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Abstract

Functional magnetic resonance imaging (fMRI) provides a non-invasive way to investigate brain 

activity. Recently, convergent evidence shows that the correlations of spontaneous fluctuations 

between two distinct brain regions dynamically change even in resting state, due to the condition-

dependent nature of brain activity. Thus, quantifying the patterns of functional connectivity (FC) 

in a short time period and changes of FC over time can potentially provide valuable insight into 

both individual-based diagnosis and group comparison. In light of this, we propose a novel 

computational method to robustly estimate both static and dynamic spatial-temporal connectivity 

patterns from the observed noisy signals of individual subject. We achieve this goal in two folds: 

(1) Construct static functional connectivity across brain regions. Due to low signal-to-noise ratio 

induced by possible non-neural noise, the estimated FC strength is very sensitive and it is hard to 

define a good threshold to distinguish between real and spurious connections. To alleviate this 

issue, we propose to optimize FC which is in consensus with not only the low level region-to-

region signal correlations but also the similarity of high level principal connection patterns learned 

from the estimated link-to-link connections. Since brain network is intrinsically sparse, we also 

encourage sparsity during FC optimization. (2) Characterize dynamic functional connectivity 
along time. It is hard to synchronize the estimated dynamic FC patterns and the real cognitive state 

changes, even using learning-based methods. To address these limitations, we further extend above 

FC optimization method into the spatial-temporal domain by arranging the FC estimations along a 

set of overlapped sliding windows into a tensor structure as the window slides. Then we employ 

low rank constraint in the temporal domain assuming there are likely a small number of discrete 

states that the brain transverses during a short period of time. We applied the learned spatial-

temporal patterns from fMRI images to identify autism subjects. Promising classification results 

have been achieved, suggesting high discrimination power and great potentials in computer 

assisted diagnosis.
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1 Introduction

In general, resting-state functional connectivity is a set of pair-wise connectivity 

measurements, each of which describes the strength of co-activity between two regions in 

human brain. In many group comparison studies, FC obtained from resting-state fMRI 

shows observable abnormal patterns in patient cohort to understand different disease 

mechanisms. In clinical practice, FC is regarded as an important biomarker for disease 

diagnosis and monitoring in various clinical applications such as Alzheimer’s disease [1] 

and Autism [2].

In current functional brain network studies, Pearson’s correlation on BOLD (Blood Oxygen 

Level Dependent) signals is widely used to measure the strength of FC between two brain 

regions [2, 3]. It is worth noting that such correlation based connectivity measure is 

exclusively calculated based on the observed BOLD signals and fixed for the subsequent 

data analysis. However, the BOLD signal usually has very poor signal-to-noise ratio and is 

mixed with substantial non-neural noise and artefacts. Therefore, it is hard for current state-

of-the-art methods to determine a good threshold of FC measure which can effectively 

distinguish real and spurious connections.

For simplicity, many FC characterization methods assume that connectivity patterns in the 

brain do not change over the course of a resting-state fMRI scan. There is a growing 

consensus in the neuroimaging field, however, that the spontaneous fluctuations and 

correlations of signals between two distinct brain regions change with correspondence to 

cognitive states, even in a task-free environment [4]. Thus, dynamic FC patterns have been 

investigated recently by mainly using sliding window technique [4, 11–13]. However, it is 

very difficult to synchronize the estimated dynamic patterns with the real fluctuations of 

cognitive state, even using advanced machine learning techniques such as clustering [5] and 

hidden Markov model [6]. For example, both methods have to determine the number of 

states (clusters) which might work well on the training data but have the potential issue of 

generality to the unseen testing subjects.

To address above issues, we propose a novel data-driven solution to reveal the consistent 

spatial-temporal FC patterns from resting-state fMRI image. Our work has two folds. First, 
we present a robust learning-based method to optimize FC from the BOLD signals in a fixed 

sliding window. In order to avoid the unreliable calculation of FC based on signal 

correlations, high level feature representation is of necessity to guide the optimization of FC. 

