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Stability of neuronal connectivity is critical for brain functions, and
morphological perturbations are associated with neurodegenera-
tive disorders. However, how neuronal morphology is maintained
in the adult brain remains poorly understood. Here, we identify
Wnt5a, a member of the Wnt family of secreted morphogens,
as an essential factor in maintaining dendritic architecture in the
adult hippocampus and for related cognitive functions in mice.
Wnt5a expression in hippocampal neurons begins postnatally, and
its deletion attenuated CaMKII and Rac1 activity, reduced GluN1
glutamate receptor expression, and impaired synaptic plasticity
and spatial learning and memory in 3-mo-old mice. With increased
age, Wnt5a loss caused progressive attrition of dendrite arbors
and spines in Cornu Ammonis (CA)1 pyramidal neurons and exacer-
bated behavioral defects. Wnt5a functions cell-autonomously to
maintain CA1 dendrites, and exogenous Wnt5a expression corrected
structural anomalies even at late-adult stages. These findings
reveal a maintenance factor in the adult brain, and highlight a
trophic pathway that can be targeted to ameliorate dendrite loss
in pathological conditions.
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Long-term structural maintenance of neuronal networks is
essential for sustaining brain functions. The size and pattern

of dendrite arbors dictate the ability of neurons to receive and
integrate synaptic inputs and are thus critical determinants of
information processing in the brain. Established by periods of
dynamic growth during development, dendrite arbors and spines
are thought to be largely stable in adulthood and are maintained
for the lifetime of an organism (1). The significance of this
maintenance phase for normal brain functions is underscored by
evidence that late-onset retraction of dendritic arbors and spine
loss are the most consistent morphological correlates of several
neurological and psychiatric disorders, including schizophrenia,
major depressive disorder, anxiety, and Alzheimer’s disease (2–5).
Thus, specific molecular signals must exist to ensure the mainte-
nance of neuronal morphology and synaptic connectivity in the
adult nervous system.
To date, understanding of the molecular cues that maintain

adult dendritic patterns has been limited, and largely originates
from studies of developmental signals that are deployed later
during postnatal life to regulate maturation or stability (1, 6).
Brain-derived neurotrophic factor (BDNF) provides an example
of an extrinsic signal that is required throughout life for both the
establishment and maintenance of neuronal connectivity. Con-
ditional deletion of either BDNF or its receptor, TrkB, leads to a
reduction in dendritic complexity of adult cortical neurons (7, 8).
Intriguingly, deletion of BDNF or TrkB does not affect dendrite
architecture in the adult hippocampus, a brain structure critical
for spatial learning and memory and anxiety (7, 9–13). Currently,
little is known about dendrite support mechanisms in adult hip-
pocampal neurons. Cornu Ammonis (CA)1 pyramidal neurons in
the hippocampus are particularly vulnerable in Alzheimer’s disease

and exhibit extensive dendrite arbor loss that correlates with the
degree of cognitive decline (14). Identification of adult maintenance
mechanisms would be highly relevant to the understanding of the
structural basis of hippocampus-dependent behaviors, as well as the
etiology of neurodegenerative diseases where extensive dendritic
anomalies are manifested late in life.
Here, using neuron-specific deletion in mice, we identify Wnt5a,

a member of the Wnt family of developmental morphogens, as an
essential factor for the long-term stability of dendritic architecture
in the adult hippocampus. Previous studies have implicated Wnt5a
in regulating developmental axon and dendrite outgrowth and
synapse formation in cultured hippocampal neurons (15–20). Here,
we report that Wnt5a deletion does not compromise hippocampal
development or maturation in vivo, but results in striking adult-
onset defects in dendrite arborization, lengths, and spine densi-
ties in CA1 hippocampal pyramidal neurons that manifest after
4 mo of age in mice. Wnt5a is required cell-autonomously in
adult neurons to maintain dendritic architecture. Loss of Wnt5a
impairs hippocampal synaptic plasticity and spatial learning and
memory in adult mice before the onset of dendritic regression,
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although the behavioral deficits are exacerbated with the ap-
pearance of structural abnormalities. Wnt5a acts via calcium-
and cytoskeletal-mediated signaling in the adult hippocampus,
and unexpectedly, via cyclic AMP-responsive element binding
(CREB)-mediated transcription of the obligatory NMDA re-
ceptor subunit, GluN1. Finally, we demonstrate that late ex-
pression of Wnt5a, even after substantial structural loss, fully
restores neuronal morphology, highlighting the growth-pro-
moting capacity of this pathway in the adult brain. Together,
these findings reveal that noncanonical autocrine Wnt signaling
maintains adult hippocampal connectivity and synaptic plasticity,
and provide a trophic pathway that can be targeted to counter
structural deficits in pathological situations.

