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ABSTRACT This study investigated the antischistosomiasis liver fibrosis effects of
chlorogenic acid (CGA) on interleukin 13 (IL-13)/microRNA-21 (miR-21)/Smad7 signal-
ing interactions in the hepatic stellate LX2 cell line and schistosome-infected mice.
The transfection was based on the ability of the GV273–miR-21– enhanced green flu-
orescent protein (EGFP) and GV369 –miR-21–EGFP lentiviral system to up- or down-
regulate the miR-21 gene in LX2 cells. The mRNA expression of miR-21, Smad7, and
connective tissue growth factor (CTGF) and the protein expression of Smad7, CTGF,
Smad1, phosphor-Smad1 (p-Smad1), Smad2, p-Smad2, Smad2/3, p-Smad2/3, trans-
forming growth factor � (TGF-�) receptor I, and �-smooth muscle actin (�-SMA) was
assayed. Pathological manifestation of hepatic tissue was assessed for the degree of
liver fibrosis in animals. The results showed that CGA could inhibit the mRNA ex-
pression of miR-21, promote Smad7, and inhibit CTGF mRNA expression. Meanwhile,
CGA could significantly lower the protein levels of CTGF, p-Smad1, p-Smad2,
p-Smad2/3, TGF-� receptor I, and �-SMA and elevate the Smad7 protein level. In
vivo, with treatment with CGA, the signaling molecules of IL-13/miR-21/Smad7 inter-
actions were markedly regulated. CGA could also reduce the degree of liver fibrosis
in pathological manifestations. In conclusion, CGA could inhibit schistosomiasis-
induced hepatic fibrosis through IL-13/miR-21/Smad7 signaling interactions in LX2
cells and schistosome-infected mice and might serve as an antifibrosis agent for
treating schistosomiasis liver fibrosis.
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According to conservative estimates, schistosomiasis is an infectious disease that
affects more than 230 million people in more than 70 countries (1, 2). There are

currently at least 600 million people at risk worldwide, and the number of deaths due
to schistosomiasis is approximately 200,000 each year (3). Schistosomiasis japonica is
still the biggest threat to the Chinese public; the number of patients is about 360,000,
and the cost of prevention and control is up to $120 million every year (4).

Praziquantel is currently the only clinically effective drug for the treatment of
schistosomiasis since the 1980s. However, there have been isolated reports of less
sensitive parasites belonging to strains that were selected in the laboratory for that
phenotype (5). Adult worms (days 35 to 42) are the most susceptible to praziquantel,
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but the early stages of schistosomula (days 0 to 7) are particularly resistant to tegument
damage, and the eggs of schistosomes are not sensitive. In schistosomiasis, eggs are
the main cause of pathology. Schistosoma eggs release soluble egg antigen (SEA) (6),
and the SEA stimulates the body to produce interleukin 13 (IL-13), which combines with
receptors on hepatic stellate cells to switch on Smad1/2 (the abbreviation of Smad1/5
and Smad2/3) molecule phosphorylation, leading to liver fibrosis (7). In the signaling
interactions, microRNA-21 (miR-21) positively regulates the production of collagen via
Smad1/2 (Smad1/5 and Smad2/3) phosphorylation and is interfered with by Smad7 (8).
Thus, the interaction between IL-13, miR-21, and Smad7 molecules in hepatic stellate
cells can ultimately induce the production of collagen and schistosomiasis liver fibrosis.

Chlorogenic acid (CGA) (5-caffeoylquinic acid) is the ester of caffeic acid and quinic
acid (9, 10) and is an important biosynthetic intermediate that has been discovered in
a number of dietary plants and medicinal herbs, such as bamboo (Phyllostachys edulis)
(11). The molecular formula is C16H18O9 (12). It has been reported that CGA has strong
anti-inflammatory (13), antioxidative (14, 15), antihypertensive (16), antitumor (17, 18),
and analgesic and antipyretic (19, 20) effects. In addition, CGA could inhibit lipopoly-
saccharide (LPS)-induced microglial activation and improve the survival of dopaminer-
gic neurons (21). CGA could also reduce carbon tetrachloride-induced liver fibrosis in
rats through inhibition of the Toll-like receptor 4 signaling pathway (22, 23) and
through the suppression of oxidative stress in liver and hepatic stellate cells (24).

However, the molecular mechanism through which CGA inhibits liver fibrosis in
hepatic stellate cells remains unknown. The objective of this study is to confirm
whether CGA can inhibit schistosomiasis-induced liver fibrosis through IL-13/miR-21/
Smad7 signaling interactions in hepatic satellite cells (HSCs) and schistosome-infected
mice.