Specifically, we apply singular value decomposition (SVD) to the tentatively estimated FC 

matrix and regard the top ranked eigenvectors are as the high level network features which 

characterize the principal connection patterns across all brain regions. Thus, we can optimize 

functional connections for each brain region based on not only the observed region-to-region 

signal correlations but also the similarity between high level principal connection patterns. 

In turn, the refined FC can lead to more reasonable estimation of principal connection 

patterns. Since brain network is intrinsically economic and sparse, sparsity constraint is used 

to control the number of connections during the joint estimation of principal connection 

patterns and the optimization of FC. Second, we further extend the above FC optimization 

framework from one sliding window (capturing the static FC patterns) to a set of overlapped 
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sliding windows (capturing the dynamic FC patterns), as shown in the middle of Fig. 1. The 

leverage is that we arrange the FCs along time into a tensor structure (pink cubic in Fig. 1) 

and we employ additional low rank constraint to penalize the oscillatory changes of FC in 

the temporal domain.

In this paper, we apply our learning-based method to find the spatial-temporal functional 

connectivity patterns for identifying childhood autism spectrum disorders (ASD). Compared 

with conventional approaches which simply calculate FC based on signal correlations, more 

accurate classification results have been achieved in classifying normal control (NC) and 

ASD subjects by using our learned spatial-temporal FC patterns.

2 Method

2.1 Construct Robust Functional Connectivity

Let xi ∈ ℜW×1 denote the mean BOLD signal calculated in brain region Oi (i = 1, …, N), 

where W is the length of time course within the sliding window. Conventionally, a N × N 
connectivity matrix S is used to measure the FCs in the whole brain, where each element sij 

quantitatively measure the strength of FC between region Oi and Oi (i ≠ j). For convenience, 

we use si ∈ ℜN×1 denote i-th column in connectivity matrix S, which characters the 

connections w.r.t. other brain regions. Since the signal-to-noise ratio of observed xi is low, 

high level feature is of necessity to guide the estimation of connectivity matrix S. To achieve 

it, we apply singular value decomposition to S and regard the top ranked eigenvectors matrix 

FK×N =[fi]i=1,…,N as the high level network features, where each fi ∈ ℜK×1 denotes the 

principal connection pattern on region Oi. Thus, instead of calculating the connectivity sij 

based on correlation c(xi, xj) between observed BOLD signals xi and xj, we require the 

optimal connectivity sij should (1) be in consensus with the correlation of low level signals 

between xi and xj; and (2) be in line with similarity of high level principal connection 

patterns between fi and fj. To that end, the objective function is defined as:

(1)

where r1 is the scalar controlling the strength of connection sparsity for each connection 

pattern si. In order for robustness, L2 norm is applied to si. Since the estimation of sij and fi 

are coupled, we propose the following solution to alternative solve sij and fi:

1. Initialize connectivity matrix by letting sij = c(xi, xj);

2. Given S, obtain the principal connection pattern fi for each region Oi by applying 

eigenvalue decomposition to S since S is symmetric. After that, we select the top 

K eigenevectors.

3. Fixing fi, we divide the estimation of sij in Eq. (1) into two sub-tasks: (a) 

Estimate sij without the sparsity constraint. Since the objective function without 

the L1 norm can be reformulated into a quadratic form, we can use Karush Kuhn 

Tucker (KKT) [7] algorithm to optimize sij. (b) Make the connection pattern si 
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sparse. The objective function requires the optimized connection pattern si not 

only sparse but also close to the solution in step 3(a) Standard Alternating 

Direction Method of Multipliers (ADMM) [7, 8, 14] can be used to solve this 

sub-task.

4. Go to step 2 until converge.

Typical optimized connectivity matrix Ŝ is shown in the pink cubic in Fig. 1. Compared to 

the connectivity matrix by conventional method based on the signal correlation, our learned 

connectivity matrix is much sparser and it becomes much easier to construct the brain 

network since a lot of spurious connections have been removed by using the sparsity 

constraint during optimization.

