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In the noisy cellular environment, gene products are subject to
inherent random fluctuations in copy numbers over time. How
cells ensure precision in the timing of key intracellular events
despite such stochasticity is an intriguing fundamental problem.
We formulate event timing as a first-passage time problem, where
an event is triggered when the level of a protein crosses a critical
threshold for the first time. Analytical calculations are performed
for the first-passage time distribution in stochastic models of gene
expression. Derivation of these formulas motivates an interest-
ing question: Is there an optimal feedback strategy to regulate
the synthesis of a protein to ensure that an event will occur at
a precise time, while minimizing deviations or noise about the
mean? Counterintuitively, results show that for a stable long-lived
protein, the optimal strategy is to express the protein at a con-
stant rate without any feedback regulation, and any form of feed-
back (positive, negative, or any combination of them) will always
amplify noise in event timing. In contrast, a positive feedback
mechanism provides the highest precision in timing for an unsta-
ble protein. These theoretical results explain recent experimental
observations of single-cell lysis times in bacteriophage \. Here,
lysis of an infected bacterial cell is orchestrated by the expression
and accumulation of a stable \ protein up to a threshold, and pre-
cision in timing is achieved via feedforward rather than feedback
control. Our results have broad implications for diverse cellular
processes that rely on precise temporal triggering of events.
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Timing of events in many cellular processes, such as cell-cycle
control (1-3), cell differentiation (4, 5), sporulation (6, 7),
apoptosis (8, 9), development (10, 11), temporal order of gene
expression (12-14), and so on, depend on regulatory proteins
reaching critical threshold levels. Triggering of these events in
single cells is influenced by fluctuations in protein levels that
arise naturally due to noise in gene expression (15-18). Increas-
ing evidence shows considerable cell-to-cell variation in timing
of intracellular events among isogenic cells (19-21), and it is
unclear how noisy expression generates this variation. Charac-
terization of control strategies that buffer stochasticity in event
timing are critically needed to understand reliable functioning of
diverse intracellular pathways that rely on precision in timing.

Mathematically, noise in the timing of events can be investi-
gated via the first-passage time (FPT) framework, where an event
is triggered when a stochastic process (single-cell protein level)
crosses a critical threshold for the first time. There is already
a rich tradition of using such FPT approaches to study timing
of events in biological and physical sciences (22-26). Follow-
ing this tradition, exact analytical expression for the FPT distri-
bution is computed in experimentally validated and commonly
used stochastic models of gene expression. These results provide
insights into how expression parameters shape statistical fluctua-
tions in event timing.

To investigate control mechanisms for buffering noise in tim-
ing, we consider feedback regulation in protein synthesis, where
the transcription rate varies arbitrarily with the protein count.

www.pnas.org/cgi/doi/10.1073/pnas.1609012114

Such feedback can be implemented directly through autoregu-
lation of gene promoter activity by its own protein (27-29) or
indirectly via intermediate states (30). It is important to point
out that although the effects of such feedback loops on fluctua-
tions in protein copy number are well studied (29, 31-33), their
impacts on stochasticity in event timing have been overlooked.
We specifically formulate the problem of controlling precision
in event timing as follows: What optimal form of feedback reg-
ulation ensures a given mean time to an event, while minimiz-
ing deviations or noise about the mean? It turns out that for a
minimal model of stochastic gene expression, this optimization
problem can be solved analytically, providing counterintuitive
insights. For example, a negative feedback regulation is found
to amplify noise in event timing and the optimal form of feed-
back is to not have any feedback at all. The robustness of these
results is analyzed in the context of different noise mechanisms,
such as intrinsic versus extrinsic noise in transcription/translation
machinery (34-37). Finally, we discuss in detail how our results
explain recent experimental observations of single-cell lysis times
in bacteriophage A, where precision in timing is obtained without
any feedback regulation.

