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Abstract

We develop a transport formula for predicting overall cumulative vaccine efficacy through time t 
(VE(t)) to prevent clinically significant infection with a genetically diverse pathogen (e.g., HIV 

infection) in a new setting for which a Phase III preventive vaccine efficacy trial that would 

directly estimate VE(t) has not yet been conducted. The formula integrates data from (1) a 

previous Phase III trial, (2) a Phase I/II immune response biomarker endpoint trial in the new 

setting where a follow-up Phase III trial is planned, (3) epidemiological data on background HIV 

infection incidence in the new setting; and (4) genomic epidemiological data on HIV sequence 

distributions in the previous and new settings. For (1), the randomized vaccine versus placebo 

Phase III trial yields estimates of vaccine efficacy to prevent particular genotypes of HIV in 

participant subgroups defined by baseline covariates X and immune responses to vaccination S(1) 

measured at a fixed time point τ (potential outcomes if assigned vaccine); often one or more 

immune responses to vaccination are available that modify genotype-specific vaccine efficacy. The 

formula focuses on subgroups defined by X and S(1) and being at-risk for HIV infection at τ 
under both the vaccine and placebo treatment assignments. For (2), the Phase I/II trial tests the 

same vaccine in a new setting, or a refined new vaccine in the same or new setting, and measures 

the same baseline covariates and immune responses as the original Phase III trial. For (3), 

epidemiological data in the new setting are used to project overall background HIV infection rates 

in the baseline covariate subgroups in the planned Phase III trial, hence re-calibrating for HIV 

incidence differences in the two settings; whereas for (4), data bases of HIV sequences measured 

from HIV infected individuals are used to re-calibrate for differences in the distributions of the 

circulating HIV genotypes in the two settings.

The transport formula incorporates a user-specified bridging assumption function that measures 

differences in HIV genotype-specific conditional biological-susceptibility vaccine efficacies in the 

two settings, facilitating a sensitivity analysis. We illustrate the transport formula with application 

to HIV Vaccine Trials Network (HVTN) research. One application of the transport formula is to 

use predicted VE(t) as a rational criterion for ranking a set of candidate vaccines being studied in 

Phase I/II trials for their priority for down-selection into the follow-up Phase III trial.
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1. Introduction

Ideally, decisions on licensure and deployment of a vaccine for various settings would be 

based on direct data on efficacy to prevent a clinical endpoint from Phase III trials in each 

and every setting. However, there are a vast number of different settings, defined by (1) 

features of the vaccine regimen such as schedule, dose, adjuvant, delivery vector, 

combination of components, and vaccine strains; (2) features of study participants such as 

demographics, genetics, and exposure to the pathogen under study; and (3) features of the 

pathogen such as genotype, serotype, or other phenotypes. Because resource and ethical 

constraints prohibit this fully direct approach, regulatory agencies allow decisions to be 

based on immune response data in a new setting (without direct efficacy data) provided that 

the selected immune response biomarkers are credibly valid immune correlates of protection 

(FDA Guidance Document, 2007), i.e., are approximately valid surrogate endpoints that can 

be used to reliably predict the level of vaccine efficacy against the clinical endpoint (Plotkin 

and Gilbert, 2012). Despite the ubiquity of this application and its critical importance, there 

do not appear to be published formal statistical formulas that aide such predictions (albeit 

formulas from other work could certainly be extended to this application). We provide such 

a bridging transport formula, which lays out the specific component terms that need to be 

correctly specified or estimated to obtain an accurate prediction, and exposit the several 

assumptions that are needed, highlighting the difficult challenges posed to succeeding in this 

objective without collecting the direct efficacy data. We also show how to quantify 

uncertainty in the prediction, and provide a framework of sensitivity analysis to violation of 

key assumptions. We develop the formula supposing two experiments, the original Phase III 

efficacy trial (or series of similar trials) that is used to estimate how type-specific vaccine 

efficacy varies across participant subgroups defined by baseline covariates and immune 

responses to vaccination, and a subsequent Phase I/II trial in the new setting that measures 

the same baseline covariates and immune responses. The formula also inputs 

epidemiological data on background disease incidence in the new setting and genomic 

epidemiological data on the distributions of pathogen types in the two settings.

