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ABSTRACT Carbapenems are considered last-resort antibiotics in health care. In-
creasing reports of carbapenemase-producing bacteria in food-producing animals
and in the environment indicate the importance of this phenomenon in public
health. Surveillance for carbapenemase genes and carbapenemase-producing bacte-
ria in Dutch food-producing animals, environmental freshwater, and imported orna-
mental fish revealed several chromosome-based blaOXA-48-like variants in Shewanella
spp., including two new alleles, blaOXA-514 and blaOXA-515. Carbapenemase genes
were not associated with mobile genetic elements or Enterobacteriaceae.
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Carbapenemases are extended-spectrum �-lactamases (ESBLs) that hydrolyze car-
bapenems, last-line therapeutics to treat multidrug-resistant Gram-negative infec-

tions (1). Carbapenemase-producing microorganisms are increasingly reported in food-
producing animals (2, 3), the food supply (4), and the environment (5, 6). These findings
are fueling a debate on the hazards for public health (7, 8), and authorities have rising
concerns regarding the appearance of carbapenem resistance in food animal ecosys-
tems (9). The aim of this study is to present the results of the 2013 to 2015 carbapen-
emase surveillance activities in food-producing animals and environmental freshwater
in The Netherlands. Since resistant organisms are not geographically restrained, we also
report the results of a pilot study on imported ornamental freshwater fish from other
non-European countries, increasingly reported in recent years as sources of multidrug-
tolerant bacteria and associated antimicrobial resistance genes (10, 11).

A total of 4,440 fecal samples of broilers, slaughter pigs, veal calves, and dairy cows
were collected in 2013 to 2015, as previously described (12). Fifty batches of imported
live ornamental fish (2 fish and 1 water sample per batch) from various countries
outside the European Union were sampled (from November 2014 to February 2015),
together with 24 surface freshwater samples collected from eight Dutch provinces
(March 2015). After enrichment, carbapenemase families blaKPC, blaNDM, blaIMP, blaOXA-48,
and blaVIM were detected by Check-MDR Carba (Check-Points, Wageningen, The Neth-
erlands) as previously described (12, 13). All samples were negative for blaKPC, blaNDM,
blaIMP, and blaVIM. Variants of blaOXA-48 were identified in 92 samples (Table 1) and
confirmed by conventional PCR and sequencing (14): 7 fecal samples (0.16%), 9 surface
freshwater samples (37,5%) from five Dutch provinces, and 37 ornamental fish batches
(74%), of which water samples were positive (78%) more frequently than fish samples
(36%).
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The most common gene variant was blaOXA-48b, recovered from ornamental fish, fish
transport water, surface freshwater, and livestock (Table 1). Different alleles showed
99% to 100% nucleotide similarity (only silent mutations) to reference genes from
Shewanella xiamenensis (15). Alleles that showed up to four amino acid substitutions
have been annotated as OXA-48 family class D �-lactamases or class D �-lactamases
(�94% nucleotide similarity). Despite the high prevalence of blaOXA-48b, other blaOXA-48

variants were also observed, as indicated by a BLASTX search in GenBank. blaOXA-181

was detected in fish samples from Colombia, blaOXA-199 was identified in freshwater
from Gelderland province (The Netherlands) and ornamental fish from the Democratic
Republic of Congo, and blaOXA-252 was found in one fecal sample from a slaughter pig.
Both blaOXA-181 and blaOXA-199 progenitors were identified in environmental isolates of
S. xiamenensis (15, 16). Finally, blaOXA-48 found in a fecal sample from one slaughter pig
showed close identity to blaOXA-48 from K. pneumoniae (GenBank accession no.
KT265183).

Bacterial isolation was performed on ChromID Carba and ChromID OXA-48 (bio-
Mérieux) and on His agar with 0.125 mg/liter ertapenem (9) on 12 randomly selected
batches of ornamental fish, all blaOXA-48-like-positive Dutch freshwater samples (n � 9),
and livestock samples (n � 7), for a total of 28 samples. Shewanella spp. were isolated
from 21 samples, whereas no OXA-producing Enterobacteriaceae was isolated (Table 2).
Bacterial species identification by 16S rRNA and gyrB gene sequencing (15, 17) showed
�98% to 100% nucleotide identity to S. xiamenensis or Shewanella oneidensis (GenBank
accession no. KC765141.1 and KR732277). Isolates with �98% nucleotide identity were
reported as Shewanella spp. PCR amplification and sequencing identified blaOXA-48b in
all but four Shewanella isolates (Table 2). Nucleotide queries using BLASTX identified
two genes encoding potential protein products of original sequence: (i) blaOXA-514,
found in Indonesian ornamental fish, whose putative protein displayed one amino acid
difference with the protein coded by blaOXA-416, a gene recently reported in a pediatric
case of intestinal carriage of S. xiamenensis acquired from environmental sources (17);
and (ii) blaOXA-515, found in Dutch freshwater, whose putative protein is similar to
OXA-252, except for one amino acid difference. Note that molecular detection from