RESULTS
Cytotoxicity of CGA on LX2 cells. Based on the cell-counting kit 8 (CCK8) assay,

pretreatment of unstimulated LX2 cells with prepared solutions of 80 �g/ml, 40 �g/ml,
and 20 �g/ml of CGA for 24 h did not significantly affect cell viability (Fig. 1A).
Observation of cell morphology showed the same result (Fig. 1B). Furthermore, in
assays by real-time PCR, the difference between changes of miR-21 in CGA-treated cells
and the control group was not significant (Fig. 1C). Therefore, we chose CGA at 80
�g/ml, 40 �g/ml, and 20 �g/ml to treat cells for 24 h.

IL-13 induces CTGF protein expression in LX2 cells. There was a time- and
dosage-dependent increase in the expression of connective tissue growth factor (CTGF)
protein in LX2 cells treated with IL-13 (Fig. 2). The effect of IL-13 on CTGF expression
was dose dependent over the range of 5 to 100 ng/ml after 6-h treatment (Fig. 2A and
B). An approximately 1-fold increase in the CTGF protein level was observed at 6 h after
IL-13 treatment (Fig. 2C and D). IL-13 at 50 ng/ml significantly increased CTGF expres-
sion (P � 0.01), and this concentration was chosen for subsequent experiments. IL-13
at 50 ng/ml significantly increased the expression of miR-21 mRNA after 6 h (Fig. 2E and
F), when the 0-ng/ml group was compared with the 50-ng/ml group after the cells were
stimulated with IL-13 for 6 h (P � 0.01) and when the 0-h group was compared with
the 6-h group after the cells were stimulated with IL-15 at a concentration of 50 ng/ml
(P � 0.01).

Effect of CGA on miR-21 and downstream molecules in LX2 cells after IL-13
stimulation. As shown in Fig. 3A, compared with the control group, the mRNA levels
of miR-21 and CTGF in the experimental group were significantly increased (P � 0.01)
and the level of Smad7 was significantly decreased (P � 0.01). After treatment with CGA
at different concentrations for 24 h, the levels of miR-21 and CTGF were decreased and
the level of Smad7 was increased compared with the experimental group (P � 0.05 or
0.01). As shown in Fig. 3B, the protein levels were also assessed by Western blot
analysis. IL-13 markedly elevated the expression of CTGF, phosphorylated Smad1
(p-Smad1), p-Smad2, p-Smad2/3, transforming growth factor � (TGF-�) receptor I, and
�-smooth muscle actin (�-SMA) and lowered the level of Smad7 in IL-13-stimulated
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cells. However, IL-13-induced p-Smad1, p-Smad2, p-Smad2/3, TGF-� receptor I, CTGF,
and �-SMA expression was effectively inhibited by CGA, and CGA could promote
Smad7 expression compared with the experimental group. The total Smad1, Smad2,
and Smad2/3 levels showed no significant changes.

Expression of downstream signaling molecules in LX2 cells after miR-21 knock-
down. We constructed the miR-21 lentiviral vector GV273 and transfected LX2 cells in
vitro. Green fluorescent protein (GFP) was observed with a fluorescence microscope
after 48 h and 72 h (Fig. 4A), and the expression of miR-21, Smad7, and CTGF was
confirmed (Fig. 4B). At 72 h after transfection, we observed the impact of miR-21/Smad7
signaling interactions on molecules downstream. There was no significant difference
between the control group and the lentivirus negative-control (lentivirus-NC) group in
the mRNA levels of miR-21, Smad7, and CTGF (P � 0.05) (Fig. 4B) and the protein levels
of CTGF, Smad7, p-Smad1, p-Smad2, p-Smad2/3, and TGF-� receptor I (Fig. 4C).
However, compared with the control group, after miR-21 knockdown, the mRNA

FIG 1 Cytotoxicity of CGA on LX2 cells. (A) CCK8 assay of LX2 viability after CGA treatment. (B) Morphologies of LX2
cells after CGA treatment for 24 h. (C) mRNA levels measured by quantitative real-time PCR. The data are shown as
means and SEM.
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expression of miR-21 and CTGF decreased and the level of Smad7 increased (P � 0.01)
(Fig. 4B). The protein expression of CTGF, p-Smad1, p-Smad2, p-Smad2/3, and TGF-�
receptor I decreased, and the level of Smad7 increased (Fig. 4C).