2.2 Characterize Dynamic Functional Connectivity

Next, we extend our learning based FC estimation method to address the problem of 

dynamic connectivity in fMRI data. Here, we follow the sliding window technique to obtain 

T overlapped sliding windows which cover the whole time course. Since we can optimize 

the connectivity matrix St for each sliding window, we employ a tensor  = {St|t=1, …, T} ∈ 
ℜN×N×T to describe the dynamic connectivity. Similarly, we construct tensor ℂ = {Ct|t = 1, 

…, T} ∈ ℜN×N×T regarding the dynamic correlation of BOLD signals and tensor  = {Ft|t = 

1, …, T} ∈ ℜN×N×T regarding the dynamic similarity of principal connection patterns, 

where  and  are the N × 

N matrices in t-th sliding window. Then, we extend the objective function in Eq. (1) to the 

spatial-temporal domain using tensor analysis:

(2)

where  and . We use (k) denote the unfolding 

operation to a general tensor  along the k-th mode. In our method, we have (1) ∈ ℜN2×T 

and (2) ∈ ℜNT×N. Since brain in resting state generally transverses a small number of 

discrete stages during a short period of time [4], we require the change of connectivity 

matrix St to be smooth along time. Thus, it is reasonable to apply low rank constraint on (1) 

such that the minimization of || (1)||* (nuclear norm of (1)) can suppress too rapid FC 

change in the temporal domain. L1-norm is applied to (2) since the brain network within 

each sliding window is sparse.

Optimization—In order to make the optimization of Eq. (2) tractable, we introduce two 

dummy variables Z1 and Z2 so that we can solve this problem using ADMM [7, 8]:

(3)
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Using Lagrangian multipliers, we can remove the equality constraints in Eq. (3) and 

reformulate Eq. (3) into:

(4)

where Λ1 and Λ2 are the N2 × T Largrangian multiplier matrix, and μ1 and μ2 are the penalty 

parameters. Furthermore, we solve Eq. (4) by alternatively optimize , Z1 and Z2 until Eq. 

(4) converges. The dynamic connectivity matrices St can be optimized by following the 

Karush Kuhn Tunker (KKT) method in [9]. Standard soft threshold shrinkage method [7] 

can be used to solve Z1 and Z2.

2.3 Identifying ASD Subject with the Learned Static/Dynamic FC Patterns

Conventional method first calculate the connectivity matrix S within certain window and 

then extract N dimension node-wise features which describe the connectivity efficiency at 

each ROI (Region of Interest) [10]. After that, classic SVM (linear kernel and L2 penalty, 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/) is trained to identify individual ASD subjects. 

We follow the same approach except we extract the node-wise features from our learned 

static/dynamic connectivity matrices.

3 Experiment

Image Preprocessing—We conducted various experiments on resting-state fMRI images 

from both NYU and UM sites in Autism Brain Imaging Data Exchange (ABIDE) database, 

in order to demonstrate the generality of our method. Specifically, 45 NC and 45 ASD 

subjects are selected from the NYU site. 74 NC and 57 ASD subjects are selected from UM 

site. The subjects from NYU site and UM site were scanned for six and ten minutes during 

resting state, respectively, producing 180 time points and 300 time points at a repetition time 

(TR) of 2 s. We processed all these data using Data Processing Assistant for Resting-State 

fMRI (DPARSF) software. Specifically, we remove the first 20 time points and last 20 time 

points for robustness. After that, we corrected the fMRI images by slice timing and motion 

correction. Then, we register individual subjects to the standard space, apply the AAL 

template with 116 ROIs to the subject image domain and compute the mean BOLD signal in 

each ROI, where conventional method calculate the 116 × 116 connectivity matrix S based 

on the correlation of mean BOLD signals between any pair of two distinct brain regions.

