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Abstract

Heme is an iron containing cofactor essential for multiple cellular processes and fundamental 

activities such as oxygen transport. To better understand the means by which heme synthesis is 

regulated during erythropoiesis, affinity purification coupled with mass spectrometry (MS) was 

carried out to identify putative protein partners interacting with ferrochelatase (FECH), the 

terminal enzyme in the heme biosynthetic pathway. Both Progesterone Receptor Membrane 

Component 1 (PGRMC1) and Progesterone Receptor Membrane Component 2 (PGRMC2) were 

identified in these experiments. These interactions were validated by reciprocal affinity 

purification followed by MS analysis and immunoblotting. The interaction between PGRMC1 and 

FECH was confirmed in vitro and in HEK293T cells, a non-erythroid cell line. When cells that are 

recognized models for erythroid differentiation were treated with a small molecule inhibitor of 

PGRMC1, AG-205, there was an observed decrease in hemoglobinization relative to untreated 

cells. In vitro heme transfer experiments showed that purified PGRMC1 was able to donate heme 

to apo-cytochrome b5. In the presence of PGRMC1 in vitro measured FECH activity decreased in 

a dose dependent manner. Interactions between FECH and PGRMC1 were strongest for the 

conformation of FECH associated with product release suggesting that PGRMC1 may regulate 

FECH activity by controlling heme release. Overall, the data illustrate a role for PGRMC1 in 

regulating heme synthesis via interactions with FECH and suggest that PGRMC1 may be a heme 

chaperone or sensor.
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Heme is an essential cofactor in metazoa for many important cellular processes. The ability 

of heme to bind to small molecules such as gases (O2 and CO) and to participate in redox 

reactions are some of its more commonly known roles. However, in the past decade 

additional essential roles for heme as a regulator of processes including the circadian 

rhythm1, microRNA processing2, protein degradation3, the cell cycle4, and ion transport5–7 

have been identified. Hemoproteins are involved in a variety of cellular reactions and are 

distributed throughout the cell in multiple cellular compartments. For example, the 

respiratory cytochromes are found in the inner mitochondrial membrane, some cytochrome 

P450s and cytochrome b5 are associated with the endoplasmic reticulum (ER) membrane, 

catalases are localized to the peroxisome and peroxidases to the lysosomes, and heme-

binding transcription factors are found in the nucleus8. However, despite the biological 

necessity for heme as a cofactor, heme in its free state is cytotoxic since it can generate 

harmful free radicals in the presence of oxygen9, 10.

Heme is synthesized in metazoa by a pathway composed of eight enzymes which starts and 

ends in the mitochondrial matrix. In erythroid cells, studies show that several components of 

the heme synthesis pathway exist in a complex to provide feedback regulation on the process 

of heme synthesis11. These components include aminolevulinic acid synthase-2 (ALAS-2), 

protoporphyrinogen, oxidase (PPOX) and ferrochelatase (FECH). This mitochondrial heme 

metabolon physically links the first step catalyzed by ALAS-2 with the terminal step 

catalyzed by FECH, supporting previous studies that showed both enzymes to be important 

regulatory points in heme synthesis12–14. Both ALAS-2 and FECH are regulated at different 

levels by cellular iron15–17. In addition, other proteins involved in mitochondrial cellular 

iron metabolism were also found in the heme metabolon suggesting an additional level of 

coordination for heme and iron availability for optimal heme production during 

erythropoiesis11.

Piel et al. Page 2

Biochemistry. Author manuscript; available in PMC 2017 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The convergence of iron and porphyrin metabolism occurs at the terminal step of heme 

synthesis, which is catalyzed by FECH. FECH inserts ferrous iron into protoporphyrin IX to 

form protoheme and two protons. Structural studies of human FECH have shown it to be a 

conformationally dynamic enzyme that undergoes several changes in its structure over the 

course of the catalytic cycle18–20. These conformational changes have been proposed to 

allow interaction with different protein partners facilitating substrate delivery and product 

release. Besides its use of iron as a substrate, FECH from animals and some lower organisms 

possesses a [2Fe-2S] cluster that has been shown to be required for enzyme activity16 and 

important in regulating enzyme activity21. Release of heme from FECH is the rate-limiting 

step in the reaction22 and likely controlled in vivo by interactions with transporters or 

chaperones.

The protein Progesterone Receptor Membrane Component 1 (PGRMC1) has been proposed 

to be a heme chaperone23,24. PGRMC1 is a 25 kDa protein which belongs to the Membrane-

Associated Progesterone Receptor (MAPR) family. The MAPR family is a subset of the 

cytochrome b5 family consisting in mice and humans of PGRMC1 and Progesterone 

Receptor Membrane Component 2 (PGRMC2), as well as the more recently discovered 

proteins Neudesin and Neuferrin25. Of the MAPR proteins, PGRMC1 and PGRMC2 show 

the closest homology. Neudesin and Neuferrin are secreted proteins that bind heme and are 

thought to possess neurotrophic and neurogenic activity26, 27. Yeast have only a single 

MAPR family member, DAP1, which has been studied in both Saccharomyces cerevisiae 
and Schizosaccharomyces pombe. The precise cellular roles of PGRMC1 and DAP1 are not 

clear although it has been implicated in a variety of cellular functions including stimulation 

of P450s28, 29 and cholesterol metabolism30, 31, autophagy32, endocytosis33, intracellular 

signal transduction34, and iron metabolism35, 36. Additionally, PGRMC1 has been reported 

to play a role in DNA damage protection and response to oxidative stress33, likely through 

an iron dependent process37. While PGRMC1 has been shown to bind progesterone24, its 

involvement in progesterone signaling remains uncertain. However, it has clearly been 

demonstrated that PGRMC1 binds heme23, 24, 38 though not with the avidity of a typical 

stable hemoprotein such as myoglobin or cytochrome b5.