Effect of CGA on downstream signaling molecules in LX2 cells after miR-21
knockdown. MiR-21 was knocked down by lentiviral vector in LX2 cells for 72 h, and
then the cells were treated with CGA (80 �g/ml) for 24 h. The LX2 cells were treated
with IL-13 for the last 6 h before harvest. Compared with the lentivirus-down group
(where miR-21 was knocked down in the LX2 cells by a lentiviral vector), the mRNA
levels of miR-21 and CTGF in the lentivirus-down/IL-13 group were increased (P � 0.01)
and the level of Smad7 was decreased (P � 0.01) (Fig. 5A), and the protein expression
of CTGF, p-Smad1, p-Smad2, p-Smad2/3, and TGF-� receptor I increased and the level
of Smad7 decreased (Fig. 5B). When LX2 cells were treated with CGA (80 �g/ml), the
level of miR-21 and CTGF were decreased compared to that in the lentivirus-down/IL-13
group (P � 0.05 or 0.01) and the level of Smad7 increased (P � 0.01) (Fig. 5A). The
protein levels of CTGF, p-Smad1, p-Smad2, p-Smad2/3, and TGF-� receptor I decreased,
and the level of Smad7 increased (Fig. 5B).

Expression of downstream signaling molecules in LX2 cells after miR-21 over-
expression. We constructed the miR-21 lentiviral vector GV369 and transfected LX2

FIG 2 There was a time- and dose-dependent increase in the expression of CTGF protein in LX2 cells
treated with IL-13. (A and B) The protein levels were assayed by Western blotting. The effect of IL-13 on
CTGF expression was dose dependent over the range of 5 to 100 ng/ml after 6 h treatment. *, P � 0.01
compared with the 0-ng/ml group; **, P � 0.05 compared with the 0-ng/ml group. (C and D) The CTGF
protein level increased with IL-13 treatment after 6 h. *, P � 0.01 compared with the 0-h group. (E and
F) mRNA levels were measured by real-time PCR. IL-13 at 50 ng/ml after 6 h significantly increased the
expression of miR-21 mRNA. *, P � 0.01 for 0 ng/ml versus 50 ng/ml or 0 h versus 6 h. The data are shown
as means and SEM of the results of three independent experiments, each performed in duplicate.
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cells in vitro. GFP was observed with a fluorescence microscope after 48 h and 72 h (Fig.
6A), and the expression of miR-21 was confirmed (Fig. 6B). At 72 h after transfection, we
observed the impact of miR-21/Smad7 signaling interactions on molecules down-
stream. There was no significant difference between the control and lentivirus-NC
groups in the mRNA levels of miR-21, Smad7, and CTGF (P � 0.05) (Fig. 6B) and the
protein levels of CTGF, Smad7, p-Smad1, p-Smad2, p-Smad2/3, and TGF-� receptor I
(Fig. 6C). However, compared with the control group, after miR-21 overexpression, the
mRNA expression of miR-21 and CTGF increased and the level of Smad7 decreased
(P � 0.01) (Fig. 6B). The protein expression of CTGF, p-Smad1, p-Smad2, p-Smad2/3, and
TGF-� receptor I increased, and the level of Smad7 decreased (Fig. 6C).

Effect of CGA on downstream signaling molecules in LX2 cells after miR-21
overexpression. After being treated with CGA (80 �g/ml) for 24 h after miR-21

FIG 3 Effects of CGA on IL-13/miR-21/Smad7 interactions in LX2 cells after IL-13 stimulation. The mRNA
levels were measured by real-time PCR. (A) mRNA levels of miR-21 and CTGF in the experimental group
were increased and the level of Smad7 was decreased. (B) Protein levels were assayed by Western
blotting. CGA was administered at different concentrations for 24 h, and IL-13 markedly increased the
expression of CTGF, p-Smad1, p-Smad2, p-Smad2/3, TGF-� receptor I, and �-SMA and decreased the level
of Smad7 in IL-13-stimulated cells. However, IL-13-induced p-Smad1, p-Smad2, p-Smad2/3, TGF-�
receptor I, CTGF, and �-SMA expression was effectively inhibited by CGA, and CGA could promote Smad7
expression. Total Smad1, Smad2, and Smad2/3 showed no significant changes. The data are shown as
means and SEM of the results of three independent experiments, each performed in duplicate. *, P � 0.01
compared with the experimental group; **, P � 0.05 compared with the experimental group; #, P � 0.01
compared with the control group.
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overexpression, the LX2 cells were treated with IL-13 for the last 6 h before harvest. As
shown in Fig. 7A, compared with the lentivirus-up group (where miR-21 was overex-
pressed in LX2 cells by a lentiviral vector), the mRNA levels of miR-21 and CTGF in the
lentivirus-up/IL-13 group were increased (P � 0.01) and the level of Smad7 was
decreased (P � 0.01), and the protein expression of CTGF, p-Smad1, p-Smad2,
p-Smad2/3, and TGF-� receptor I increased and the level of Smad7 decreased (Fig. 7B).
When the LX2 cells were treated with CGA (80 �g/ml), the levels of miR-21 and CTGF
were decreased compared to that in the lentivirus-up/IL-13 group (P � 0.05 or 0.01) and
the level of Smad7 increased (P � 0.01, Fig. 7A), and the protein levels of CTGF,
p-Smad1, p-Smad2, p-Smad2/3, and TGF-� receptor I decreased and the level of Smad7
increased (Fig. 7B).