TABLE 1 Characteristics of blaOXA-48-like genes detected in Dutch freshwater and livestock, imported ornamental fish, and transport
water

Gene
No. of
samples Reference

Gene
homology (%)

Amino acid
differences Accession no.b

Source (origin/no. of
samples)

blaOXA-514 1 A201G (from
OXA-416)

KU866382 Ornamental fish (Indonesia)

blaOXA-515 1 G201S (from
OXA-252)

KU866383 Freshwater (Netherlands)

blaOXA-48 1 KT265183 99 KU820821 Slaughter pig

blaOXA-48b 7 JX644945 99–100 KU820801 (S), KU820802 (S),
KU820804 (S)

Freshwater (Netherlands)

69 99–100 KU820811, KU820813,
KU820814, KU820815,
KU820816

Ornamental fish (32) fish
transport water (37)

3 100 KU820805 (S), KU820806 (S),
KU820807 (S)

Broiler (2), veal calf (1)

blaOXA-181 3 HM992946 100 KU820809, KU820810,
KU820803 (S)

Ornamental fish
(Colombia, 2, Singapore, 1)

blaOXA-199 1 JN704570 99 KU820808 Ornamental fish (Congo)
1 100 KU820819 Freshwater (Netherlands)

blaOXA-252 1 WP_037428895 100a KU820800 (S) Slaughter pig
blaOXA-48 family 2 JX644945 99 W222G, V232G KU820818 Slaughter pig

99 N179I KU820820 Broiler
Class D �-lactamase 2 JX644945 94 V21E, N28T, A33T,

T104A
KU820812, KU820817 Fish transport water (Israel)

aAmino acid homology with OXA-252 derived from BLASTX alignment in GenBank, since no gene sequence for blaOXA-252 is available in GenBank, as of this writing.
bOnly representative sequences were deposited in GenBank; S, sequenced from Shewanella isolate (see also Table 2).
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water samples was not sufficient to achieve a comprehensive investigation of the
presence of blaOXA-48-like genes, since blaOXA-181 and blaOXA-514 were detected only
after bacterial isolation with selective media.

Plasmid transformation and conjugation were not successful in transferring the
blaOXA48-like genes from Shewanella spp. to Escherichia coli K-12 recipients, suggesting
a chromosomal localization (18, 19). The genetic context of blaOXA-48-like genes was
investigated by PCR using primer pairs oxa48b-Fw (5=-AGCTTGATCGCCCTCGATTT-23=)
and lysR-Rev (5=-CGGATAGCCATTCCGGTCTC-3=) and oxa48b-Rev (5=-TGATTTGCTCAGT
GGCCGAA-3=) and c15-Fw (5=-AAGCGTACTGGGATCATGGC-3=) designed on the genome
sequence of S. xiamenensis S4 (GenBank accession no. JX644945). A conserved genetic
arrangement as observed in environmental Shewanella spp. was detected in all isolates
(15), with blaOXA48-like gene downstream of an open reading frame (ORF) coding for a
pyroglutamyl peptidase I-like protein and upstream of a putative lysR transcriptional
regulator gene. None of the blaOXA-48-like genes was associated with the epidemic IncL
plasmid responsible for the current OXA-48 spread (20), and association with IS1999,
ISShes2, and Tn2013 was ruled out (data not shown) (15, 21). Since all blaOXA-48-like
genes were located on the chromosome of waterborne Shewanella spp., thought to be
the progenitor of this carbapenemase family (22), and were not associated with mobile
genetic elements or Enterobacteriaceae, they were deemed to be of environmental
origin and to pose a limited public health risk.

Shewanella isolates were tested for antimicrobial susceptibility using broth microdi-
lution (Sensititre EUVSEC 2) according to ISO 20776-1:2006 (13), and MIC values were
slightly increased to ertapenem compared to those of non-OXA-48-like Shewanella

TABLE 2 MICs of Shewanella spp. isolated in this study

Source and isolatea Species Origin Gene

MIC (mg/liter) forb:

CTX CTX � CLA CAZ CAZ � CLA FEP FOX ETP IPM MEM TRM

Environmental freshwater
W9 S. xiamenensis Netherlands blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 �0.06 1 2 2 0.5 1
W13 S. oneidensis Netherlands blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 �0.06 1 �2 2 1 �0.5
W14 S. oneidensis Netherlands blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 �0.06 1 2 2 1 �0.5
W15 S. xiamenensis Netherlands blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 �0.06 1 2 2 1 1
W16 S. oneidensis Netherlands blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 �0.06 1 �2 2 0.5 �0.5
W17 Shewanella spp. Netherlands blaOXA-515

c �0.25 �0.06/4 �0.25 �0.12/4 �0.06 �0.5 2 2 0.5 �0.5
W21 S. xiamenensis Netherlands blaOXA-48b �0.25 0.25/4 �0.25 0.25/4 0.12 2 �2 4 4 4

