means of a 
random effect meta-analysis model30 (function averageImpulseResponses in the proposed toolbox). This popu-
lation average confirmed the clear response to luminance in both scrambled and non-scrambled blocks and the 
significant response to arousal restricted to non-scrambled blocks (see Fig. 6).
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In the pupil size data, eye blinks were linearly interpolated. However, this does not by itself guarantee that 
blinks did no influence the results, especially if the tagging of the blinks was not perfect, and if the occurrence 
of those blinks depended on the other regressors (i.e. if they were more likely to occur following images with 
high luminance and/or high arousal content). In order to determine whether the luminance and arousal scores 
of the images influenced the probability of the occurrence of the blinks, logistic regressions were performed in 
each 100-ms time bin of the 2 seconds that followed each image. Despite the absence of correction for multiple 
comparisons, none of the tests were significant for the luminance regressor (alpha =​ 0.01), and the tests were sig-
nificant only in 2 bins, for one subject, in the non-scrambled image presentation session for the arousal regressor 
(with a slight decrease in blink probability following high arousal images, from 1100 to 1300 ms following image 
onset). This shows that luminance and arousal had none to minor effect on blink occurrence.

In addition, in order to really ensure that the observed effect of luminance and arousal on the pupil response 
was not caused by blinks (including in the subject whom showed this weak relation between arousal and blink 
probability), a blink regressor was added to the ARX model described above, leading to a total of 4 regressors 
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in the model. The pupil was found to react significantly to the blinks in all subjects, showing a strong negative 
response to blink offset (caused by the global change in luminance which follows eyelid opening). However, 
accounting for the pupil response to blinks in the ARX model did not change the modeled response to arousal, 
which still differed significantly from zero in the non-scrambled image presentation data. These results confirm 
that the pupil response to arousal is not caused by an artifact related to blink occurrence.

In order to determine the stability of the ARX model over time, the distributions of the innovation errors were 
compared (Kolmogorov-Smirnov test) across the four sub-blocks of presentation in each session (corresponding to 
constant image presentation separated by 7 s breaks). The average Kolmogorov-Smirnov statistic increased as a func-
tion of the time distance between the sub-blocks (see Fig. 7; Friedman test: χ​2 =​ 12.6, p =​ 0.0018), indicating that the 
underlying process, governing the pupil responses and captured partly by the ARX model, changed over time. These 
changes could be caused by different factors that were not measured in the present study, such as fatigue, sleepiness 
or mind wandering. This suggests that tracking the parameters of the ARX model over time could potentially be 
used to isolate different cognitive states of the subjects. This however, will require further experiments.

Finally, the data from the rest recording session was analyzed, with the objective of illustrating the possibility 
to use continuous physiological signals as inputs in the models (see Fig. 8a). The respiration signal was used 
to predict pupil variations in one subject. The resulting impulse response differed significantly from zero (see 
Fig. 8b), even though the percentage of variance of the pupil explained by the respiratory influence was only 
around 3% (see Fig. 8c). In order to remove the confounding effect of the respiration on the signal, the autore-
gressive part of the impulse response (the ϕ parameters in the equation described in Methods) was applied on the 
innovation error from the ARX model. The difference between the raw signal and the signal after removal of the 
response to the respiration signal is shown in Fig. 8d.

Discussion
In the present paper, I describe a new approach to analyze pupillometric data that addresses the issue of auto-
correlations and low-frequency noise in the pupil signal. This method allowed me to perform subject-by-subject 
analysis of the pupil response to the luminance and arousal scores of standardized images, presented in rapid 
succession. This fast pace yielded pupil responses to more than a thousand images in about 6 minutes. In all par-
ticipants, the pupil reacted significantly to the arousal score of the images, in agreement with earlier findings31–33.
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Various approaches have been proposed to deal with the issues of pupillometric data analysis. Hoeks & Levelt 
devised a method based on deconvolution17. First, a parametric, canonical impulse response was determined 
by optimizing the fit between pupillometric data and an input vector representing events of interest, convolved 
with the impulse response. A fitting procedure was used in which free parameters controlled the shape of an 
impulse response, which was then convolved with an input vector representing the events of interest. This fit-
ting procedure allowed Hoeks & Levelt to determine the parameters that maximized the fit between the con-
volved input vector and the actual data. Once these parameters are determined, they can be used to perform the 
inverse approach, i.e. to determine the input vector by deconvolving the impulse response from the pupillometric 
data17,18, or to perform general linear model analysis, similar to the standard univariate analyses used in neuroim-
aging data28, by regressing predicted responses on actual pupillometric data19. Despite its merits, this technique 
has also important limitations, which the present method addresses. First, the present method deals with the 
variability of the impulse responses in terms of latency and intensity, across individuals and across stimulation 
features (e.g. luminance versus arousal). This variability highlights the need for adapting the parameters subject-
wise, rather than using canonical impulse responses17–19. Second, this approach deals automatically with the issue 
of baseline correction. Because of the typical low-frequency noise inherent to the pupil data, event-aligned pupil 
traces can have strong upward or downward trends, which are not corrected by baseline correction. Detrending 
or high-pass filtering the pupil traces are not optimal solutions either, because they require to make assumptions 
about the frequency of the noise and the frequency of the signal. The ARX model provides thus an elegant solu-
tion to this issue.

The present approach is straightforward to implement in any programming language including system iden-
tification libraries, such as Matlab, Python or others. Its decisive advantage is most obvious in situations in which 
the stimuli are presented in rapid succession, the responses are weak or the influence of several features of the 
stimuli are addressed at the same time. However, in simple experimental designs in which the pupil signal is 
recorded for several seconds after each stimulus, such that its response can be easily isolated, in which the number 
of conditions is limited and in which the effect size is large, there is probably no advantage in using such approach, 
and a standard averaging of the signal, combined with standard hypothesis testing methods could be sufficient. 
Another major potential advantage of the present method is the possibility to include other physiological signals 
as inputs to the model. Here, in order to illustrate this possibility, I have modeled the response of the pupil to res-
piration, but other physiological signals, such as neural signals, could also be used. This could allow researchers to 
assess how neural activity, such as electroencephalographic signals, local field potentials or single cell recordings 
can be involved in driving the pupil response12. A last possibility for extension of this method is to include mul-
tiple outputs in the models, allowing interactions to occur between the signals. This approach is the basis of the 
Granger causality measures, now popular in neuroimaging analysis34. This could allow neural signals to be mod-
eled as outputs, together with the pupil signal, while the inputs would remain limited to actual exogenous events.

In summary, the present paper introduces a novel approach to pupillometric data analysis, which exhibits 
some decisive advantages over previous methods and opens various possibilities for improvement and extension 
in the future.
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