Stochastic Model Formulation

Consider a gene that is switched on at time ¢ =0 and begins to
express a timekeeper protein. The intracellular event of interest
is triggered once the protein reaches a critical level in the cell. We
describe a minimal model of gene expression that assumes trans-
lation in bursts and incorporates feedback regulation by consid-
ering the transcription rate as a function of the protein level
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Fig. 1. Modeling event timing as an FPT problem. (Left) Schematic depict-

ing a gene transcribing mRNAs, which are further translated into proteins.
The transcription rate is assumed to be regulated by the protein level, cre-
ating a feedback loop. (Right) The timing of an intracellular event is formu-
lated as the FPT for the protein level to reach a critical threshold. Sample
trajectories for the protein level over time obtained via Monte Carlo sim-
ulations are shown, and they cross the threshold at different times due to
stochasticity in gene expression. The histogram of the event timing is shown
on the top.

(Fig. 1). More precisely, if z(¢) € {0, 1, ...} denotes the level of
a protein in a single cell at time ¢, then the gene is transcribed at
a Poisson rate k; when z(¢) = 4. Any arbitrary form of feedback
can be realized by appropriately defining k; as a function of .
For example, increasing (decreasing) k;’s correspond to a posi-
tive (negative) feedback loop in protein production, and a fixed
transcription rate implies no feedback. The translation burst
approximation is based on assuming short-lived mRNAs, that is,
each mRNA degrades instantaneously after producing a burst
of B protein molecules. In agreement with experimental and
theoretical studies (38-40), B is assumed to follow a geometric
distribution

bl
(b 4 1)]' +17
where b denotes the mean protein burst size and the symbol
P is the notion for probability. Finally, each protein molecule
degrades with a constant rate . The time evolution of z(t) is

described through the following probabilities of occurrences of
burst and decay events in the next infinitesimal time (¢, ¢ + dt]:

P(B =j) = be(0,00),7=40,1,2,...}, [1]

P(z(t+ dt) = i+ Blz(t) = 1) = ki dt, [2a]
P(z(t+ dt) =i — 1z(t) = i) = ivydt. [2b]

Note that in this representation of gene expression as a bursty
birth—death process, the mRNA transcription rate £; is the burst
arrival rate, whereas the rate at which proteins are translated
from an mRNA determines the mean protein burst size b. Next,
we formulate event timing through the FPT framework.

Computing Event Timing Distribution

The time to an event is the FPT for z(¢) to reach a threshold
X starting from a zero initial condition z(0) =0 (Fig. 1). It is
mathematically described by the following random variable:

T := min{t : z(¢) > X|z(0) = 0}, [3]

and can be interpreted as the time taken by a random walker
to first reach a defined point. For the bursty birth-death pro-
cess in Eq. 2, the probability density function (pdf) of the FPT is
given by

X-1 po\ X
fr(t) = Z kz(m) pi(t), [4]
=0
where p;(t) =P (z(¢) = i) (SI Appendix, section S1).

694 | www.pnas.org/cgi/doi/10.1073/pnas.1609012114

The FPT pdf in Eq. 4 can be compactly written as product of
two vectors:

fr(t) =UTP(t), [5a]

b X b X-1 T
U:{’“(m) ’“(m) hxo1gg |
[5b]

P(1) = [po(t) m(t) - px ()] [5c]

Here, the dynamics of P(¢) can be written as a linear system
P = AP [6]

derived from the chemical master equation corresponding to the
bursty birth—-death process (SI Appendix, section S1) (23, 41). It
turns out that in this case the matrix A is a Hessenberg matrix
whose ith row and jth column element a;; is given by

0, j>i+1
(i — 1), j=1+1
b . . .
Ay = —ki—1 b+1 - (Z - 1)77 J =1 [7]
b
i < i
o)y /

i,j € {1,..., X}. Solving Eq. 6 and using Eq. 5a yields the fol-
lowing pdf for the FPT:

fr(t) =UTP(t) = U" exp(At)P(0), [8]

where P(0)=[1 0 --- 0] " is vector of probabilities at ¢ = 0 that
follows from z(0) = 0. Although this pdf provides complete char-
acterization of the event timing, we are particularly interested in
the lower-order statistical moments of FPT. Next, we exploit the
structure of matrix A to obtain analytical formulas for the first-
and second-order moments of FPT.