Ornamental freshwater fish
10A S. xiamenensis Indonesia blaOXA-514

d �0.25 �0.06/4 �0.25 �0.12/4 �0.06 2 1 1 0.5 �0.5
13C S. xiamenensis Israel blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 �0.06 �0.5 2 2 1 �0.5
25B Shewanella spp. Singapore blaOXA-181

e �0.25 0.12/4 �0.25 �0.12/4 0.12 1 2 2 1 �0.5
32B S. xiamenensis Indonesia blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 �0.06 1 2 1 0.5 �0.5
36B S. xiamenensis Singapore blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 �0.06 2 2 1 0.5 �0.5
39B Shewanella spp. Singapore blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 0.5 2 2 1 0.5 1
45B Shewanella spp. Thailand blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 �0.06 1 2 1 0.5 1
F2.1-22 S. xiamenensis Indonesia blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 �0.06 2 �2 4 2 2
F2.1-24 Shewanella spp. Indonesia blaOXA-48b �0.25 0.25/4 �0.25 0.5/4 0.12 2 �2 �16 8 4
F3.2 Shewanella spp. Indonesia blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 �0.06 1 �2 4 2 �0.5

Slaughter pig
1553/2014 S. xiamenensis Netherlands blaOXA-252

f �0.25 �0.06/4 �0.25 �0.12/4 �0.06 1 2 1 0.5 �0.5

Broiler
780/2015 S. xiamenensis Netherlands blaOXA-48b �0.25 �0.06/4 0.5 �0.12/4 �0.06 4 1 2 1 4
1206/2015 S. xiamenensis Netherlands blaOXA-48b �0.25 �0.06/4 �0.25 �0.12/4 �0.06 1 2 1 0.5 �0.5

Veal calf
77/2015 S. oneidensis Netherlands blaOXA-48b �0.25 0.12/4 �0.25 �0.12/4 �0.06 1 2 2 1 1

aIsolates were classified as non-wild type susceptible based on EUCAST ECOFFS (www.eucast.org).
bCTX, cefotaxime; CLA, clavulanic acid; CAZ, ceftazidime; FEP, cefepime; FOX, cefoxitin; ETP, ertapenem; IPM, imipenem; MEM, meropenem; TRM, temocillin.
cAccession no. KU866383.
dAccession no. KU866382.
eAccession no. KU820803.
fAccession no. KU820800.
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isolates (data not shown), with four isolates displaying reduced susceptibility to imi-
penem and meropenem (Table 2). Interestingly, two of these isolates (F2.1-22 and
F2.1-24) were from the same fish sample, with F2.1-24 showing the highest MIC values,
likely modulated by additional resistance mechanisms. Similar MIC values were already
described in S. xiamenensis producing OXA-416 and OXA-204 (17, 23) and are com-
monly detected in the aquatic environment, where intrinsically resistant bacteria like
Shewanella thrive (6). Given the absence of specific phenotypic tests, high-level temocillin
resistance (MIC �64 ml/liter) has been suggested as a first step in identifying OXA-48
producers (9). According to our observations, however, this methodology is likely not
applicable to environmental OXA-48 enzymes. Although recognized as �-lactamases with
feeble hydrolyzing activity (16, 21), OXA-48 carbapenemases should not be undervalued
due to their potential to synergize with ESBLs. Shewanella isolates were susceptible to other
�-lactams but were often resistant to ciprofloxacin, nalidixic acid, ampicillin, tetracycline,
trimethoprim, sulfonamides, and/or chloramphenicol (data not shown).

In conclusion, the prevalence of carbapenem-resistant bacteria in Dutch food-
producing animals was still low, whereas they were more prevalent in environmental
freshwater and imported ornamental fish. The fact that carbapenem-resistant genes
were only related to naturally resistant Shewanella spp. and no acquired carbapenem
resistance mechanism was observed places these microorganisms in a questionably
relevant position in regard to human health, contrary to previous suggestions (4).
Ongoing carbapenemase monitoring indicates that blaOXA-48 variants are also present
in imported consumption fish and prawns (K.T. Veldman, personal communication).
Gene associations to ubiquitous aquatic bacteria that are normally undetected in antibiotic
resistance surveillance programs may represent a chance to spread and potentially con-
tribute to the resistome of other clinically relevant bacteria. The location of blaOXA-48-like
genes (on the chromosome or on mobile genetic elements) and the type of bacterial host
(environmental bacteria or recognized pathogens) may largely determine the impact of this
antimicrobial resistance gene on human and animal health.

Accession number(s). blaOXA-48 (KU820821),blaOXA-48b (KU820801, KU820802,
KU820804, KU820811, KU820813, KU820814, KU820815, KU820816, KU820805,
KU820806, KU820807), blaOXA-181 (KU820809, KU820810, KU820803), blaOXA-199

(KU820808, KU820819), blaOXA-252 (KU820800), blaOXA-514 (KU866382), blaOXA-515

(KU866383), OXA-48 family class D �-lactamases (KU820818, KU820820), class D
�-lactamases (KU820812, KU820817); blaOXA48b, blaOXA-514, and blaOXA-515 genomic
surroundings (KX060561, KX060562, KX060563, KX060564), and gyrB (KX022127,
KX022126).
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