The PGRMC1 protein consists of an N-terminal region that is proposed to be a 

transmembrane domain and C-terminal region that contains a cytochrome b5-like motif 

heme binding domain33, 39. In most cytochrome b5-like proteins the heme cofactor is 

coordinated via two histidine residues40, 41. However, spectroscopic and mutagenesis studies 

are consistent with PGRMC1 binding heme via tyrosine ligands rather than 

histidine23, 24, 42. This coordination motif is a feature shared with purported heme 

transporters such as ShuT43 and PhuT44 as well as the heme binding protein HasA45, 46.

Herein we identify and characterize an interaction between FECH and PGRMC1 as well as 

PGRMC2. We identify the cellular and subcellular localization of PGRMC1 in murine 

erythroleukemia cells (MEL) and show that the small molecule inhibitor of PGRMC1, 

AG-205, decreases heme synthesis in differentiated MEL cells in a dose dependent manner. 

We show that PGRMC1 interaction with FECH is dependent on the molecular conformation 

of FECH and that PGRMC1 decreases FECH activity in in vitro assays. These findings 

along with previous reports suggest PGRMC1 may play a role in regulating heme synthesis.
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MATERIALS AND METHODS

Vectors, Cell Lines and Reagents

Human PGRMC1 and PGRMC2 were cloned from bacterial expression vectors (gift of Dr. 

Peter Espenshade) into pEF1alpha FLAG biotag vector (gift of Alan Cantor)47. To produce 

N-terminal FLAG tagged proteins, cloned cDNA encoding full length PGRMC1 and 

PGRMC2 were amplified and cloned into pEF1alpha using the XmaI and BamHI and XmaI 

and XbaI sites, respectively. An N-terminal FLAG tagged human FECH expression vector 

was produced as previously described11.

Cell lines utilized for tissue culture experiments were DS19 murine erythroleukemia (MEL) 

cells48, 49, human embryonic kidney 293T (HEK 293T) cells (ATCC – CRL3216) and 

K-562 human myelogenous leukemia (K562) cells (ATCC – CCL243)50, 51. To create DS19 

MEL and HEK 293T cell lines expressing human FLAG tagged FECH, PGRMC1 and 

PGRMC2, cells were transfected with expression vectors by electroporation and stably 

expressing cell lines were selected for puromycin resistance. 5 μg/mL of puromycin 

(Cellgro, Manassas, VA) was included in media for the selection step. Expression of tagged 

proteins was confirmed by immunoblot analysis using anti-FLAG antibody (Sigma, St. 

Louis, MO). All mammalian cells were cultured in DMEM with 25 mM glucose, 1 mM 

sodium pyruvate and 4 mM glutamine (Cellgro) plus 10% FBS (Atlanta Biologicals, 

Flowery Branch, GA) and 1% penicillin/streptomycin (Cellgro). For induction of MEL cells 

1.5% dimethylsulfoxide (DMSO) (Sigma, St. Louis, MO) was included in the growth media 

and cells were grown for 72 hours for maximal expression of heme biosynthetic enzymes52. 

For addition to MEL cells, hemin (Sigma) was prepared in DMSO and added at a final 

concentration of 12.5 μM. For induction of K562 cells 1 mM sodium butyrate was included 

in growth media and cells were grown 6 days53, 54.

For recombinant production in Escherichia coli, wild-type and variant FECH were expressed 

and purified as previously described55. Full length human PGRMC1 was cloned into 

pTrcHisA (Life Technologies, Grand Island, NY) using the NheI and HindIII sites for 

production of N-terminal his-tagged proteins. For the non-tagged form PGRMC1 was cloned 

with NcoI and HindIII. Wild-type PGRMC1 was expressed and purified as previously 

described for human FECH55.

The PGRMC1 inhibitor AG-20556, 57(Sigma) was prepared as a 1 mM stock in DMSO.

Affinity Purification and Mass Spectrometry

Affinity purification and MS experiments were carried out in MEL cell lines stably 

expressing FLAG tagged FECH, PGRMC1, and PGRMC2. In addition, affinity purification 

of HEK 293T cells expressing FLAG tagged FECH followed by immunoblots was carried 

out as previously described11, 58. For PGRMC1 and PGRMC2, which both form 

homodimers or homomultimers, we found an equivalent amount of tagged exogenous and 

endogenous protein with the average ratio being 2.1+0.1 and 1.1+0.1, respectively. This 

suggests that in the differentiated state there were comparable amounts of the tagged 

exogenous and the endogenous protein orthologues. From all experiments an average of 

~300 proteins were observed with normalized spectral abundance factor values over that of 
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the control experiments. Pull downs using FLAG tagged PGRMC1 and PGRMC2 resulted in 

a large number of identified mitochondrial proteins in the recovered pool. From the MS 

results the criteria used to confirm interactions were based on the number of spectral counts, 

the number of unique peptides recovered and the percent sequence coverage which occurred 

over that of the background in two biological replicates and in reciprocal pull down 

experiments in two biological replicates. The protein interactions presented here have been 

submitted to the IMEx (http://www.imexconsortium.org) consortium through IntAct59 and 

assigned the identifier IM-25485.

Additional experiments with higher stringency washes, specifically 1% Nonidet P-40 in the 

wash buffer, and harsher elution from the agarose using 6M urea were carried out. Eluted 

protein samples were then subjected to tryptic digestion and shotgun proteomics performed 

on a Thermo Fisher Orbitrap XL (Thermo Fisher Scientific, Grand Island, NY) according to 

a previously described protocol60. Data were searched in Proteome Discoverer 1.4 using 

Sequest HT (Thermo Fisher Scientific) with the percolator node set at a 1% peptide false-

discovery rate.