Results
Cell-Autonomous Requirement for Wnt5a in Maintaining Adult CA1
Dendrite Arbors. We observed Wnt5a expression in the mouse
hippocampus at 1 wk after birth, which increased prominently by
2 wk and was sustained at adult stages (Fig. 1 A and B). Wnt5a
mRNA was localized throughout the hippocampal formation,
and was enriched in the dentate gyrus and the CA1 region. The
expression pattern in the hippocampus is consistent with pre-
vious findings (21) and that in the Allen Brain Atlas (www.brain-
map.org/), where Wnt5a expression has also been noted in the
cerebellum and to a lesser degree in the cerebral cortex and
olfactory bulb in the adult mouse brain. The onset of Wnt5a
expression in hippocampal neurons correlated with the appear-
ance of pre- and postsynaptic proteins (Fig. 1B).
That prominent hippocampal Wnt5a expression is detected

only at postnatal stages was intriguing, given the reported roles
of Wnt5a in embryonic processes in the brain (15, 22–25). Wnt5a
expression in the postnatal hippocampus, together with evidence
supporting the role of Wnts in regulating morphological changes
in cultured hippocampal neurons (26, 27), prompted us to ad-
dress the functions of Wnt5a in hippocampal neurons in vivo. To
accomplish this end, we crossed floxed Wnt5a (Wnt5afl/fl) mice
with the pan-neuronal Nestin-Cre line (28) to delete Wnt5a in all
neurons starting at embryonic stages (Fig. S1A). Wnt5a was un-
detectable in the Nestin-Wnt5afl/fl hippocampus throughout post-
natal ages, including postnatal day 21 (P21) by in situ hybridization
(Fig. S1B). Importantly, quantitative PCR (qPCR) analysis
showed that levels of other Wnts were unaltered in the absence
of Wnt5a (Fig. S1 C and D), indicating that Wnt5a loss did not
elicit compensatory changes in the expression of otherWnt genes
in the hippocampus.
Despite the early deletion of Wnt5a (Fig. S1 A–C), there were

no obvious differences in gross morphology and projections of
hippocampal layers between Nestin-Wnt5afl/fl mice and con-
trolWnt5afl/fl littermates at 1 mo (Fig. S1E), when hippocampal
neural circuit establishment should be complete (29–31). Detailed
examination of dendritic morphology of CA1 hippocampal pyra-
midal neurons revealed normal dendrite length, complexity, and
spine densities in 1-mo-old mutant mice (Fig. S1 F–J). These re-
sults show that Wnt5a is dispensable for establishing dendritic
arbors and for spine formation in CA1 pyramidal neurons in vivo,
contrary to published reports that Wnt5a promotes neuronal
morphogenesis in cultured hippocampal neurons (15, 18, 19, 32).
To next address if Wnt5a might function in the mature hippo-

campus, we crossed Wnt5afl/fl mice with calcium-calmodulin kinase II
(CaMKII)α-Cremice, where Cre expression starts at 2.5 wk after birth
and is restricted to forebrain excitatory neurons in the hippocampus
and cortex (33). Wnt5a deletion was near complete in the CaMKII-
Wnt5afl/fl hippocampus by 3 mo of age (Fig. S2 A and B), whereas
other Wnts showed normal expression (Fig. S2C). Surprisingly, we
observed a decrease in the thickness of the CA1 dendritic layers in
6-mo-old CaMKII-Wnt5afl/fl mice using MAP2 immunostaining, al-
though hippocampal cyto-architecture and axonal projections were
unaffected (Fig. S2D). To better visualize the morphologies of indi-

vidual CA1 neurons and their processes and to pinpoint the onset of
dendritic defects triggered by the postnatal loss of Wnt5a, we crossed
CaMKII-Wnt5afl/fl mice with Thy1-GFP-M transgenic mice that have
mosaic GFP expression in the hippocampus (34), and analyzed
neuronal structure at different ages from 3 to 12 mo (Fig. 1C).
Sparsely labeled CA1 pyramidal neurons in Thy1-GFP;CaMKII-
Wnt5afl/fl mice had normal dendrite arbor complexities and lengths at
3 mo of age (Fig. 1D,H, L, andM). However, by 4.5 mo, Thy1-GFP;
CaMKII-Wnt5afl/fl neurons showed striking dendritic deficits that
progressively declined in older animals (Fig. 1 E–G, and I–M). Based
on Sholl analyses, distal dendrites at distances 50 μm and farther from
the soma were more severely affected than proximal dendrites (Fig. 1
I–K). In control mice, the total dendritic length remained remark-
ably stable between 3 and 12 mo of age (4,866 ± 175 μm at 3 mo vs.
4,978 ± 162.7 μm at 12 mo) (Fig. 1L). In contrast, CaMKII-Wnt5afl/fl

mice exhibited a pronounced decrease in dendritic length between 3
and 12 mo of age (4,780 ± 132.4 μm at 3 mo vs. 2,810 ± 62.36 μm at
12 mo) (Fig. 1L). Quantification of dendritic spine densities also
revealed a significant reduction (31.5% decrease) in 6-mo-old
CaMKII-Wnt5afl/fl mice compared with controls (Fig. S2 E and F).
Despite the profound dendritic shrinkage in adult CaMKII-Wnt5afl/fl