Effect of CGA on egg numbers and IL-13. As hepatic fibrosis is mainly induced by
SEA secreted from the eggs of schistosomes (Fig. 8C), the eggs in infected mouse livers
were important for the experiment. The numbers of eggs in the control and CGA
groups were not significantly different (P � 0.05) (data not shown). As illustrated in Fig.
8C, the level of IL-13 was increased in the experimental group compared with the
control group (P � 0.01) and was significantly decreased in a concentration-dependent

FIG 4 Downregulation of miR-21 in LX2 cells via the lentiviral vector. The lentiviral vector interfered with LX2 cells for 72
h to mediate miR-21 down expression. (A) The expression of GFP was observed with a fluorescence microscope after
lentivirus was introduced into LX2 cells for 48 and 72 h. (B) Expression of miR-21, Smad7, and CTGF was detected by
quantitative real-time PCR. (C) Expression of protein was assayed by Western blotting. The data are shown as means and
SEM; n � 3. *, P � 0.01 for lentivirus-down versus control groups, a significant difference from the respective values
determined by ANOVA.
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manner by treatment with CGA (P � 0.05). These findings suggested that CGA nega-
tively regulated the level of IL-13.

Pathological manifestation of hepatic tissue. As illustrated in Fig. 8A, nodules on
liver surfaces in the experimental group could be clearly observed. The mice that were
treated with different concentrations of CGA exhibited reduced nodules. In order to
evaluate the antifibrosis role of CGA in vivo, histological analysis with hematoxylin and
eosin (H&E) and Sirius red was used to gauge the extent of liver injury induced by
schistosomes (Fig. 8E). Under a light microscope, the slice of liver from the control
group showed that the structure of hepatic lobules was obviously intact, with orderly
arranged liver cells, and there were no egg granulomas, no cell denaturation, no
infiltration of inflammatory cells, and no fibrillary collagens. In the experimental group,
the liver cells were severely damaged and showed vacuolar change, and significant
deposition of fibrillary collagens was also detected. Enormous egg granulomas were
surrounded by accumulation of inflammatory cells and fibril aggregation. In contrast, in
the CGA group, the slice showed smaller granulomas, less liver cell denaturation, less

FIG 5 Lentivirus vector interfered with LX2 cells for 72 h to mediate miR-21 down expression, and then
the cells were treated with CGA (80 �g/ml) for 24 h. Then, the LX2 cells were treated with IL-13 for the
last 6 h before harvest. (A) mRNA levels were measured by quantitative real-time PCR. (B) Protein levels
were measured by Western blotting. The data are shown as means and SEM; n � 3. #, P � 0.01 for
lentivirus-down/IL-13 versus lentivirus-down; *, P � 0.01 for lentivirus-down/IL-13/CGA versus lentivirus-
down/IL-13; **, P � 0.01 for lentivirus-down/IL-13/CGA versus lentivirus-down/IL-13, significant differ-
ences from the respective values determined by Student’s t test.
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inflammatory cell infiltration, and less fibrillary collagen. The connective tissues were
obviously decreased.

Protein expression of �-SMA examined by immunohistochemistry (IHC) in
schistosome-infected mice. As shown in Fig. 8F, in the control group, the staining of
�-SMA in the cytoplasm was not remarkable. After infection with schistosomes, the
positivity rate of �-SMA staining in the cytoplasm rose significantly (P � 0.01). With CGA
treatment, the rate of �-SMA staining in the cytoplasm was markedly decreased (P �

0.05 or 0.01).
Effect of CGA on IL-13/miR-21/Smad7 signaling interactions in schistosome-

infected mice. As shown in Fig. 9A, compared with the control group, the mRNA levels
of miR-21 and CTGF in the experimental group were significantly increased (P � 0.01)
and the level of Smad7 was significantly decreased (P � 0.01). After treatment with CGA
at different concentrations for 24 h, the levels of miR-21 and CTGF were decreased and
the level of Smad7 was decreased compared to those in the experimental group (P �

0.05 or 0.01). As shown in Fig. 9B, protein levels were also assessed by Western blot
analysis. The protein expression levels of CTGF, p-Smad1, p-Smad2, p-Smad2/3, TGF-�
receptor I, and �-SMA were markedly increased, and the level of Smad7 in the
experimental group was decreased compared with the control group. However, the
schistosome-induced protein expression of p-Smad1, p-Smad2, p-Smad2/3, TGF-�

FIG 6 Upregulation of miR-21 in LX2 cells via the lentiviral vector. The lentiviral vector interfered with LX2 cells for 72 h
to mediate miR-21 overexpression. (A) Expression of GFP was observed with a fluorescence microscope after lentivirus was
introduced into LX2 cells for 48 and 72 h. (B) Expression of miR-21, Smad7, and CTGF was detected by quantitative
real-time PCR. (C) Expression of protein was assayed by Western blotting. The data are shown as means and SEM; n � 3.
*, P � 0.01 for lentivirus-up versus control, a significant difference from the respective values determined by ANOVA.
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receptor I, CTGF, and �-SMA was effectively inhibited by CGA, and CGA could promote
Smad7 expression compared with the experimental group. The protein levels of Smad1,
Smad2, and Smad2/3 showed no significant changes.

DISCUSSION

Schistosomiasis-induced liver fibrosis is mainly caused by SEA, an antigen that
induces the production of IL-13 (but not TGF-�) as a starting signal (25). IL-13 combines
with the receptors (IL-13R�1/IL-4R�) on hepatic stellate cells, and then the JAK-STAT6
pathway and the M2 macrophage alternative activation pathway are activated, with
excess collagen deposition (26). However, simply blocking the two pathways cannot
completely prevent the development of liver fibrosis.

Researchers have found that the IL-13/miR-21/Smad7 signaling interactions in he-
patic stellate cells are equally important in the two signaling pathways that can
influence the formation of collagen and play an important role in the development of
schistosome-induced hepatic fibrosis (27). The receptors (IL-13R�1/IL-4R�) on hepatic
stellate cells were stimulated by IL-13 through Smad1/2 (Smad1/5 and Smad2/3)

FIG 7 Lentivirus vector interfered with LX2 cells for 72 h to mediate miR-21 overexpression, and then the
cells were treated with CGA (80 �g/ml) for 24 h. Then, the LX2 cells were treated with IL-13 for the last
6 h before harvest. (A) mRNA levels were measured by quantitative real-time PCR. (B) Protein levels were
measured by Western blotting. The data were expressed as means and SEM; n � 3. #, P � 0.01 for
lentivirus-up/IL-13 versus lentivirus-up; *, P � 0.01 for lentivirus-up/IL-13/CGA versus lentivirus-up/IL-13;
**, P � 0.01 for lentivirus-up/IL-13/CGA versus lentivirus-up/IL-13, significant differences from the
respective values determined by Student’s t test; ##, P � 0.05 for lentivirus-up/IL-13 versus lentivirus-up.
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phosphorylation (7), positively regulating production of miR-21 and then interfering
with the target genes of miR-21 and Smad7 and subsequently preventing Smad7 from
negative-feedback regulation of Smad1/2 (Smad1/5 and Smad2/3). Thus, by forming a
feedback loop, the molecules promote hepatic stellate cell production of collagen. The
feedback loop starting from miR-21 plays a core role in the gradually increased
IL-13/Smad signaling pathway (28). CTGF, synthesized by hepatocytes and HSCs (29), is
a fibrogenic master switch in the epithelial-to-mesenchymal-cell transition and plays an
important role in the increase of extracellular matrix (ECM) (30). The production of CTGF
was closely related to the IL-13/Smad pathway (Fig. 10). Therefore, approaches to
regulate the IL-13/miR-21/Smad7 interactions in the chronic stage of schistosome
infection will be able to control the development of schistosomiasis liver fibrosis.

As a key activator of HSCs, TGF-� receptor I can upregulate the proteins associated
with ECM and cellular receptors of several matrix proteins (31) to further promote
hepatocyte injury and death, as well as the deposition of ECM components in the liver
(32). In response to liver injury, quiescent HSCs undergo phenotypic alterations, en-

FIG 8 (A) Nodules on the liver surface could be clearly observed in the experimental group, and livers that were treated with different concentrations of CGA
exhibited reduced nodules. (B) S. japonicum cercaria at �400 magnification under a light microscope (used to infect mice by the abdominal-patch method).
(C) IL-13 levels in sera as determined by ELISA. (D) H&E staining at �200 magnification. (E) Sirius red staining at �400 magnification. (F) The effects of CGA on
CTGF expression were examined by immunohistochemistry. The optical densities in the images were analyzed with IPP software. After schistosome infection,
the rate of �-SMA positivity significantly increased in the experimental group compared with the control group (P � 0.01), and CGA treatment markedly
decreased the rate of �-SMA positivity compared with the experimental group (P � 0.05 or 0.01). *, P � 0.01 compared with the experimental group; **, P �
0.05 compared with the experimental group; #, P � 0.01 compared with the control group, as determined by Student’s t test.
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hancing cell proliferation and expression of �-SMA (33). Along with fibrogenic stimu-
lation, HSCs lose their retinoid stores and proliferate and express excess �-SMA.