In vitro Interaction Experiments

Expression of his-tagged wild-type FECH, FECH variants, and non-tagged PGRMC1 in E. 
coli was carried out by growth in Circlegrow media (MP Biomedicals, Santa Ana, CA) for 

18–20 hours at 30°C. Cells were harvested by centrifugation at 5,000 x g for 10 min, 

resuspended in solubilization buffer (50 mM Tris-MOPS, pH 8.0, 100 mM KCl, 1% sodium 

cholate) and sonicated three times on ice for 30 seconds. The resulting lysate was then 

centrifuged at 100,000xg for 20 minutes and the supernatant reserved. Supernatant from 

non-tagged PGRMC1 was then mixed with the his-tagged wild-type and variant FECH 

supernatant and loaded onto HisPur Cobalt Resin (Thermo Fisher Scientific). The column 

was then washed with wash buffer (50 mM Tris-MOPS pH 8.1, 100 mM KCl, 1% sodium 

cholate, 15 mM imidazole) and subsequently eluted using elution buffer (50 mM Tris-MOPS 

pH 8.1, 100 mM KCl, 1% sodium cholate, 250 mM imidazole). Presence of PGRMC1 and 

relative amounts of PGRMC1 and FECH, both wild-type and variants, were analyzed by 

SDS-PAGE and immunoblots.

Transcript analysis from In vitro erythroid expansion of peripheral blood CD34+ 

mononuclear cells

In vitro erythroid expansion of peripheral blood CD34+ mononuclear cells and gene 

expression analysis at multiple days of differentiation was carried as previously described61. 

Probes used were Hs00998344_m1 for PGRMC1 and Hs01128672_m1 for PGRMC2, 

(Applied Biosystems, Foster City, CA). Levels of mRNA were normalized to an endogenous 

control human GUSB (beta glucuronidase) (Applied Biosystems) and gene expression is 

expressed in arbitrary units.

Immunoblots

For immunoblots, eluted protein from affinity purification, column chromatography and 

cellular lysates was separated on Mini-PROTEAN TGX Stain-Free gels (BioRad, Hercules, 

CA) and then transferred by Transblot semi-dry blotting (BioRad). Antibodies used included 
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Anti-FECH (generated in house by H.A.D. at U.G.A.) at a dilution of 1:50,000–100,000, 

Anti-PGRMC1 (Sigma) at a dilution of 1:2,000, Anti-PGRMC2 (Sigma) at a dilution of 

1:500, Anti-cytochrome c (BD Biosciences, San Jose, CA) at a dilution of 1:50,000, Anti-

Mitofilin (Gene-Tex, Irvine, CA) at a dilution of 1:500, Anti-SUCLA2 (Gene-Tex) at a 

dilution of 1:2,500, Anti-ABCB10 (Gene-Tex) at a dilution of 1:1,000, Anti-ABCB7 (Gene-

Tex) at a dilution of 1:500, and Anti-α-tubulin (Gene-Tex) at a dilution of 1:1000. 

Secondary antibodies used included Anti-Rabbit IgG (H+L) HRP conjugate (Promega, 

Madison, WI) and Anti-mouse IgG (H+L) HRP conjugate (Promega) at dilutions of 

1:30,000–60,000. For detection, SuperSignal West Pico Chemiluminescent substrate 

(Thermo Fisher Scientific) and X-ray film or ChemiDoc imaging system (BioRad) were 

used.

Hemoglobin Measurements

Hemoglobin (Hb) content of intact MEL cells was determined using an Olis CLARiTY 

Spectrophotometer (Olis, Bogart, GA) as previously described62. Cell counts were taken 

using Scepter handheld automated cell counter (Millipore, Billerica, MA) using the 40 μm 

tip. % WT hemoglobin/cell was reported to normalize for variation in differentiation as 

cultures are passaged.

Cellular Fractionation

MEL cells were fractionated using the Mitochondria Isolation kit (Thermo Fisher Scientific). 

Mitoplasts were prepared from the mitochondrial fraction and protease protection was 

carried out as previously described11, 63, 64.

Immunocytochemistry

Preparation of cells for immunofluorescence was carried as previously described65 with 

several modifications. Briefly, MEL cells were attached to poly-L-lysine coated coverslips 

(BD Bioscience) by incubating undifferentiated cells on coverslips for 24 hours at 37°C in 

5% CO2. Cells were fixed in 4% paraformaldehyde for 20 minutes, permeabilized with 0.1% 

Triton X-100 for 20 minutes and blocked with 5% bovine serum albumin for 1 hour. Cells 

were incubated with rabbit anti-PGRMC1 (Sigma) diluted 1:100 and mouse anti-TIM23 

(BD Biosciences) at a dilution of 1:200 overnight. Incubation with AlexaFluor 488 goat anti-

rabbit IgG (H+L) (Life Technologies, Carlsbad, CA) and AlexaFluor 633 goat anti-mouse 

IgG (H+L) (Life Technologies) was carried out for 1 hour. Finally cells were counterstained 

with 300 mM DAPI nucleic acid stain (Thermo Fisher Scientific) for 5 minutes prior to 

mounting with ProLong Gold antifade (Life Technologies). Cells were washed with 

phosphate buffered saline (PBS) three times between each step in the process, reagents were 

diluted in PBS and all incubations were carried out at room temperature. Cells were imaged 

using a Zeiss LSM 710 Inverted Confocal microscope (Zeiss, Thornwood, NY) using a 

100X oil immersion objective and images processed using Zen (Zeiss) software.

Structural Model

Interactive modeling was carried out using the full length amino acid sequence of human 

PGRMC1 via the Protein Model Portal (http://www.proteinmodelportal.org/)66. In silico 
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tools employed to produce predictive structures for the full length protein were RaptorX67, 

IntFOLD268, 69, Phyre270 and ITASSER71–74. Images of structures were generated using 

PyMol75.

Heme and FECH Activity Measurements

The heme content of purified PGRMC1 was measured as its pyridine hemochromogen as 

previously described76. FECH activity alone and in the presence of PGRMC1 was assayed 

with mesoporphyrin IX (Frontier Scientific, Logan, UT) and ferrous ammonium sulfate 

using the continuous direct spectroscopic method77. Assays were performed in triplicate on 

at least two independent protein preparations.