mice, there was no overt loss of neurons in these animals even at
12 mo (Fig. S2 G and H). Together, these results indicate a re-
quirement for Wnt5a in the maintenance of dendrite arbors and
spine densities in adult CA1 neurons.
Wnts are known to act either as autocrine (cell-autonomous)

or paracrine (noncell-autonomous) secreted factors. Because
Wnt5a is deleted from all excitatory hippocampal neurons in
CaMKII-Wnt5afl/fl mice, we are unable to distinguish between
these two modes of signaling using the conditional mutants. To
determine whether Wnt5a has a cell-autonomous or noncell-
autonomous role in the hippocampus, we performed mosaic
analyses by lentiviral delivery of GFP-T2A-Cre or GFP alone
into subsets of hippocampal neurons in Wnt5afl/fl animals. Viral
infections were done at 2 mo and mice harvested 3 mo later for
morphological analyses (Fig. 1N). We found stunted dendritic
arbors in sparse GFP-labeled CA1 neurons with significant re-
ductions in branch complexity and length in Wnt5afl/fl animals
infected with GFP-T2A-Cre but not GFP alone (Fig. 1 O–R).
Thus, mosaic Wnt5a elimination causes poorly branched and
diminished dendritic arbors in isolated Cre-expressing neurons
despite the presence of non-Cre–expressing neighboring neurons
that are capable of releasing Wnt5a. These results suggest that
Wnt5a secreted from adult CA1 neurons maintains neuronal
morphology in an autocrine manner, likely because of limited
diffusibility attributed to the lipid-modified and hydrophobic
nature of Wnts (35).

Wnt5a Is Essential for Hippocampal Synaptic Plasticity. The dramatic
changes in adult neuronal morphology with Wnt5a loss promp-
ted us to ask whether Wnt5a is essential for hippocampal syn-
aptic transmission in vivo. We performed electrophysiological
recordings in CaMKII-Wnt5afl/fl mice at 3 mo of age, a time when
CA1 neuronal morphology is still intact, and at 6 mo when the
morphology is impaired. We observed that basal synaptic trans-
mission is normal in CaMKII-Wnt5afl/fl mice at 3 mo but not at
6 mo, consistent with impaired dendritic structures at this age
(Fig. 2 A–D). We also measured the probability of synaptic re-
lease at presynaptic sites by paired pulse facilitation (PPF)
analyses and found that PPF was comparable between CaMKII-
Wnt5afl/fl mice and control littermates at both 3 and 6 mo of age
(Fig. S3). The normal presynaptic properties in Wnt5a-deficient
mice suggests that Wnt5a acts primarily at postsynaptic sites.
Hippocampal neurons exhibit prominent synaptic plasticity in