MicroRNA-21 was the first miRNA molecule discovered and confirmed in mammals.
Experiments have shown that miR-21 has a significant impact on the formation and
development of tumors and cardiovascular diseases (34, 35). In different diseases,
miR-21 regulates signals differently. This study found that TGF-�, JAK, STAT, and other
molecules can induce miR-21 regulation signals in different diseases, and these mole-
cules are also related to hepatic fibrosis (36, 37). Whether miR-21 directly regulates the
occurrence and development of hepatic fibrosis of schistosomiasis in hepatic stellate
cells is worthy of further study. Therefore, we regulated miR-21 up or down by lentiviral
transfection and researched the specific regulatory mechanisms of CGA. The changes in

FIG 9 Effects of CGA on IL-13/miR-21/Smad7 interactions in schistosome-infected mice. The mRNA levels
were measured by real-time PCR. (A) mRNA levels of miR-21 and CTGF in the experimental group
increased, and the level of Smad7 decreased. (B) Protein levels were assayed by Western blotting. With
administration of CGA at different concentrations for 24 h, the expression levels of CTGF, p-Smad1,
p-Smad2, p-Smad2/3, TGF-� receptor I, and �-SMA were markedly increased, and the level of Smad7 was
decreased in the experimental group. The expression of p-Smad1, p-Smad2, p-Smad2/3, TGF-� receptor
I, CTGF, and �-SMA was effectively inhibited by CGA, and CGA could promote Smad7 expression
compared with the experimental group. Total Smad1, Smad2, and Smad2/3 showed no significant
changes. The data are shown as means and SEM of the results of three independent experiments, each
performed in duplicate. *, P � 0.01 compared with the experimental group; **, P � 0.05 compared with
the experimental group; #, P � 0.01 compared with the control group.
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miR-21 up- or downregulation will help to discover how CGA influences signaling
interactions through miR-21.

In our study, the levels of miR-21, p-Smad1, p-Smad2, p-Smad2/3, TGF-� receptor I,
CTGF, and �-SMA increased and Smad7 decreased significantly in the experimental
group, and there was no obvious change in Smad1 and Smad2 levels. Whether in
miR-21-upregulated or miR-21-downregulated LX2 cells, IL-13/miR-21/Smad7 signaling
interactions could be activated after stimulation by IL-13 in the experimental group.
After treatment with CGA in miR-21-up- or -downregulated LX2 cells, the IL-13/miR-21
signaling interactions for liver fibrosis were markedly inhibited. CGA could inhibit the
mRNA expression of miR-21 and promote Smad7 and inhibit CTGF mRNA expression.
Meanwhile, CGA could significantly reduce the protein levels of CTGF, p-Smad1,
p-Smad2, p-Smad2/3, TGF-� receptor I, and �-SMA and promote the Smad7 protein
level. Furthermore, in order to investigate the effect of CGA on IL-13/miR-21/Smad7
signaling interactions in schistosome-infected mice, we established an animal model of
schistosomiasis-induced liver fibrosis and then treatment with CGA. In the process of
creating a mouse model, in order to kill adult schistosomes, it is worth noting that we
used 5 days of praziquantel administration alone after 4 weeks of modeling. Lastly, the
mice of the experimental and control groups were administered normal saline, and
the mice in the CGA groups were administered different concentrations of CGA. The
numbers of eggs in the experimental and CGA groups were not significantly changed.
CGA could reduce the degree of liver fibrosis in pathological manifestation. The level of
IL-13 was increased in the experimental group, and CGA could significantly decrease
the serum IL-13 concentration. The results were the same in cellular and animal models,
where the IL-13/miR-21/Smad7 signaling interactions were activated in mice with
schistosomiasis hepatic fibrosis, and with treatment with CGA, liver fibrosis was mark-
edly inhibited by regulating IL-13/miR-21/Smad7 interactions (Fig. 10).

In summary, we investigated the efficacy of CGA in regulating IL-13/miR-21/Smad7
signaling interactions to suppress hepatic fibrosis in vivo and in vitro. Further studies on
the mechanism of CGA with regard to anti-liver fibrosis may help to find a new way to
prevent and treat schistosome-induced hepatic fibrosis.