Heme Transfer and Gel Staining

Interprotein transfer of heme was determined by mixing an equivalent amount of PGRMC1, 

FECH or HasA with apo-cytochrome b5 protein and incubating 15 minutes at 4°C. Apo-

cytochrome b5 was prepared as previously described78 except the extraction was carried out 

at room temperature for 6 hours. For native-PAGE, loading buffer minus SDS and without 

reductant was added and running buffer without SDS was used. Gels were stained as 

previously described79 excluding the trichloroacetic acid wash.

Statistical Analysis

Statistical analysis was carried out using one-way ANOVA followed by Tukey HSD test. A 

P value of 0.05 was set as the cutoff for statistical significance.

RESULTS

Identification of protein partners of PGRMC1 and PGRMC2

To identify novel protein partners for FECH an affinity purification of FLAG tagged human 

FECH in induced MEL cells was conducted as previously described11. Two of the proteins 

identified with the largest number of spectral counts, unique peptides and % coverage were 

PGRMC1 and PGRMC2 (Fig. 1 and Table 1). To validate these interactions we performed 

the reciprocal pull down experiments using N-terminal FLAG tagged human PGRMC1 and 

PGRMC2 and recovered murine FECH at levels above that of non-specific interactions (Fig. 

1 and Table 1). Results from tagged human forms of PGRMC1 and PGRMC2 showed that 

these proteins formed multimers with their mouse counterparts (Fig. 1 and Table 1). This is 

consistent with previous demonstrations showing that PGRMC1 forms multimers23, 42. The 

interactions with the endogenous mouse protein serve as a control for protein folding of the 

exogenous tagged protein as well as quality control for affinity purification and MS. 

Additionally, affinity purification of the tagged PGRMC1 resulted in the recovery of murine 

PGRMC2, and likewise PGRMC2 in the recovery of murine PGRMC1.

A number of additional putative protein partners for PGRMC1 and PGRMC2 were 

identified in the affinity purification experiments. Of note, many of the protein partners for 

FECH were recovered in the PGRMC1 and PGRMC2 affinity purification experiments 

(Table S1). Several of these interactions were confirmed for PGRMC1 by immunoblot (Fig. 

2A). Many of these proteins are involved in iron metabolism, including iron transport from 
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the cell surface80, 81, iron trafficking64, 82 and iron-sulfur cluster biogenesis83, or are 

putative heme or porphyrin transporters84, 85.

An additional novel protein partner found in common with FECH, PGRMC1 and PGRMC2 

was IMMT (Fig. 1 and Table 1). This interaction was confirmed via immunoblot analysis 

(Fig. 2A). IMMT, also known as Mitofilin or Mic60, is a protein found at junction points 

between the inner and outer mitochondrial membranes and is thought to stabilize 

mitochondrial structure86. In addition to IMMT, several other protein components of the 

mitochondrial inner membrane organizing system (MINOS) were also identified and include 

OPA187, 88 and APOOL (i.e MIC27)89 (Table 1).

Further characterization of interactions

To confirm that the interactions between PGRMC1 or PGRMC2 and FECH were not an 

artifact of the cell line utilized or the purification process, we performed several additional 

experiments. First, we utilized a non erythroid human cell line, human embryonic kidney 

(HEK) 293T cells, to validate the in vivo interaction. HEK293T cells lines stably expressing 

FLAG-FECH were created and used for affinity purification and western blot analysis to 

detect the interaction. Immunoprecipitation of FLAG-FECH from HEK293T cells resulted 

in the recovery of endogenous PGRMC1 (Fig. 2B). This interaction was further confirmed 

independently in HEK293T cells by high throughput affinity purification studies which used 

C-terminus HA-tagged FECH as bait and recovered PGRMC190. These data which are 

available via the Biological General Repository for Interaction Datasets (BioGRID - http://

thebiogrid.org/) confirm the FECH/PGRMC1 interaction in a distinct cell line.

Second, we performed a higher stringency purification of FLAG-FECH and associated 

proteins from induced MEL cells by increasing the detergent concentration in the wash 

buffer during the affinity purification procedure. MS of the affinity purified tagged proteins 

resulted in the recovery of PGRMC1 and PGRMC2 with FLAG-FECH and FECH with 

FLAG-PGRMC1 and FLAG-PGRMC2 (Table S2).

Third, we investigated the interaction between FECH and PGRMC1 proteins in vitro using 

affinity chromatography of his-tagged FECH and non-tagged PGRMC1. Purification of his-

tagged FECH resulted in the recovery of non-tagged PGRMC1 (Fig. 3). Reciprocal affinity 

chromatography experiments were not possible due to the non-specific interaction of FECH 

with anti-his resin. Experiments with PGRMC2 were not carried out due to the low level of 

PGRMC2 expression. Together the result from MEL cells, HEK293T cells and in vitro 

experiments demonstrate the interaction between FECH and PGRMC1 or PGRMC2 in a 

relatively stable protein complex.

Expression of PGRMC1 and PGRMC2 during erythropoiesis

In order to understand the roles of PGRMC1 and PGRMC2 in erythropoiesis, we 

investigated the expression of each during erythroid differentiation. To investigate gene 

expression of Pgrmc1 and Pgrmc2 during murine erythropoiesis, we first queried the 

ErythronDB database91, 92. Transcript levels for Pgrmc1 decrease throughout adult definitive 

differentiation, while those for Pgrmc2 changed less. We further investigated expression 

levels in peripheral blood CD34+ mononuclear cells in an in vitro erythroid expansion 
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system61. Relative expression levels of PGRMC1 decreased, while PGRMC2 expression 

increased when cells were cultured until day 16 (Fig. 4A). To determine if the protein levels 

correlated to expression data, we differentiated MEL cells for 4 days and performed Western 

blot analysis on PGRMC1 and FECH. Protein levels of FECH increase as previously 

described52. Levels of PGRMC1 showed significant variation over the time followed (Fig. 