which activity-dependent modulation of the strength of synaptic
connections underlies learning and memory (36). Previously,
broad-spectrum Wnt antagonists have been shown to affect
synaptic structure, plasticity, and cognitive functions in adult
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Fig. 1. Wnt5a is required cell-autonomously for maintenance of adult CA1 dendrite architecture. (A) In situ hybridization shows Wnt5a transcript in the
mouse hippocampus at postnatal stages.Wnt5a is absent at the day of birth (P0) but is detected by 1 wk and is abundant in the 3-mo-old hippocampus. (Scale
bar, 300 μm.) (B) Onset of Wnt5a protein expression coincides with the appearance of pre- and postsynaptic proteins in hippocampal neurons. Hippocampal
homogenates from mice of different ages (ranging from E18 to 6 mo) were immunoblotted with antibodies against Wnt5a, VGLUT1, PSD95, GluA1, GluN1,
CaMKIIα, CaMKIIβ, and tubulin. (C) Schematic of the strategy to assess effects of postnatal Wnt5a deletion on neuronal morphologies in adult mice at dif-
ferent ages using CaMKIIα-Cre transgenic mice. (D–G) Representative images of GFP+ CA1 pyramidal neurons show that dendritic arbors are normal at 3 mo,
but become progressively stunted with age in Thy1-GFP;CaMKII-Wnt5afl/fl (KO) mice compared with control Thy1-GFP;Wnt5afl/fl mice (WT). (Scale bar, 100 μm.)
Shown below are 3D reconstructions of neuronal soma and dendrites from WT and KO mice at 3, 4.5, 6, and 12 mo using Imaris. (H–K) Sholl analyses show
that dendritic complexity is unaffected in 3-mo-old KO mice but significantly decreased by 4.5 mo and declines in older KO mice. Results are mean ± SEM from
five neurons traced per animal and a total of five mice per genotype. Two-way ANOVA with Bonferroni post hoc test. (L and M) Total dendrite length and
number of dendritic branch points are unaltered in 3-mo-old KO mice, but progressively decreases from 4.5 mo to 12 mo in older KO mice. Results are mean ±
SEM from five neurons traced per animal and a total of five mice per genotype. **P < 0.01 two-tailed t test. (N) Wnt5afl/fl mice were stereotaxically injected
with lentiviral vectors expressing GFP-T2A-CRE or GFP at 2 mo and dendritic morphologies analyzed after 3 mo. (O) Dendritic arbors were stunted in Cre-
expressing neurons compared with GFP-expressing neurons. (Scale bar, 100 μm.) (P) Sholl analysis shows decreased dendrite arbor complexity in sparsely
labeled Cre-expressing neurons compared with controls. Two-way ANOVA with Bonferroni post hoc test. (Q and R) Dendritic lengths and branch points are
reduced in Cre-expressing neurons compared with controls. Results are mean ± SEM from 14 GFP-T2A-CRE- and 10 GFP-infected neurons from a total of 10
Wnt5afl/fl mice. ***P < 0.001, two-tailed t test.
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organisms (37–41). However, there are 19 vertebrate Wnts, and
which Wnt is essential for these functions in the adult brain in vivo
remains unknown. To assess the role of Wnt5a in NMDA receptor-
dependent long-term potentiation (LTP), an electrophysiological
correlate of strengthening of synaptic transmission, we used θ-burst
stimulation to induce LTP at Schaffer collateral–CA1 synapses in
3-mo-old mice. Recordings from Wnt5afl/fl control slices revealed a
robust induction of LTP and a sustained maintenance phase (Fig. 2
E–G). In contrast, CaMKII-Wnt5afl/fl slices showed a significant
reduction in both induction (274.3 ± 18.2% in control slices vs..
201 ± 7.9% in CaMKII-Wnt5afl/fl slices, P = 0.0002) and mainte-
nance (190.8 ± 13.3% in control slices vs. 151.9 ± 5.4% mutant
slices, P = 0.01) phases of LTP (Fig. 2 E–G). The impairment in
LTP detected at 3 mo in CaMKII-Wnt5afl/fl mice when neuronal
structure and basal synaptic transmission are still intact, suggests
that synaptic plasticity is more susceptible to the loss of Wnt5a.
To address if Wnt5a contributes to NMDA receptor-dependent

long-term depression (LTD), an electrophysiological correlate of
weakening of synaptic transmission, we used a standard low-fre-
quency stimulation paradigm to induce LTD in the CA1 hippo-
campus. In contrast to the LTP defect, we found no differences in LTD
between mutant and control mice at 3 mo of age (Fig. 2 H and I).

Taken together, these results indicate a specific role for Wnt5a in
the potentiation of synaptic efficacy.

Wnt5a Is Essential for Spatial Learning and Memory. Synaptic plas-
ticity is widely considered to be a cellular mechanism that un-
derlies learning and memory (42, 43). In addition, structural
maintenance of synaptic connectivity has been postulated to be
critical for life-long memories (44). Given the decreased CA1
LTP in 3-mo-old CaMKII-Wnt5afl/fl mice, we subjected Wnt5a
mutant mice to behavioral paradigms to evaluate cognitive
functions. In the novel-object recognition test, which evaluates
the preference of mice to explore a new over a familiar object
(45), adult Wnt5afl/fl mice showed a significant preference for the
novel object, with 3- and 6-mo-old mice spending 70.8 ± 5.5%
and 68.1 ± 8.1% of time exploring the novel object, respectively.
However, CaMKII-Wnt5afl/fl mice showed no preference for the
novel object at both 3 and 6 mo of age (Fig. 3 A and B), in-
dicating a deficit in recognition memory.
To test hippocampus-dependent spatial learning in these mice,

we used the Morris water maze to test an animal’s ability to use
spatial cues to locate a hidden platform in a tank of water (46)
(Fig. S4A). Importantly, CaMKII-Wnt5afl/fl mice had visual acuity
and swimming speeds comparable to littermate controls (Fig. S4
B and C). Three-month-old CaMKII-Wnt5afl/fl mice took signif-
icantly longer time to locate the hidden platform during the
initial training period of 12 consecutive days using four trials per
day (see schematic in Fig. 3C), compared with age-matched
controls, eventually achieving similar latencies as control mice on
the sixth day (Fig. 3D). Six-month-old CaMKII-Wnt5afl/fl mice
also required significantly more time to find the platform.
However, 6-mo-old mutants did not achieve similar latencies as
control mice, even when tested on the 12th day (Fig. 3E). These
results show that acquisition of spatial learning is impaired in the
absence of structural deficits in 3-mo-old Wnt5a mutant mice,
but that learning deficits are exacerbated with the appearance of
morphological abnormalities in older animals.
To evaluate reference memory, we conducted a probe trial on