Moments of the FPT

From Eq. 8, the m'*-order uncentered moment of the FPT is
given by

(r™y =u" ( / Ty exp(At)dt) P(0) [9a]

0

m+1

= (=)™ mlu"T (A7) "TP(0). [9b]
Here, in computing the above integral, we used the fact that the
matrix A is full-rank with negative eigenvalues (SI Appendix, sec-
tion S2). One can also find explicit formulas for the first two
moments as series summations in terms of event threshold X,
mean burst size b, protein decay rate ~, and transcription rates
ki, 0 < i < X —1(SI Appendix, section S3).

Analysis of the FPT moments in some limiting cases gives
important insights (SI Appendix, section S4). For the simplest
case of a stable protein (= 0) and a constant transcription rate
(no feedback; k; = k), the moment expressions simplify to

1 /X X 2 bBPH+X+20X  1+42b

T =—|— 1|~ — = ~
(7 k<b+> ok OV (b+ X)? X
[10]
where C'V 7 represents the noise in FPT as quantified by its coef-

ficient of variation squared (variance/mean®; { %) /(T)? — 1).
The approximate formulas in Eq. 10 are valid for a high event

Ghusinga et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609012114/-/DCSupplemental/pnas.1609012114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609012114/-/DCSupplemental/pnas.1609012114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609012114/-/DCSupplemental/pnas.1609012114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609012114/-/DCSupplemental/pnas.1609012114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609012114/-/DCSupplemental/pnas.1609012114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609012114/-/DCSupplemental/pnas.1609012114.sapp.pdf
http://www.pnas.org/cgi/doi/10.1073/pnas.1609012114

L T

/

D\

threshold compared with the mean protein burst size (X /b >>1).
The mean FPT formula can be interpreted as the time taken
to reach X with an accumulation rate bk. Further, X /b repre-
sents the average number of burst events required for the pro-
tein level to cross the threshold, and increasing X /b leads to
noise reduction through more efficient averaging of the bursty
process. One can also gain important insights, such as, the noise
in FPT is invariant of the transcription rate k. Therefore, (7') and
CV?Z can be independently tuned—increasing the event thresh-
old and/or reducing the burst size will lower the noise level. Once
CV?2 is sufficiently reduced, k can be altered to obtain a desired
mean event timing.

Interesting features of the FPT statistics are revealed when
~ # 0 (unstable protein) is considered with a constant transcrip-
tion rate k; = k. In this case, the expressions of FPT moments are
quite involved (SI Appendix, section S4), and we investigate the
effect of various parameters numerically. It turns out that chang-
ing the event threshold leads to a U-shaped profile for CV2,
where noise in event timing first decreases and then increases
(Fig. 2). Intuitively, when v # 0, the protein level approaches
a steady-state level z,; = kb/~y. When the event threshold X is
sufficiently below z,, CV# reduces with increasing X, similar
to the vy=0 case. As X approaches z.,, the protein trajecto-
ries start saturating and crossing the threshold becomes a noise-
driven event. This results in an increase in C'V# and ultimately
leadsto CV2 — 1as X > z,,. Recall that the coefficient of vari-
ation of an exponentially distributed random variable is exactly
equal to one. Thus, when X is much larger than z,s, the timing
process becomes memoryless, yielding exponentially distributed
FPTs. The minimum value of CV2 is achieved at an intermediate
threshold level X = z,/2 for a birth—death process (b — 0), and
the dip in the U-shape shifts to the right as the protein expres-
sion becomes more bursty (Fig. 2). Another interesting point to
note is that whereas increasing b increases noise in event timing
when X <z, it has a contrasting effect when X > xz,, where
increasing b can sometimes reduce C'VZ. Next, we explore how
feedback regulation of the transcription rate affects noise in tim-
ing, for a given X and b.
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Fig. 2. Relative positions of the event threshold and the steady-state pro-
tein level determine noise in timing. Noise in the FPT (CV%) is plotted as a
function of the event threshold (X) for different mean protein burst sizes
b and decay rates . For v # 0, the noise is high at small values of X and
decreases with increasing X, which is similar to the CV% versus X trend when
~v =0 (dashed lines). After attaining a minima at an intermediate value of
X, CV2 increases with further increase in X. The minimum value of CV2 is
achieved at X ~ x;/2 for a birth-death process, and this optimal point
shifts to the right as b is increased while keeping x;s fixed by commensurate
change in k. The steady-state protein level and the decay rate are taken as
Xss = 300 molecules, and v =0.01 per min.
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Optimal Feedback Strategy