4B).

Cellular and subcellular localization of PGRMC1 in MEL cells and PGRMC1 modeling

Initial affinity purification and MS experiments were conducted using fractionated MEL 

cells, specifically the mitochondrial cell fraction. The identification of PGRMC1 and 

PGRMC2 as a partner of FECH in these experiments is consistent with the mitochondrial 

co-fractionation and possible localization of these proteins. This localization was further 

investigated using immunohistochemistry and confocal microscopy in both differentiated 

and undifferentiated MEL cells (Fig. 5A and Fig. S1). While fractionation via differential 

centrifugation may contain contaminates of other membranes including ER and vesicles, 

data is consistent with PGRMC1 being at least associated with the mitochondrial membrane 

either directly or via other membrane interactions such as ER-mitochondrial junctions.

In order to further examine submitochondrial localization of PGRMC1, proteinase 

protection assays were performed on both whole mitochondria and mitoplasts from MEL 

cells. Results from these studies are consistent with PGRMC1 being associated with the 

outer face of the outer mitochondrial membrane (Fig. 5B). The antibody used to detect 

PGRMC1 recognizes an antigen on the C-terminal end of the protein. Thus the C-terminus 

and the identified heme binding domain of PGRMC1 appears to reside on the outside of the 

mitochondria. This finding is significant since FECH is localized to the inner face of the 

inner mitochondrial membrane93–95 and suggests that a portion of the N-terminal end of 

PGRMC1 interacts with FECH.

To understand how PGRMC1 might interact with FECH yet be associated with the outside 

of the mitochondria, we carried out modeling studies of full length PGRMC1. Recently, the 

structure of an N-terminal truncated form of human PGRMC1 (PDB ID 4X8Y) was 

determined with heme bound42. Submission of the human, full length, amino acid sequence 

of PGRMC1 to the Protein Model Portal66 produced models that used the structure of the 

Arabidopsis thaliana protein At2g24940 or the truncated PGRMC1 as a backbone. The 

structure of At2g24940 (PDB ID 1T0G and 1J03) was solved by the NMR spectroscopy by 

two independent structural genomics groups96, 97 and shown to possess a cytochrome b5-like 

heme binding domain. Amino acid sequence comparison of At2g24940 with PGRMC1 

shows these proteins are 25.2% homologous with an identity of 16.1%98. From all proposed 

structures, only those modeled by the four programs, RaptorX67, ITASSER71–74, 

IntFold268, 69, and Phyre270, were of the full length protein. These models along with the 

structure of the truncated PGRMC1 with heme bound are shown in Fig. 6. Of note is the 

long N-terminal, putative helical transmembrane domain which may span the mitochondrial 

membranes at inner and outer mitochondrial membrane junction points. This would allow 

FECH and a portion of PGRMC1 to reside in different compartments yet physically interact.
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Decreased heme synthesis in the presence of PGRMC1 inhibitor

A structure-based screen identified several small molecule ligands to the A. thaliana protein 

At2g2494057. One of these small molecule ligands AG-205 has a reported Kd of 64 μM for 

At2g2494057 and spectroscopic studies suggest that AG-205 alters heme binding to human 

PGRMC156. In two different cancer cell lines, AG-205 has been shown to increase 

PGRMC1 protein levels and result in decreased viability in serum free media56. To 

investigate if AG-205 altered the differentiation profile of model erythropoietic cell lines 

undifferentiated and differentiated MEL and K562 cells grown in serum containing media 

were treated with AG-205. The inhibitor was added at time 0 at concentrations ranging from 

0 to 10 μM and the level of hemoglobin per cell (pg/cell) were measured. While AG-205 had 

no effect on the undifferentiated cells, it resulted in a dose dependent decrease in the 

hemoglobin per cell in differentiated MEL cells most pronounced at 72 hours (Fig. 7A). This 

decrease was partially rescued in induced MEL cells by overexpression of PGRMC1 (Fig. 

7A). K562 cells exhibited the same sensitivity to AG-205 (Fig. S2).

Because heme synthesis during MEL cell differentiation is a biphasic process that requires 

heme99, we investigated the effects of AG-205 when added after the onset of differentiation. 

AG-205 at 5 and 10 μM concentrations was added at time 0, 24 and 48 hours (Fig. 7B). The 

decrease in hemoglobin per cell was less when AG-205 was added at later time points. 

Additionally, we investigated the ability of hemin to rescue hemoglobinization in AG-205 

treated cells. Hemin was able to rescue hemoglobinization at 5 μM concentrations of 

AG-205 (Figure 7C).

Characterization of PGRMC1

To further characterize PGRMC1 and its interaction with FECH, we cloned, expressed and 

purified a his-tagged version of the full length wild-type human PGRMC1. Heme content of 

the purified wild-type PGRMC1 was determined by pyridine hemochromogen assay76. The 

extinction coefficient for the Soret band (~410 nm) of heme bound to PGRMC1 was 

calculated to be 144 mM−1 cm−1. This Soret extinction coefficient is similar to that of DAP1 

and the truncated mouse PGRMC1 previously described23. The average heme content of the 

as purified wild-type PGRMC1 was determined to be 18.5%+0.6, consistent with reported 

values23, 24.