day 13 in which the platform was removed and measured the
amount of time that mice spent in the original target quadrant
(Fig. 3C). Both 3- and 6-mo-old mutant mice spent significantly
less time in the target quadrant and made fewer platform
crossings (Fig. 3 F and G and Fig. S4 D and E). We then per-
formed a reversal training by relocating the hidden platform to
the opposite quadrant from days 14–25 (Fig. 3C). As in the intial
training phase, 3-mo-old Wnt5a mutant mice required more days
of training to find the new platform, but eventually reached
similar latencies as control mice (Fig. S4F). However, 6-mo-old
mutant mice took significantly longer to find the platform
compared with control littermates even on day 25 (Fig. S4G).
We then conducted probe trials for 7 d (days 26–32) to assess
memory retention. Three-month-old mutants maintained a
preference for the target quadrant for the 7 d of the probe trial
(Fig. 3H), whereas this preference was lost in 6-mo-old mutants
by the fifth day (Fig. 3I), suggesting a marked decay in memory
retrieval in older mutant animals.
Taken together, the findings from the Morris water maze test

support an essential role for Wnt5a in the acquisition of spatial
learning and memory storage in adult animals. Notably, the
cognitive dysfunction in 3-mo-old CaMKII-Wnt5afl/fl mice were
consistent with the LTP defects observed at this age but appeared
before the onset of anatomical impairments. The more pronounced
behavioral defects in 6-mo-old CaMKII-Wnt5afl/fl mice suggest a
progressive decline in cognitive functions with the manifestation of
dendritic abnormalities.

Wnt5a Loss Disrupts Calcium and Cytoskeletal Signaling Pathways
and CREB-Mediated Transcription of Glutamate Receptors. Wnts
are known to exert their effects by signaling through three
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effector pathways: the canonical β-catenin–dependent pathway, a
Ca2+-dependent pathway, and the planar cell polarity pathway
(47). We found comparable levels of nuclear β-catenin and
Axin2, c-myc, and NeuroD1, all transcriptional targets of ca-
nonical β-catenin signaling (48), between CaMKII-Wnt5afl/fl and
control Wnt5afl/fl hippocampus at 3 mo (Fig. S5 A–C), indicating
that canonical Wnt signaling is unaffected by Wnt5a depletion in
the mature hippocampus.
We next assessed the Wnt–calcium pathway, where Wnt ligands

promote an increase of cytoplasmic Ca2+ (49, 50). Strikingly,
Wnt5a treatment acutely elicited a calcium response in 92% of
cultured rat hippocampal neurons transfected with GCaMP3,
whereas only 43% of neurons responded to control treatment.
Furthermore, the number of calcium transients was fivefold
higher in Wnt5a-treated neurons (Fig. 4 A–C and Movies S1 and
S2). We then performed biochemical analyses to assess activa-

tion of CaMKII, a critical regulator of hippocampal connectivity
and functions (51, 52), in vivo, in young adult CaMKII-Wnt5afl/fl

mice at 3 mo before the appearance of structural anomalies.
Using a phospho-specific antibody that detects activated CaMKII
(threonine 286 phosphorylation on CaMKIIα and T287 on
CaMKIIβ) (53), we found a pronounced attenuation of phos-
phorylated CaMKIIα (59% decrease) and CaMKIIβ (57% de-
crease) in CaMKII-Wnt5afl/fl mice (Fig. 4 D and E). CaMKII-
mediated phosphorylation of the GluA1 subunit of AMPA-type
glutamate receptors at a critical serine 831 site (54, 55) has been
functionally linked to synaptic plasticity and retention of spatial
memory in mice (56, 57). We found a marked decrease in
phospho-S831-GluA1 in postsynaptic density fractions from the
mutant hippocampus (Fig. 4 D and E). These results suggest
decreases in phosphorylation of CaMKII and GluA1 as the
molecular underpinnings for the impairments in synaptic plas-
ticity and spatial memory in CaMKII-Wnt5afl/fl mice.
Calcium signaling within synapses could couple to transcrip-

tional responses via shuttling of a Ca2+/CaM/CaMKIIγ complex
to the nucleus to promote phosphorylation of CaMKIV, which
then phosphorylates and activates the transcription factor CREB
(58). Phosphorylation of CaMKIV and CREB were significantly
reduced in nuclear fractions from 3-mo-old CaMKII-Wnt5afl/fl

hippocampal tissues (Fig. 4 F and G). Because Wnt5a deletion
altered nuclear CREB phosphorylation, we assessed levels of
several synaptic proteins (Fig. S5 D and E) and found that only
GluN1, the obligatory NMDA receptor subunit, was decreased
(Fig. 4 H–J), raising the possibility that GluN1 transcription is
CREB-dependent. We did not observe any changes in levels
of other NMDA receptor subunits, GluN2a/2b, that are coex-
pressed and coassembled in the endoplasmic reticulum (ER)
with GluN1, in the mature hippocampus (Fig. 4 H–J). We
identified three putative CRE sites (CRE1 at −212 bp, CRE2 at
−238 bp, and CRE3 at −770 bp) in a 1-kb region upstream of the
transcription start site in the mouse GluN1 promoter (Fig. 4K).
In a dual luciferase assay, Wnt5a stimulation of hippocampal
neurons for 6 h significantly increased luciferase activity com-
pared with control treatment (Fig. 4 K and L). Mutation of just
the two proximal CRE elements (−212 to −216 bp and −238 to
−242 bp) abolished Wnt5a-induced luciferase activity (Fig. 4L).
These results reveal an unexpected role for Wnt5a in enhancing
GluN1 transcription through a noncanonical pathway that in-
volves calcium-CaMKII-CREB activation.
We finally examined the planar cell polarity pathway where