MATERIALS AND METHODS
Chemicals and reagents. Chlorogenic acid (�95% titration) was purchased from Sigma-Aldrich

(Switzerland). RPMI 1640 medium, basic and with fetal bovine serum (FBS), was purchased from Gibco
(Grand Island, NY, USA). IL-13 was purchased from Peprotech (Rocky Hill, NJ, USA). CCK8 was purchased
from Dojindo Laboratories (Japan). Rabbit anti-mouse Smad7, CTGF, Smad1, p-Smad1, Smad2, p-Smad2,
Smad2/3, p-Smad2/3, TGF-� receptor I, and �-SMA antibodies were obtained from Cell Signaling
Technology (CST) (Boston, MA, USA). Biotin-conjugated goat anti-rabbit IgG and streptavidin-horseradish
peroxidase (HRP) conjugate were obtained from Wuhan Boster Biotechnology Co., Ltd. (Wuhan, China).
RNAiso Plus, the PrimeScript RT reagent kit, and the SYBR Premix Ex Taq kit were purchased from TaKaRa
(Dalian, China). The miR-21 and negative-control lentiviral vectors were constructed by GeneChem Co.,
Ltd. (Shanghai, China).

FIG 10 Diagram of CGA protection against schistosomiasis liver fibrosis in vivo and in vitro by regulating
IL-13/miR-21/Smad7 signaling interactions.
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Cell culture, cytokine and chemical treatment, and cytotoxic effect of CGA. RPMI 1640 medium
mixed with 10% FBS was used to culture LX2 cells in an incubator at 37°C, 5% CO2, and saturated
humidity (38, 39). Human recombinant IL-13 (rIL-13) was used for cellular-model establishment. The
intervention groups were divided into a control group, an IL-13 experimental group, and CGA (20-�g/ml,
40-�g/ml, and 80-�g/ml) groups. After the cells were passaged in 6-well plates (for real-time PCR and
Western blotting) or 96-well plates (for CCK8 experiments and preliminary lentiviral transfection exper-
iments) for 24 h and cultured to 70% density, the supernatants were removed and CGA was diluted in
RPMI 1640 medium to concentrations of 20 �g/ml, 40 �g/ml, and 80 �g/ml for interfering with the cells,
excluding the control and IL-13 experimental groups. In the final 6 h, IL-13 (50 ng/ml) was added to the
wells for modeling, except for the control group. After 24 h, the supernatants and cells were harvested.
Cells stimulated with IL-13 without any intervention were observed as the IL-13 experimental group,
whereas cells incubated in RPMI 1640 medium alone served as the control group. The cytotoxic effect of
CGA was evaluated by CCK8 assay.

Knockdown and overexpression of miR-21. For knockdown, the sequence of hsa-miR-21-3p
inhibition (vector no. 16129-1) was 5=-TCGAGAAAAAACAGCCCATCGACTGGTGTTGTTTTTC-3=, and the
reference sequence was 5=-TTCTCCGAACGTGTCACGT-3=. GV369 –miR-21/NC– enhanced green fluores-
cent protein (EGFP) was transfected into the 293 T cell line, and the viral supernatant was harvested after
48 h (5 � 108 transducing units [TU]/ml). For overexpression, GV273–miR-21/NC–EGFP was transfected
into the 293 T cell line, and the viral supernatant was harvested after 48 h (3 � 108 TU/ml). LX2 cells were
seeded onto 24- or 12-well plates and transfected with lentivirus at a multiplicity of infection (MOI) of 10
according to the manufacturer’s instructions. The medium was replaced 12 h later, and the cells were
grown for an additional time up to 72 h. Knockdown or overexpression of miR-21 was confirmed by
real-time PCR analysis.

Animal groups. Fifty male BALB/c mice weighing 18 to 22 g were purchased from the Hubei
Provincial Center for Disease Control and Prevention (Wuhan, China). The mice were maintained as we
described previously (40). All study protocols were in accordance with internationally accepted principles
and the Guidelines for the Care and Use of Laboratory Animals of Huazhong University of Science and
Technology, Wuhan, People’s Republic of China. The animal experiment number was SCXK(HUBEI)
2015-0018. The study was reviewed and approved by the Research Ethics Committee of Tongji Medical
College, Huazhong University of Science and Technology (IORG no. IORG0003571). The mice were
divided into 5 equal groups: CGA low concentration (5 mg/kg of body weight), CGA medium concen-
tration (10 mg/kg), CGA high concentration (20 mg/kg), experimental, and control groups. All groups
except the control group were infected with 25 � 5 Schistosoma japonicum cercaria (Fig. 8B) by the
abdominal-patch method (41). At the end of 4 weeks of infection, the mice in the experimental and CGA
groups were administered praziquantel (500 mg/kg) for 5 days, while in the control group, normal saline
was used instead of praziquantel. Then, the mice in the experimental and control groups were
administered normal saline and the mice in the three CGA groups were administered CGA at 5 mg/kg,
10 mg/kg, or 20 mg/kg for 4 weeks.