Heme transfer

PGRMC1 has been shown to bind both heme and progesterone and it has been suggested 

that PGRMC1 may function as a heme chaperone24. This function of PGRMC1 was initially 

proposed from studies with DAP123, but later refuted based on the low of affinity of 

PGRMC1 for heme38. In light of the new findings we investigated the ability of PGRMC1 to 

transfer heme to an apo-hemoprotein. We incubated PGRMC1 with apo-cytochrome b5 and 

then separated the protein on native PAGE and stained for heme as well as detected for 

protein. As controls we also included the bacterial heme-binding protein HasA in both the 

native and SDS-PAGE and FECH in the SDS-PAGE. Comparison of protein level and heme 

showed that heme can be transferred from PGRMC1 to apo-cytochrome b5, while no 

transfer from HasA or FECH to apo-cytochrome b5 was observed (Fig. 8 and Fig. S3). Our 
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findings are consistent with recent data24 and add support to the function of PGRMC1 as a 

heme donor for at least some hemoproteins.

In vitro activity of FECH with PGRMC1

To determine the effect of PGRMC1 on the in vitro enzyme activity of FECH, we performed 

assays of wild-type FECH in the presence of PGRMC1. The assay utilized is a direct assay 

and measures the disappearance of porphyrin substrate to determine heme production77. 

PGRMC1 alone did not bind porphyrin and showed no activity (Table 2). Inclusion of 

PGRMC1 in assays with FECH showed a dose dependent inhibition of FECH up to 

equimolar amounts. Beyond equimolar amounts, which resulted in a 40% decrease in FECH 

activity, no change in inhibition was observed (Fig. 9). In addition to wild-type FECH, we 

also assayed the F110A FECH variant in the presence of PGRMC1 at equimolar amounts. 

The activity of the F110A variant showed slightly higher inhibition than the WT enzyme. To 

rule out non-specific interactions between FECH and PGRMC1, we utilized several other 

proteins including uroporphyrinogen decarboxylase (UROD)100 or augmenter of liver 

regeneration protein (ALR)101 in the assay in equimolar amounts in the FECH assay. These 

proteins did not result in any significant loss of activity (Table 2). These data suggest that 

PGRMC1 and FECH specifically interact and this interaction results in decreased FECH 

activity in vitro, possibly in a conformationally dependent manner.

Conformation of FECH affects PGRMC1 interaction

The structure of FECH has been well studied and the enzyme has been shown to exist in 

several distinct conformational states. These conformations are proposed to represent 

discrete steps in the catalytic cycle of the enzyme and would thus present distinct surfaces 

for protein-protein interactions18–20. Conformational states include the open conformation, 

the closed conformation with porphyrin bound, and the release conformation with heme 

bound18, 20. In order to determine if PGRMC1 interaction is specific to any one of these 

conformations, in vitro purification and affinity chromatography experiments using his-

tagged FECH enzymes, both wild-type and variants, and the non-tagged PGRMC1 protein 

were carried out. Variants used represent two of the distinct conformation of FECH. The 

F110A variant is most stable in the product bound or release conformation in which the 

enzyme has heme bound and a partially unwound π helix20. The E343K variant adopts the 

closed conformation with the porphyrin substrate bound18. Results from these experiments 

showed that PGRMC1 interacts more tightly with the F110A variant of FECH than either 

the wild-type enzyme or the E343K variant (Figure 3A). Quantitation of multiple blots 

showed over twice as much PGRMC1 was present when the F110A variant was used (Figure 

3B). This finding is consistent with PGRMC1 interacting with FECH in the release or 

product bound conformation, suggesting that PGRMC1 may regulate FECH activity by 

stabilizing a specific conformational state and regulating heme release from FECH.

Discussion

PGRMC1 and PGRMC2 are small hemoproteins whose cellular functions are not well 

defined. Both proteins are members of the membrane associated progesterone receptor 

family and are highly homologous25. Of the two proteins, PGRMC1 has been studied in 
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greater detail and reported to be involved in a variety of cellular pathways, including cell 

proliferation, cholesterol synthesis and autophagy. Several published observations have 

likely contributed to the unclear function of PGRMC1 in cells, including its upregulation in 

some cancers, characterization of truncated, tagged and heterogeneous protein, and the lack 

of functional assays for many of its reported roles. Despite the smaller number of studies 

carried out on PGRMC2, it is also thought to play a role in cancer102. It is not known if 

PGRMC1 and PGRMC2 have overlapping functions in the cell; however we and others103 

have shown that PGRMC1 and PGRMC2 interact and form heterodimers or multimers.

One property of both PGRMC1 and PGRMC2 which has not been questioned is their ability 

to bind heme. Heme binding has been characterized through spectroscopic23, 24, 104 and 

crystallographic studies42 for mammalian PGRMC1. Multiple studies also characterized the 

yeast homolog, DAP123, 30, 38 and have shown that several of the proposed functions of 

PGRMC1 and DAP1 are heme dependent24, 30, 31, 38, 104. Spectroscopic studies have been 

carried out to characterize the heme binding pocket of human PGRMC1 and are consistent 

with heme binding via a conserved tyrosine residue in a high spin, five coordinate 

environment24. This type of environment is similar to several bacterial heme transport 

proteins including ShuT and HasA43, 105. Recent crystallographic data showed that the 

dimerization of a truncated form of PGRMC1, which lacks the transmembrane domain, 

occurs via their heme molecules which interact with each monomer on its surface42. This 

unique and weak binding of heme by PGRMC1 has reinvigorated the proposal that 

PGRMC1 may function as a heme chaperone in cells23, 31. Our data that demonstrate a clear 

interaction between PGRMC1, PGRMC2, FECH and the mitochondrial heme metabolon 

add additional evidence to this proposed function.