noncanonical Wnts induce cytoskeletal dynamics by activating
small GTPases, such as Rac1 and JNK signaling (59). Rac1 is a
critical regulator of the actin cytoskeleton in dendrites and spines
(60, 61). Active Rac1-GTP and phospho-JNK levels were sig-
nificantly reduced in hippocampal homogenates prepared from
3-mo-old CaMKII-Wnt5afl/fl mice (Fig. 4 M–P). Rac1 activity can
also be influenced by CaMKII activity via CaMKII-mediated
phosphorylation of the Rac1-specific GEFs, Tiam1 and Kalirin-7
(62, 63). Taken together, these results suggest that Wnt5a signals
via CaMKII and Rac1-mediated signaling, as well as CREB-
mediated GluN1 synthesis to maintain synaptic plasticity and
structure in the adult hippocampus.

Late Induction of Wnt5a Reverses Dendrite Attrition. Our results
show that adult Wnt5a-deficient mice have profound defects in
hippocampal synaptic plasticity, dendrite morphology, and re-
lated molecular changes. Could restoring Wnt5a expression
prevent or even correct synaptic signaling and dendritic defects
in adult CaMKII-Wnt5afl/fl mice? To address this question, we
expressed Wnt5a using an adeno-associated virus (AAV) virus
carrying a Cre-dependent Wnt5a transgene, DIO-Wnt5a, in
CaMKII-Wnt5afl/fl mice. First, to address if Wnt5a expression
rescues signaling defects observed at 3 mo, we delivered Wnt5a
at this time point and performed biochemical analyses at 2 wk
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recognition memory were evident in both 3- and 6-mo-old mutants. Dashed line
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after viral infection (Fig. 5A). Immunoblotting of hippocampal
homogenates revealed that AAV-mediated Wnt5a expression
was sufficient to correct the impairments in CaMKII and CREB
phosphorylation, GluN1 expression, and Rac1 activity in CaMKII-
Wnt5afl/fl mice (Fig. 5 B–E). These results suggest a direct and acute
role for Wnt5a in regulating calcium and Rac1 activity and en-
hancing CREB-mediated synthesis of NMDA-type glutamate
receptor subunits in the mature hippocampus.
We next addressed whether the dendrite atrophy in adult

CaMKII-Wnt5afl/fl neurons was permanent or could be reversed

by Wnt5a administration well after the onset of structural ab-
normalities. Thus, we delivered AAV-DIO-Wnt5a into Thy1-
GFP;CaMKII-Wnt5afl/fl mice at 6 mo when CaMKII-Wnt5afl/fl

mice exhibit pronounced regression of dendritic arbors, and mice
were harvested 3 mo after AAV infections for morphological
analyses (Fig. 5F). We simultaneously delivered AAV-DIO-
mCherry as a means to label infected neurons that are also GFP+

to facilitate tracing of neuronal morphologies in isolated neu-
rons. Strikingly, AAV-mediated expression of Wnt5a in Thy1-
GFP;CaMKII-Wnt5afl/fl resulted in dendritic arbors that were
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comparable in complexity and lengths to control Thy1-GFP;
Wnt5afl/fl neurons (Fig. 5 G–J). As expected, with infection with
AAV-DIO-mCherry alone, we observed substantial decreases in
dendrite complexity and lengths in Thy1-GFP;CaMKII-Wnt5afl/fl

CA1 neurons (Fig. 5 G–J). These findings indicate that dendritic
attrition in adult mutant neurons can be reversed, and reveals
that Wnt5a, remarkably, promotes substantial dendritic growth
and branching in the adult brain when neuronal connectivity is
thought to be largely immutable.