Specimen collection and liver histological studies. After administration, the mice in each group
were euthanized to collect specimens. The procedure matched that of our past experiment (42, 43). The
procedures of the H&E and Sirius red staining assays followed the previously described steps (44, 45). A
fresh liver specimen was fixed in 10% neutral buffered formalin for 3 days and then embedded in paraffin
for histological examinations. Sections (5 �m) were cut with a Leica SM2010 R sliding microtome
(Shanghai, China) and stained with H&E or Sirius red to assess liver damage and fibrosis development.
The paraffin-embedded tissues were cut into 4-�m slices and deparaffinated in dimethylbenzene for 5
to 10 min. Then, the tissues were put into 100%, 95%, 85%, and 70% alcohol for 2 to 5 min in turn and
finally washed with distilled water and immersed in the staining solution. After hematoxylin staining for
5 to 15 min, the excess stain solution on the slides was washed off, and color separation with 0.5 to 1%
hydrochloride alcohol (made from 75% alcohol) was performed for about 10 s. Following washing with
running water for 15 to 30 min, the tissues were stained with 0.1 to 0.5% eosin for 1 to 5 min. Prior to
being hyalinized with dimethylbenzene twice for about 10 min in total, the tissues were dehydrated with
75%, 85%, 95%, and 100% alcohol for 2 to 3 min in turn. Finally, a few drops of neutral gum were added
to the coverslip and covered by a slide. Histological changes were evaluated by analyzing five noncon-
secutive and random histological fields at �400 magnification.

ELISA to measure IL-13 in serum. The enzyme-linked immunosorbent assay (ELISA) procedure was
based on our past experiments (46, 47). The IL-13 produced by mice was determined by sandwich ELISA.
Sera were assayed with IL-13 ELISA kits. The procedure was in accordance with the instruction manuals
of the respective kits.

Quantitative real-time PCR to detect mRNA expression. The PCR procedure followed the previ-
ously published steps (48). Total RNA in BV2 cells was isolated by using RNAiso Plus according to the
manufacturer’s protocol. The cDNAs were produced with a PrimeScript RT reagent kit and incubated at
37°C for 15 min and 85°C for 5 s. Real-time PCRs were performed using a StepOne Plus device (Applied
Biosystems) at 95°C for 10 s, followed by 40 cycles of 95°C for 5 s and 60°C for 20 s, according to the
instructions for the SYBR Premix Ex Taq kit. The data were analyzed by the 2�ΔΔCT method (49). All the
primers were synthesized by GenScript (Nanjing, China), and the sequences are shown in Table 1.

Western blotting for protein expression measurement. The Western blotting procedure followed
the previously published steps (50). Western blots were carried out using whole-cell extracts separated
on SDS-PAGE gels and then transferred onto a nitrocellulose filter membrane. The membranes were
blocked overnight with 5% nonfat milk in phosphate-buffered saline (PBS) and probed with the indicated
antibody (Ab) before being washed three times in Tris-buffered saline with Tween 20 (TBST) and then
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incubated with an HRP-labeled secondary Ab. The dilutions of the primary and secondary antibodies
were as follows: Smad7, 1:800; CTGF, 1:1,000; Smad1, 1:1,000; p-Smad1, 1:1,000; Smad2, 1:1,000; Smad2/3,
1:1,000; p-Smad2/3, 1:1,000; TGF-� receptor I, 1:500; �-SMA, 1:1,000; and GAPDH (glyceraldehyde-3-
phosphate dehydrogenase), 1:5,000. After further washing with TBST, enhanced chemiluminescence
(ECL) was used to identify immunoreactive bands. Densitometry analysis of the immunoreactive bands
was performed using the Fuji ultrasonic-Doppler velocity profile (UVP) system and the ImageJ program.

IHC to detect �-SMA expression in liver tissue. The IHC procedure followed that of our previous
experiment (51). The liver tissue specimens were cut into 10-�m sections after dewaxing and hydrating.
The sections were incubated in 3% H2O2-methanol to eliminate endogenous peroxidase activity. Then,
the sections were incubated with normal goat serum for 10 min and incubated with �-SMA antibody
(1:400) overnight at 4°C and biotinylation secondary antibody at 37°C for 45 min. They were rinsed again
with PBS and incubated with horseradish peroxidase-labeled streptavidin at 37°C. The samples were
developed with diaminobenzidine (DAB) and stained with hematoxylin. After being rinsed with distilled
water and dehydrated, the sections were made transparent and mounted for microscope examination.
After the immunohistochemical analysis, Image-Pro Plus 6.0 (IPP) software was used to analyze the
optical density of the images, as described previously.

Statistical analysis. All statistical analyses were performed with SPSS 12.0. The results were ex-
pressed as means and standard errors of the mean (SEM). Comparisons of the measurement data
between groups were performed with Student’s t test and one-way analysis of variance (ANOVA). A P
value of �0.05 was considered statistically significant (52).
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