Having derived the FPT moments, we investigate optimal forms
of transcriptional feedback that schedule an event at a given
time with the lowest C'V2. Because (T) is assumed to be fixed,
minimizing CV7 is equivalent to minimizing ( 7%). Thus, the
problem mathematically corresponds to a constraint optimiza-
tion problem: Find transcription rates ko, k1, - - -, kx—1 that min-
imize (T?) for a fixed (7). We first consider a stable protein
whose half-life is much longer than the event timescale, and,
hence, degradation can be ignored (y =0).

Optimal Feedback for a Stable Protein. When the protein of inter-
est does not decay (y = 0), the expressions for the FPT moments
take much simpler forms:

X

1 1 1
(T) = %o + 3 2 5 [11a]
X—-1 X-1
oy _ 2 (7o Ty _b 1
<T>V(Mn*§2m)“' k+F1@.[um

Note that, in Eq. 11a, the contribution of ko (transcription rate
when there is no protein) differs from the other transcription
rates k;, i € {1,2,---,X — 1}. For instance, when the event
threshold is large compared with the mean burst size (X > b),
then the term 1/ko can be ignored and (7T) =~ Zf:_ol 1/bk;. In
contrast, if the burst size is large (b > X) then (T) =~ 1/ko,
because a single burst event starting from zero protein molecules
is sufficient for threshold crossing. A similar observation for dif-
ferent contributions of &y can be made about Eq. 11b.

It turns out that, for these simplified formulas, the problem of
minimizing ( 7?) given (T') can be solved analytically using the
method of Lagrange multipliers (SI Appendix, section S5). The
optimal transcription rates are given by

1+b 204X  1+42b
1420 b(T)" ™ 140

0= ko, 1<i<X-—1, [12]
and all rates are equal to each other except for k. Intuitively, the
difference for ky comes from the fact that it contributes differ-
ently to the FPT moments compared with other rates. Note that
for a small mean burst size (b < 1), ko = ki, whereas ko = k; /2
for a sufficiently large b. Despite this slight deviation in ko, for
the purposes of practical implementation, the optimal feedback
strategy in this case is to have a constant transcription rate (i.e.,
no feedback in protein expression).

We tested the above result for a more complex stochastic gene
expression model that explicitly includes mRNA dynamics via
Monte Carlo simulations (Fig. 3). For ease of implementation,
the feedbacks are assumed to be linear:

ki=c1+ c2i, 1€{0,1,...}, [13]
where c2 = 0 represents no feedback, and ¢z > 0 (¢c2 < 0) denotes
a positive (negative) feedback. In agreement with Eq. 12, a
no-feedback strategy outperforms negative/positive feedbacks in
terms of minimizing noise in FPT around a given mean event
time. The qualitative shape of trajectories in Fig. 3 is determined
by the feedback strategy used, with no feedback resulting in lin-
ear time evolution of protein levels. This provides an intriguing
geometric interpretation of our results—an approximate linear
path from zero protein molecules at ¢ =0 to X molecules at time
(T) provides the highest precision in timing. Next, we discuss the
optimal feedback strategy when protein degradation is taken into
consideration.