Discussion
Wnts are evolutionarily conserved signaling molecules that have
been classically associated with embryonic patterning and es-
tablishment of neural circuits (47, 64, 65). That these classic
developmental cues may have critical functions in the adult brain
has been implied by recent findings that broad-spectrum block-
ade or activation of Wnt pathway components affects synaptic
structure, plasticity, and cognitive functions in adult animals (37–
41). However, surprisingly little is known about which of the 19
vertebrate Wnts is essential for adult nervous system functions in
vivo. Furthermore, manipulation of the Wnt pathway through
overexpression of antagonists, such as Dickkopf-1 (38, 41), de-
letion of the Lrp6 coreceptor (40), or the cytoplasmic effector,
β-catenin (37), may have consequences on neuronal connectivity
and function that are independent of Wnt ligands, via effects on
cell–cell adhesion, JNK signaling, and GPCR-mediated cAMP
signaling (66–68). Here, we show that deletion of a single Wnt
family member, Wnt5a, is sufficient to elicit profound disrup-
tions in synaptic plasticity, structural maintenance, and learning
and memory in adult mice, identifying the importance of this
particular noncanonical Wnt in later-life functions. Thus, the loss
of Wnt5a cannot be compensated for by other Wnts in the adult
hippocampus. Together, our results, summarized in the model in
Fig. 6, define a causal sequence of events where Wnt5a first
influences synaptic plasticity and related cognitive functions in
the adult hippocampus through CaMKII-mediated signaling,
Rac1-dependent actin dynamics, and CREB-mediated NMDA
receptor biosynthesis. In the long-term, Wnt5a-mediated regu-
lation of cytoskeletal signaling and excitatory synaptic trans-
mission is responsible for the maintenance of dendritic arbors
and spines. These findings provide insight into the poorly un-
derstood structural maintenance mechanisms that exist in the
adult brain, and suggest Wnt5a signaling as a molecular target in
ameliorating dendrite shrinkage and cognitive decline associated
with pathological situations.
The finding that embryonic deletion of Wnt5a in neurons did

not elicit any structural abnormalities in CA1 pyramidal neurons
during development suggests that neuronal Wnt5a is dispensable
for the establishment or maturation of hippocampal connectivity
in vivo. These results were surprising in the context of reported
developmental functions for Wnt5a in cultured hippocampal
neurons, and in embryonic processes in other brain regions (15,
18, 19). In hippocampal neurons, several signaling pathways have
been shown to influence dendrite morphogenesis, maturation,
and stability in vitro and in vivo (1, 6, 69). Thus, in the absence of
Wnt5a, other signaling mechanisms, including other Wnt mole-
cules (26, 27), could provide trophic support to hippocampal
CA1 dendrite arbors and spines at least for the first several
months of life in mice. Alternatively, Wnt5a derived from non-
neuronal sources may support hippocampal formation in the
absence of neuron-derived Wnt5a. However, the profound de-
fects in adult mice lacking Wnt5a suggest that these mechanisms
are unable to compensate for Wnt5a loss at later stages of life.
Notably, we demonstrate that Wnt5a, derived from CA1 pyra-
midal neurons themselves, is critical for sustaining dendritic ar-
chitecture in the adult hippocampus, implying that specificity for
neuronal wiring is intrinsic to active neurons themselves in hip-
pocampal circuits. To date, our limited understanding of the

molecular cues that influence neuronal morphology in adult
animals has largely come from analyses of cortical neurons in
genetically modified mice. Among the examples are adult mice
with deletion of BDNF and its receptor TrkB (7, 8), the adhesion
molecule δ-catenin (70), and the tumor suppressor phosphatase
and tensin homolog deleted on chromosome 10 (PTEN) (71).
Our findings identifying Wnt5a as being essential for the main-
tenance of adult CA1 hippocampal neurons is relevant to un-
derstanding the structural bases of hippocampus-dependent
behaviors.
We found that synaptic plasticity is most susceptible to the

postnatal depletion of Wnt5a. CaMKII-Wnt5afl/fl mice had im-
paired CA1 LTP and related behavioral defects at 3 mo of age, a
time when basal synaptic transmission and dendritic morphology
are intact. The normal presynaptic properties indicate that
Wnt5a acts primarily at postsynaptic sites. Recombinant Wnt5a
has previously been shown to acutely modulate NMDAR-me-
diated synaptic transmission in rat hippocampal slices (72). Our
results suggest that Wnt5a likely modifies synaptic strength
through CaMKII-mediated signaling events, including the phos-
phorylation and subsequent trafficking/conductance of AMPA-
type glutamate receptors, Rac1-dependent regulation of actin
dynamics in dendritic spines, and regulation of NMDA receptor
biosynthesis. Attenuation of small GTPase-mediated signaling
and excitatory synaptic transmission, both postulated to be crit-
ical determinants in stabilizing neuronal connectivity (61, 73, 74),
may underlie the gradual attrition of dendritic arbors and spines
in later life. Because mice with forebrain-specific deletion of
GluN1 have impairments in plasticity at CA1 synapses and
spatial memory acquisition (75), these findings suggest that
down-regulation of NMDA receptor synthesis contributes, in
part, to the functional and behavioral defects that we observed in
CaMKII-Wnt5afl/fl mice. Although NMDA receptor-mediated
LTD is impaired in mice with CaMKII-Cre–mediated deletion of
GluN1 (75), that we observed normal LTD responses in CaMKII-
Wnt5afl/fl mice can be attributed to the fact that residual
GluN1 expression in Wnt5a mutant mice may still allow suffi-
cient Ca2+ influx to promote LTD, consistent with the view of
differential Ca2+ requirements for LTD versus LTP (76, 77).
Previously, targeted GluN1 deletion has also been reported to
result in modest (∼35%) decreases in GluN2a/2b protein ex-
pression, but unaltered levels of GluN2a/2b mRNA (78, 79). The
decrease in GluN2a/2b subunits was attributed to their aberrant
retention in the ER and protein degradation when GluN1 is