Consistent with the proposal that PGRMC1, and possibly PGRMC2, function as heme 

chaperones are the findings that PGRMC1 can be observed in multiple cellular locations; 

something that would be expected for a heme chaperone that obtains heme from the 

mitochondrion and transports it to a variety of cellular locations for assembly into holo-

hemoproteins. Previous studies have localized PGRMC1 to a variety of cellular 

compartments including the ER, nucleus, cytoplasm, cell membrane, and the 

mitochondria106. Several of these locations correspond to the proposed functions of 

PGRMC1. For example, PGRMC1 has been shown to stimulate several cytochrome P450s 

which are found in the ER membrane28, 29. Another role reported for PGRMC1 is vesicle 

transport of the epidermal growth factor receptor. In these studies, PGRMC1 was 

cofractionated with EGFR to cytoplasmic vesicles34. In our studies, we have shown that 

PGRMC1 and PGRMC2 cofractionate and colocalize with the mitochondrial heme 

biosynthesis metabolon11. This pattern was observed in both undifferentiated and 

differentiated MEL cells. Further experiments to characterize the sub-mitochondrial 

localization were consistent with the majority of PGRMC1 being on the outside of the outer 

mitochondrial membrane. This localization would make it difficult if not impossible for the 

heme binding domain of PGRMC1 to interact with FECH to obtain heme and suggests 

interactions with a transmembrane protein for heme transport, such as ABCB10. Thus 

FECH and PGRMC1 interaction would take place at or near the N-terminus of PGRMC1 

and upon heme binding PGRMC1 would either undergo proteolytic processing or significant 

conformational rearrangement for heme transport from the mitochondria (Figure 10A). More 
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detailed studies examining different regions of PGRMC1 are necessary to validate this 

model of interaction with FECH.

In addition to the possible role of PGRMC1 as a heme chaperone, several equally feasible 

roles for PGRMC1 in heme production exist that are based on previous data as well as those 

presented herein. First, as mentioned above, PGRMC1 has been implicated in vesicle 

transport34, 107. Our affinity purification data of PGRMC1 showed that transferrin receptor 1 

was recovered from both the PGRMC1 and PGRMC2 experiments similar to what was 

found with other mitochondrial heme metabolon components. Previous work has proposed a 

novel delivery system for iron to the mitochondria during erythropoiesis via a kiss and run 

mechanism108–110. Considering the reported vesicle transport function of PGRMC1, it is 

possible that PGRMC1 could play a role in iron transport to the mitochondria (Figure 10C). 

If it is shown that PGRMC1 with heme bound is involved in iron transport, heme may serve 

as an intracellular second messenger to regulate iron homeostasis, which supports the work 

of Li et al.36.

Second is the possible function of PGRMC1 as a heme sensor that regulates heme 

production via either i) stabilizing or destabilizing the mitochondrial heme metabolon 

(Figure 10D) or ii) directly regulating the activity of FECH (Figure 10B). Our findings 

clearly support a role for PGRMC1 in regulating heme biosynthesis and/or transport. 

Inclusion of PGRMC1 in FECH assays resulted in a dose dependent decrease in enzyme 

activity that saturates at about 60% of maximal FECH activity. We also demonstrated that 

this interaction is dependent on the conformation of FECH and is strongest when FECH is in 

the product bound/release conformation. This conformation specific interaction of FECH 

with a partner was previously hypothesized due to the distinct surfaces of FECH presented 

during its catalytic cycle20. Additionally in an erythroid cell culture model, we were also 

able to demonstrate that targeting of PGRMC1 with a small molecule inhibitor decreases 

hemoglobinization in differentiated MEL cells. These data are consistent with PGRMC1 

regulating heme synthesis via its interactions with FECH.

The models proposed herein for PGRMC1 function in heme synthesis are not exclusive and 

likely overlap in some fashion. For example, our findings demonstrating the ability of 

PGRMC1 to transfer heme to an apo-hemoprotein and to interact with the “release 

conformation” of FECH support a model in which PGRMC1 serves as both a heme 

chaperone and regulator of FECH. Overall our data are consistent with PGRMC1 being an 

essential component of the mitochondrial heme metabolon and playing a role in regulating 

heme synthesis in erythroid differentiation. While the precise roles of PGRMC1 and 

PGRMC2 need additional clarification, planned studies, including the production of 

transgenic animals and knock-out cell lines, will define the roles of these proteins in heme 

biosynthesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical representation of affinity purification and MS analysis of FLAG-FECH (red), 

FLAG-PGRMC1 (blue) and FLAG-PGRMC2 (green) and FLAG-CPOX (purple, negative 

control). Each panel represents an identified mouse protein recovered with the bait human 

protein listed in the legend of panel A. Panels are as follows: A - FECH, B - PGRMC1, C - 

PGRMC2 and D - IMMT. Number of unique peptides (x axis), % coverage (y axis) and 

spectral counts (bubble size) for each was calculated using the maximal values obtained 

minus the maximal values observed in the control samples (empty vector). Size of bubbles 

represents the % of the total spectral counts identified for each mouse protein. The maximal 

spectral counts of each of the proteins was FECH=417, PGRMC1 = 115, PGRMC2 = 491 

and IMMT = 59.
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Figure 2. 
Immunoblot from affinity purification of FLAG elutions. A, A representative immunoblot of 

FLAG elutions from an affinity purification experiment of differentiated MEL cells with 

empty vector (lane 1), FLAG-FECH (lane 2) and FLAG-PGRMC1 (lane 3). Blots were 

probed for ABCB10, SUCLA2, PGRMC1, PGRMC2, PPOX, FECH, IMMT and ABCB7. 

B, Affinity purification from HEK293T cells using empty vector (lanes 1 and 2) and FLAG 

FECH (lanes 3 and 4). Blot was probed for PGRMC1. I is input and E is FLAG elution.
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Figure 3. 
Analysis of WT FECH and FECH variant interactions with PGRMC1. A, Representative 

SDS-PAGE stain free gel visualization of FECH (red) and immunoblot analysis of non-

tagged PGRMC1 (green) recovered from in vitro experiments. Protein standard is in lane 1, 

wild-type (WT) FECH is in lane 2, the F110A FECH variant in lane 3, the E343K FECH 

variant in lane 4 and the negative control (NC), only non-tagged PGRMC1 in lane 5. 