Optimal Feedback for an Unstable Protein. Now consider the sce-
nario where protein degradation cannot be ignored over the
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Fig. 3. For a stable protein, no feedback provides the lowest noise in event timing for a fixed mean FPT. Protein trajectories obtained using the stochastic

simulation algorithm for a stochastic gene expression model with positive feedback (Left), no feedback (Middle), and negative feedback (Right) (42).
The threshold for event timing is assumed to be 500 protein molecules and feedback is implemented by assuming a linear form of transcription rates as
ki = ¢; 4 i. The value of ¢, is taken as 0.05 min~" for positive feedback and —0.05 min~" for negative feedback. For each feedback, the parameter c; is
taken such that the mean FPT is kept constant (40 min). The mRNA half-life is assumed to be 2.7 min, and proteins are translated from mRNAs at a rate
0.5min~", which corresponds to a mean burst size of b = 2. Histograms on the top represent distribution of FPT from 10,000 Monte Carlo simulations.

event timescale (y # 0). Unfortunately, the expressions of the
FPT moments are too convoluted for the optimization problem
to be solved analytically (SI Appendix, section S3, Eq. $3.10), and
the effect of different feedbacks is investigated numerically.

We implement the feedbacks using physiologically relevant
Hill functions, where the transcription rates for a negative feed-
back mechanism take the following form:

klnax .
= ———, ©€40,1,...}. [14]
1+ (ei)” { }

Here H denotes the Hill coefficient, kmax corresponds to the
maximum transcription rate, and c characterizes the negative
feedback strength, with ¢ =0 representing no feedback (29, 43).
Similarly, a positive feedback is assumed to take the following
form:

NH ~\H
i = i (r+ (1- r)%) SN O M Y

14 (ei)” 14 (i)™

Note that an additional parameter r € (0, 1), referred to as the
basal strength, is introduced in Eq. 15. This is to ensure that the
transcription rate in protein absence ko = kmax” > 0, and this
is necessary to prevent protein levels from getting stuck at zero
molecules.

To find the optimal feedback mechanism, our strategy is as
follows: For given r and H, choose a certain feedback strength
c in Eq. 14/Eq. 15, appropriately tune kmax for the desired mean
event timing, and explore the corresponding noise in FPT as
measured by its coefficient of variation squared C'V2. Counter-
intuitively, results show that for a given value of v, a negative
feedback loop in gene expression has the highest CVZ, and
its performance deteriorates with increasing feedback strength
(Fig. 4, Top). In contrast, CV# first decreases with increasing
strength of the positive feedback and then increases after an
optimal feedback strength is crossed (Fig. 4, Top). Thus, when
the protein is not stable, precision in timing is attained by hav-
ing a positive feedback in protein synthesis with an intermediate
strength.

We next explore how the minimal achievable noise in event
timing, for a fixed (7'), varies with the protein decay rate ~.
Our analysis shows that for a given basal strength r, the min-
imum CV? obtained via 2positive feedback increases mono-
tonically with v, and CV7 —1 as v becomes large (Fig. 4,
Bottom). A couple of interesting observations can be made from
Fig. 4, Bottom: (i) The difference in C'V# for optimal feedback
and no feedback is indistinguishable when the protein is stable
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(y=0) or highly unstable (7 — oo); (if) for a range of interme-
diate protein half-lives the optimal feedback strategy provides
better reduction of C'VZ, as compared with no feedback regu-
lation (which also corresponds to minimum CV?# obtained via a
negative feedback); (iif) lowering the basal strength r results in
better performance in terms of noise suppression; and (iv) a lin-
ear feedback based on Eq. 13 outperforms feedbacks based on
Hill functions and provides significantly lower levels of CV# for
high protein decay rates. It is also worth pointing out that the
qualitative shape of curves in Fig. 4, Bottom does not change for
different values of event threshold X or mean burst size b (S
Appendix, section S6).