Wnt5a
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p-CaMKII Rac1-
GTP

p-CREB

Synaptic
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Gene expression
(NMDA-R)

Actin
organization

Dendritic
maintenance

Learning and 
memory

[ Ca2+]

Adult dendritic maintenance

Wnt5a

Wnt5a

(Early) (Late)

Fig. 6. Model for adult-specific roles for autocrine Wnt5a signaling in
maintenance of CA1 dendrite architecture and function. Wnt5a influences
synaptic plasticity and related cognitive functions in the adult hippocampus
through CaMKII-mediated signaling and NMDA receptor biosynthesis, and
also Rac1-dependent actin dynamics in dendritic spines. In the long-term,
Wnt5a-mediated regulation of cytoskeletal signaling and excitatory synaptic
transmission is responsible for maintenance of dendritic structure.
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unavailable (78). That we did not observe any changes in
GluN2a/2b protein levels in CaMKII-Wnt5afl/fl mice is likely be-
cause the GluN1 depletion in our study (34%) is less robust
compared with the near-complete depletion previously reported
in GluN1 conditional null mice (78, 79). Thus, residual GluN1
expression in CaMKII-Wnt5afl/fl mice might be sufficient to avoid
ER-associated degradation of the GluN2a/2b subunits. Although
the total GluN2a/2b protein content was unaltered in the
CaMKII-Wnt5afl/fl hippocampus, it is possible that their synaptic
localization might be affected by Wnt5a loss, given previous
findings that Wnt5a modulates the surface expression of GluN2b
in cultured hippocampal neurons (80).
Currently, the Wnt5a receptors that mediate effects on den-

dritic maintenance and synaptic functions in the adult hippo-
campus remain to be determined, although likely candidates
include the Ror1/2 receptor tyrosine kinases and Frizzled-9.
Ror1/2 have been demonstrated to be bona fide Wnt5a receptors
in vivo (81). Ror2 is abundantly expressed in mature CA1 dendrites,
promotes dendritic activation of noncanonical Wnt signaling and,
notably, is necessary for Wnt5a-mediated potentiation of NMDAR
currents in acute hippocampal slices (82). Ror2 may function in
coordination with Frizzled receptors; in particular, Frizzled-9 is
localized to postsynaptic sites in hippocampal neurons, binds
Wnt5a via its cysteine-rich domain in biochemical analyses, and
the Frizzled-9 cysteine-rich domain is required for Wnt5a-mediated
changes in spine densities in cultured hippocampal neurons (32).
The early LTP defects and the cognitive decline followed by

retraction of dendrites and spine loss observed in adult Wnt5a
mutant mice bear similarities to the progression of events in
animal models of Alzheimer’s disease (83). Recent genetic
evidence implicates deficiencies in Wnt signaling, largely the
canonical arm, in the synaptic dysfunction and cognitive impair-
ments in Alzheimer’s disease (40, 84, 85). Our study emphasizes
that noncanonical Wnt signaling is essential for maintaining
synaptic function and connectivity in the adult brain. That late
induction of Wnt5a expression even after the onset of substantial
neuronal atrophy, remarkably restores dendrite morphology in

adult neurons, highlights the capacity of the adult nervous system
to undergo large-scale structural changes, and suggests a Wnt5a-
dependent trophic pathway that could be harnessed for thera-
peutic purposes in pathological situations.

Materials and Methods
Animals. All procedures relating to animal care and treatment conformed to
The Johns Hopkins University and NIH guidelines. Animals were housed in a
standard 12:12 light:dark cycle. The generation of Wnt5afl/fl mice has been
previously described (86). Hippocampal neuron cultures were established
from embryonic day 18 (E18) rat pups, as previously described (87).

Neuronal cell counts were performed as described in Ramanan et al. (88).
Lentiviral or AAV vectors were stereotaxically delivered to the hippocampus
using coordinates that were previously described (89). Golgi-based analyses
of dendrite arbors and spines were performed as described previously (90).
Further details of dendrite reconstructions and analyses are included in SI
Materials and Methods. Details of in situ hybridization, real-time PCR pri-
mers and assays, Rac1 GTPase activity, electrophysiology, calcium imaging,
luciferase assays, and the novel-object recognition test can be found in SI
Materials and Methods. The Morris water maze test was performed as
previously described (91), and the visual acuity was measured as previously
described (92).

Statistical Analyses. All Student’s t tests were performed using two-tailed,
unpaired, and a confidence interval of 95%. One-way or two-way ANOVA
analyses were performed when more than two groups were compared.
Statistical analyses were based on at least three independent experiments
and are described in the figure legends. All error bars represent the SEM.
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