Experimental conditions are described in Materials and Methods section. FECH variants are 

described in Results section Conformation of FECH affects PGRMC1 interaction. B, 

Quantitation of PGRMC1 with wild-type (WT), F110A and E343K FECH from four 

biological replicates. P values for each variant with the wild-type and each other are < 

0.0001.
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Figure 4. 
Gene expression of Pgrmc1 and Pgrmc2 and protein levels of PGRMC1 and FECH during 

differentiation in two model systems. A, Expression levels of PGRMC1 and PGRMC2 in an 

erythroid expansion model system relative to the control GUSB. B, Protein levels of 

PGRMC1 and FECH in differentiating MEL cells normalized to day 4 levels.
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Figure 5. 
Cellular and subcellular localization of PGRMC1 and FECH in MEL cells. A, Cellular 

localization of PGRMC1 and FECH in undifferentiated and differentiated MEL cells. 

Representative immunoblot of FECH, PGRMC1 and α-tubulin detected from MEL cellular 

fractions. Lane 1 is the cytosolic fractions and lane 2 the mitochondrial fraction from 

differentiated MEL cells, while lane 3 is the cytosolic fractions and lane 4 the mitochondrial 

fraction from undifferentiated MEL cells. 12.5 μg total protein was loaded in each lane. B, 

Submitochondrial localization of PGRMC1 was determined by mitoplast preparation and 

protease protection assay. Representative immunoblot of FECH and PGRMC1 from induced 

fractionated MEL cells.
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Figure 6. 
Structure of truncated PGRMC1 and models of full length PGRMC1. A, PGRMC1 (PDB ID 

4X8Y) structure and models of PGRMC1 as generated by B, ITASSER71–74, C, RaptorX67, 

D, Phyre270 and E, IntFOLD268, 69. Putative transmembrane domains in B thru E are shown 

with darker color and heme bound by PGRMC1 is shown as red sticks. All structures 

rendered using PyMol75.
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Figure 7. 
Inhibition of heme synthesis in MEL cells by AG-205. A, AG-205 inhibits heme synthesis in 

differentiating (D) MEL cells, but not undifferentiated (U) cells. Concentrations of AG-205 

were 0, 2.5, 3.75, 5 and 10 μM. Differentiated cells overexpressing PGRMC1 (DP) were 

treated with AG-205 at 2.5, 3.75, and 5 μM. For undifferentiated cells, P< 0.01 for U2.5 vs 

U5 and U2.5 vs U10. For differentiated cells, P<0.01 was found for all comparisons except 

D0 vs D2.5. For differentiated cells expressing PGRMC1, no statistically significant 

differences were found. B, AG-205 added after initiation of differentiation at either 24 

(@24) or 48 (@48) hours had less of an effect at 5 and 10 μM than when added at the 

initiation of differentiation. P< 0.01 was found for D0 vs D5, D0 vs D10, D5 vs D5@24, D5 

vs D5@48, D5 vs D10@48, D5 vs D10, D10 vs D5@24, D10 vs D5@48 and D10 vs 

D10@48. P<0.05 was found for D0 vs D10@48 and D5@24 vs D10@48. C. Addition of 

12.5 μM hemin results in rescue of hemoglobinization at 5 μM AG-205. % WT Hemoglobin 

(pg) per cell for cultures with hemin are normalized to D0 control with hemin added. P< 

0.01 for D0 vs D5, D5 vs D0+hemin and D5 vs D5+hemin.
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Figure 8. 
Heme transfer to apo-cytochrome b5. A, Native PAGE of proteins alone or in combination of 

apo-cytochrome b5 (apob5), PGRMC1 and HasA detected for protein (left) and heme (right).
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Figure 9. 
Effect of PGRMC1 on FECH activity. % FECH activity with different molar amounts of 

PGRMC1 is shown.
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Figure 10. 
Models for role of PGRMC1 in heme synthesis. A, PGRMC1 functions as a heme chaperone 

to deliver newly synthesized heme to hemoproteins in different cellular locations, B, 

PGRMC1 serves as a heme sensor which directly interacts with FECH and decreases FECH 

activity, C, PGRMC1 serves as a heme sensor to regulate endosomal trafficking of iron to 

the mitochondria for heme synthesis, D, PGRMC1 serves as a heme sensor to regulate the 

localization of the mitochondrial heme biosynthesis complex to inner and outer membrane 

junction points.
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Table 1

Affinity Purification and MS Results of FECH, PGRMC1 and PGRMC2.

Murine Protein
Human Input

FECH (n=2) PGRMC1 (n=2) PGRMC2 (n=2) Empty Vector (n=2)

FECH 297–443a 81–142 72–115 9–26a

26–63 12–21 16–18 4–7

46–79% 22–38% 26–30% 13–17%

PGRMC1 39–115 93–104 57–65 0

16–26 11–15 5–6 0

52–66% 36–62% 27–33% 0%

PGRMC2 22–43 34–49 241–491 0

10–16 3–10 15–17 0

54–63% 16–42% 42–61% 0%

IMMT 12–40 63–65 30–31 3–6

8–34 34 16–17 2–6

13–45% 37% 21–25% 4–11%

APOOL 0–9 13–29 7 0

0–9 6–7 5 0

0–43% 25–29% 21–22% 0%

OPA1 0–28 9–25 3–9 0

0–28 6–17 3–6 0

0–37% 8–21% 5–9% 0%

Data shown from top value to bottom as: spectral counts/unique peptides, percent sequence coverage.

a
data from FECH-FECH and Empty vector-FECH interactions as previously reported11.
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Table 2

FECH Enzyme Activity. Equimolar amounts of WT and Variant FECH as well as control proteins were used.

Sample Activity (% + SD)

FECH 99 + 2.4

FECH + PGRMC1 57 + 6.2

F110A FECH 90 + 6.8

F110A FECH + PGRMC1 41 + 3.3

FECH + UROD 89 + 1.9

FECH + ALR 106 + 8.6

PGRMC1 3 + 1.3
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