Why is positive feedback the optimal control strategy for
ensuring precision in event timing? One way to understand this
result is to consider the linear feedback form Eq. 13, in which
case the mean protein levels evolve according to the following
ordinary differential equation:

dz(t)
dt

=b(c1 + c2z) — vz, z(0) =0. [16]

Recall the geometric argument presented in Fig. 3, where
an approximately linear path for the protein to reach the pre-
scribed threshold in a given time provides the highest precision
in event timing. Whereas no feedback (c2 = 0) and negative feed-
back (c2 < 0) in Eq. 16 will create nonlinear protein trajecto-
ries, choosing a positive value ¢z & ~/b results in linear z(t),
and hence minimal noise in event timing. Indeed, our detailed
stochastic analysis shows that the optimal feedback strength that
minimizes C'V# in the stochastic model is qualitatively similar to
c2 = /b (SI Appendix, section S6).

Discussion

We have systematically investigated ingredients essential for pre-
cision in timing of biochemical events at the level of single cells.
Our approach relies on modeling event timing as the FPT for a
stochastically expressed protein to cross a threshold level. This
framework was used to uncover optimal strategies for synthe-
sizing the protein that ensures a given mean time to event trig-
gering (threshold crossing) with minimal fluctuations around the
mean. The main contributions and insights can be summarized
as follows: (i) analytical calculations for the FPT in stochastic
models of gene expression, with and without feedback regula-
tion are performed; (i) if the protein half-life is much longer
than the timescale of the event, the highest precision in event

Ghusinga et al.
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Fig. 4. For an unstable protein, positive feedback provides the lowest
noise in event timing for a fixed mean FPT. (Top) Noise in timing (CV%)
as a function of the feedback strength c for different control strategies.
The value of kmax is changed in Eq. 14/Eq. 15 so as to keep (T) =40 mins
fixed. The performance of the negative feedback worsens with increasing
feedback strength. In contrast, positive feedback with an optimal value of
¢ provides the highest precision in event timing. Other parameters used are
~=0.05min~", X =500 molecules, H=1, b =2, and for positive feedback
r =0.05. (Bottom) The minimum value of CV% obtained via positive feed-
back increases monotonically with the protein degradation rate. A smaller
basal promoter strength r=0.01 in Eq. 15 gives better noise suppression
than a larger value r = 0.05. For comparison purposes, CVV2 obtained with-
out any feedback (c=0), and a linear feedback with ¢; and c; in Eq. 13
chosen to minimize CV2 for a given (T) =40 mins are also shown. The
parameter values used are X =500 molecules, H=1, and b =2.

timing is attained by having no feedback, that is, expressing the
protein at a constant rate (Fig. 3); and (i) if the protein half-
life is comparable to or shorter than the timescale of the event,
then positive feedback provides the lowest noise in event tim-
ing. Moreover, the minimum achievable noise in timing increases
with the protein decay rate y and approaches CV2 =1 asy — oo
(Fig. 4).

How robust are these findings to alternative noise sources and
key modeling assumptions? For example, the model only con-
siders noise from low-copy-number fluctuations in gene product
levels and ignores any form of “extrinsic noise” that arises from
cell-to-cell differences in gene expression machinery (35, 44). To
incorporate such extrinsic noise, we alter the transcription rate to
kiZ,where Z is drawn from an a priori probability distribution
at the start of gene expression (¢ =0) and remains fixed till the
threshold is reached. Interestingly, the optimal feedback derived
in Eq. 12 does not change even after adding extrinsic noise to the
transcription rate or the protein burst size (SI Appendix, section

Ghusinga et al.