Experiment Setup—Ten-fold cross validation strategy is used in our experiments. We 

randomly partition the subjects in the NC and ASD groups into 10 non-overlapping 

approximately equal size sets. At each subject, we apply our learning-based method to 

optimize the static/dynamic functional connectivity matrices and extract the node-wise 

network features. Then, we use one fold for testing and the remaining folds are used for 

training the SVM. The training subjects are further divided into 5 subsets for another 5-fold 

inner cross validation to learn the optimal parameters. The optimal principle component 

range is [6, 8] and it take average 10 s to run one subject.
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Evaluation of Learned Static/Dynamic FC Patterns in NC/ASD Classification—
We first manually set up the sliding window size which ranges from 20 % to 100 % of the 

entire time course. In optimizing the dynamic FC pattern, we set the shift of sliding window 

to 1 TR, in order to fully capture the dynamics of FC. The NC/ASD classification results on 

UM and NYU dataset are shown in Tables 1 and 2, respectively. In these two tables, ACC 

represents accuracy and AUC represent the area under an ROC curve. It is clear that SVM 

using the learned dynamic FC patterns outperforms the conventional correlation based FC 

patterns and the learned static FC patterns, where using the learned dynamic FC patterns can 

achieve almost 8 % increase over the correlation-based FC patterns and almost 3 % increase 

over using the learned static FC patterns.

Visualization of Dynamic Function Connectivity Patterns—The learned dynamic 

functional connectivity matrices {St} for one ASD subject (in blue box) and one NC subject 

(in red box) are displayed in the top of Fig. 2. For comparison, we also show the 

corresponding connectivity matrices independently calculated based on the correlation of 

BOLD signals in the bottom of Fig. 2. It is apparent that our learned dynamic connectivity 

matrices are much sparser than the counterpart matrices using conventional method. Thus, it 

becomes much easier to construct functional brain network using threshold based approach. 

In order to evaluate the dynamic functional transit, we visualize the ROIs connected to 

Amygdala along time by examining the estimated connectivity matrices since Amygdala is a 

critical sub-cortical structure related to Autism. As the red masks shown in Fig. 2, the 

transitions of ROIs connected to Amygdala revealed by our learned dynamic FC patterns are 

much more consistent than those by conventional correlation based FC patterns, where the 

transit of connected ROIs is unrealistically fast and random. Specifically, we transpose the 

connection vector si (i denotes the index for Amygdala here) into column vector and 

sequentially arrange them into a matrix and visualize the transition of si along time in the 

right of Fig. 1. From the trajectory of each element in si, it is clear that the dynamic FC 

optimized by our leaning-based method is more reasonable than the conventional method.

Validation of FC Pattern—We also checked the learned fc pattern and found that the 

connection pattern for vision function regions, such as Lingual gyrus, Cuneus, 
Parahippocampalgyrus, and for motion function such as Putamen, Globus Pallidus are 

consistently stable for all subjects. We also found that the learned fc pattern is similar as 

correlation fc pattern, however, the change is much smoother along time which is consistent 

with current neuroscience findings.

4 Conclusion

In this work, we propose a novel learning-based method to discover both static and dynamic 

connectivity patterns from resting-state fMRI data. For static FC estimation, our method 

optimizes the functional connectivity based on not only the correlation of low level BOLD 

signals but also the similarity of high level principal components from the link-to-link 

connectivity patterns. To address the problem of dynamic functional connectivity, we 

arrange connectivity matrices along time into a tensor structure and apply sparsity to 

suppress spurious functional connectivities and low rank to avoid unrealistic fast state 

transition along time. We use our method to obtain dynamic connectivity patterns and apply 
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them to identify ASD subject at individual level, where classification method using our 

learned dynamic connectivity patterns can improve the ASD identification accuracy with 

almost 8 % increase conventional correlation-based framework.
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Fig. 1. 
The advantage of our learning-based spatial-temporal FC optimization method (bottom) over 

the conventional method (top) which calculate the FC based on signal correlations. As the 

trajectory of FC at Amygdala shown in the right, the dynamic FC optimized by our learning-

based method is more reasonable than the conventional correlation-based method.
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Fig. 2. 
Visualization of dynamic functional connectivity matrices by our learning-based method 