S7). Another important model aspect is geometrically distributed
protein burst size, which results from the assumption of expo-
nentially distributed mRNA lifetimes. We have also explored the
scenario of perfect memory in the mRNA degradation process,
which results in an mRNA lifetime distribution given by the delta
function. In this case, the protein burst size is Poisson and the
optimal feedback strategy is fairly close to having no feedback
for a stable protein (SI Appendix, section S8). Next, we discuss
the biological implications of our findings in the context of phage
A’s lysis times (i.e., the time taken by the virus to destroy infected
bacterial cells).

Connecting Theoretical Insights to X\ Lysis Times. Phage A has
recently emerged as a simple model system for studying event
timing at the level of single cells (19, 20). After infecting
Escherichia coli, \ expresses a protein, holin, which accumulates
in the inner membrane. When holin reaches a critical threshold
concentration, it undergoes a structural transformation, form-
ing holes in the membrane (45). Subsequently the cell lysis
and phage progeny are released into the surrounding medium.
Because hole formation and cell rupture are nearly simultane-
ous, lysis timing depends on de novo expression and accumu-
lation of holin in the cell membrane up to a critical threshold
(45). Data reveal precision in the timing of lysis—individual cells
infected by a single virus lyse on average at 65 min, with an SD of
3.5 min, implying a coefficient of variation of ~ 5% (SI Appendix,
section S9). Such precision is expected given the existence of
an optimal lysis time (46-49). Intuitively, if A lysis is early then
there are no viral progeny. In contrast, if A lysis is late then the
infected cell could die before lysis is effected, trapping the virus
with it.

The threshold for lysis is reported to be a few thousand holin
molecules (50). Moreover, the holin mean burst size (average
number of holins produced in a single mRNA lifetime) is esti-
mated as b &~ 1 — 3 (50). Based on our FPT moment calculations
in Eq. 10, such a small protein burst size relative to the event
threshold will yield a tight distribution of lysis times. Interest-
ingly, Eq. 10 provides insights for engineering mutant X that lyse,
on average, at the same time as the wild type, but with much
higher noise. This could be done by lowering the threshold X for
lysis through mutations in the holin amino acid sequence (20),
and also reducing the holin mRNA transcription rate £ or mean
protein burst size b by reducing the translation rate so as to keep
the same mean lysis time. Notably, the holin proteins are long-
lived and do not degrade over relevant timescales (51); therefore,
N’s lysis system with no known feedback in holin expression pro-
vides better suppression of lysis-time fluctuation compared with
any feedback regulated system.

Additional Mechanism for Noise Buffering. The surprising inef-
fectiveness of feedback control motivates the need for other
mechanisms to buffer noise in event timing. Intriguingly, A uses
feedforward control to regulate the timing of lysis that is imple-
mented through two proteins with opposing functions: holin
and antiholin (52, 53). In the wild-type virus both proteins are
expressed in a 2:1 ratio (for every two holins there is one anti-
holin) from the same mRNA through a dual start motif. Anti-
holin binds to holin and prevents holin from participating in
hole formation, creating an incoherent feedforward circuit. Syn-
thesis of antiholin leads to a lower burst size for active holin
molecules and increases the threshold for the total number of
holins needed for lysis—both factors functioning to lower the
noise in event timing. Consistent with this prediction, variants of
A lacking antiholin are experimentally observed to exhibit much
higher intercellular variation in lysis times compared with the
wild-type virus (20, 54) (SI Appendix, section S9). Succinctly put,
A encodes several regulatory mechanisms (low holin burst size,
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no feedback regulation, and feedforward control) to ensure that
single infected cells lyse at an optimal time, despite the stochastic
expression of lysis proteins.

These results illustrate the utility of the FPT framework for
characterizing noise in the timing of intracellular events and
motivate alternate formulations of the timing problem that might
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