(top) and conventional correlation based method for an ASD subject (a) and a NC subject 

(b).
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	Image Preprocessing—We conducted various experiments on resting-state fMRI images from both NYU and UM sites in Autism Brain Imaging Data Exchange (ABIDE) database, in order to demonstrate the generality of our method. Specifically, 45 NC and 45 ASD subjects are selected from the NYU site. 74 NC and 57 ASD subjects are selected from UM site. The subjects from NYU site and UM site were scanned for six and ten minutes during resting state, respectively, producing 180 time points and 300 time points at a repetition time (TR) of 2 s. We processed all these data using Data Processing Assistant for Resting-State fMRI (DPARSF) software. Specifically, we remove the first 20 time points and last 20 time points for robustness. After that, we corrected the fMRI images by slice timing and motion correction. Then, we register individual subjects to the standard space, apply the AAL template with 116 ROIs to the subject image domain and compute the mean BOLD signal in each ROI, where conventional method calculate the 116 × 116 connectivity matrix S based on the correlation of mean BOLD signals between any pair of two distinct brain regions.Experiment Setup—Ten-fold cross validation strategy is used in our experiments. We randomly partition the subjects in the NC and ASD groups into 10 non-overlapping approximately equal size sets. At each subject, we apply our learning-based method to optimize the static/dynamic functional connectivity matrices and extract the node-wise network features. Then, we use one fold for testing and the remaining folds are used for training the SVM. The training subjects are further divided into 5 subsets for another 5-fold inner cross validation to learn the optimal parameters. The optimal principle component range is [6, 8] and it take average 10 s to run one subject.Evaluation of Learned Static/Dynamic FC Patterns in NC/ASD Classification—We first manually set up the sliding window size which ranges from 20 % to 100 % of the entire time course. In optimizing the dynamic FC pattern, we set the shift of sliding window to 1 TR, in order to fully capture the dynamics of FC. The NC/ASD classification results on UM and NYU dataset are shown in Tables 1 and 2, respectively. In these two tables, ACC represents accuracy and AUC represent the area under an ROC curve. It is clear that SVM using the learned dynamic FC patterns outperforms the conventional correlation based FC patterns and the learned static FC patterns, where using the learned dynamic FC patterns can achieve almost 8 % increase over the correlation-based FC patterns and almost 3 % increase over using the learned static FC patterns.Visualization of Dynamic Function Connectivity Patterns—The learned dynamic functional connectivity matrices {St} for one ASD subject (in blue box) and one NC subject (in red box) are displayed in the top of Fig. 2. For comparison, we also show the corresponding connectivity matrices independently calculated based on the correlation of BOLD signals in the bottom of Fig. 2. It is apparent that our learned dynamic connectivity matrices are much sparser than the counterpart matrices using conventional method. Thus, it becomes much easier to construct functional brain network using threshold based approach. In order to evaluate the dynamic functional transit, we visualize the ROIs connected to Amygdala along time by examining the estimated connectivity matrices since Amygdala is a critical sub-cortical structure related to Autism. As the red masks shown in Fig. 2, the transitions of ROIs connected to Amygdala revealed by our learned dynamic FC patterns are much more consistent than those by conventional correlation based FC patterns, where the transit of connected ROIs is unrealistically fast and random. Specifically, we transpose the connection vector si (i denotes the index for Amygdala here) into column vector and sequentially arrange them into a matrix and visualize the transition of si along time in the right of Fig. 1. From the trajectory of each element in si, it is clear that the dynamic FC optimized by our leaning-based method is more reasonable than the conventional method.Validation of FC Pattern—We also checked the learned fc pattern and found that the connection pattern for vision function regions, such as Lingual gyrus, Cuneus, Parahippocampalgyrus, and for motion function such as Putamen, Globus Pallidus are consistently stable for all subjects. We also found that the learned fc pattern is similar as correlation fc pattern, however, the change is much smoother along time which is consistent with current neuroscience findings.
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