Literature for methods tackling a similar objective include Cole and Stuart (2010) and Pearl 

and Bareinboim’s (2011) transport formula, the latter of which uses causal selection 

diagrams to formally encode knowledge of how the original and new settings differ. We use 

an alternative approach that encodes the bridging assumptions using the principal 

stratification framework (Frangakis and Rubin, 2002), which entails expressing how 

pathogen type-specific vaccine efficacy (VE) in subgroups defined by baseline covariates 

and immune responses to vaccination differs between the original and new settings. 

Moreover, our formula addresses three major issues not addressed in most previous work: 

(1) time-varying VE; (2) mark-varying VE (the “mark” is a genotypic or phenotypic feature 

of the infecting pathogen that is only measured in clinical endpoint cases); and (3) the fact 
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that some clinical endpoints occur before the immune responses are measured. In our 

motivating application of preventive HIV vaccines, all three new issues are important, as VE 
typically varies over time [e.g., Durham et al. (1998) and Robb et al. (2012)] and varies 

against different HIV-1 genotypes [e.g., Gilbert, McKeague, and Sun (2008) and Rolland et 

al. (2012)], and a sizable fraction of HIV infection events (e.g., about 30% in Hammer et al., 

2013) occur before the primary time point for measuring immune responses. Therefore, the 

proposed transport formula accounts for all five issues of baseline covariate re-calibration, 

post-randomization intermediate endpoint re-calibration, time-varying vaccine efficacy, 

mark-varying vaccine efficacy, and early clinical events.

Section 2 describes the randomized trial designs, notation, and parameters of interest. 

Section 3 provides the transport formula, and Section 4 describes procedures for estimating 

the terms in the formula and for obtaining uncertainty assessment. Section 5 applies the 

formula to the HIV example with expanded details relegated to the Supplementary 

Materials. Section 6 concludes with discussion. Supplementary Materials A discusses how 

our transport formula can be altered to swap principal stratification treatment effects for 

controlled effects (Robins and Greenland, 1992; Pearl, 2001). It is also of interest to 

compare our transport formula to those of Pearl and Bareinboim (2011) and their subsequent 

work; we describe a few connections in Section 3.3.

2. Trial Design, Notation, Vaccine Efficacy Parameters

2.1. Set-Up of the Randomized Phase III Trial for Assessing Vaccine Efficacy

We consider a double-blind clinical trial that randomizes n participants to vaccine or 

placebo, with Z the indicator of assignment to vaccine. Participants are followed for 

occurrence of the primary clinical study endpoint, clinically significant pathogen infection 

(Clements-Mann, 1998), with maximum follow-up τ1, and T is the time from randomization 

until the clinical endpoint. Let S be immune response biomarkers (that are potentially 

modifiers of vaccine efficacy) measured at fixed time τ < τ1 post-randomization in vaccine 

recipients. Because S is expensive to measure, a case-cohort or case-control sampling design 

is used; let R be the indicator that S is measured. Let X be baseline covariates. Let C be the 

time from randomization until right-censoring, with Y ≡ min(T, C) and Δ ≡ I(Y = T). Let V 
be a “mark” variable measuring features of the infecting pathogen for disease endpoint 

cases; T and V are only observed if Δ = 1 (Juraska and Gilbert, 2013). In the sixties, D.R. 

Cox introduced the terminology “mark” to refer to any information collected from failure 

cases, which is not observable or meaningful until failure occurs (e.g., the sequence of an 

HIV infecting a person is only observable and relevant once HIV infection occurs). With key 

paper Prentice et al. (1978), many statistical methods in the competing risks failure time 

literature have focused on a discrete mark variable, where the different levels of the mark are 

the competing risks. A mark is conceptually distinct from a covariate–covariate levels define 

subgroups who are followed for occurrence of the outcome whereas mark levels define types 

of the outcome; thus vaccine efficacy parameters of interest condition on covariates but not 

on marks.

Let W(z) ≡ (R(z), R(z)S(z), T(z), C(z), Δ(z), V(z)) be the potential outcomes if assigned 

treatment z, for z = 0, 1, where S(z) is defined if and only if T(z) > τ. The observed data are 
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O ≡ (Z, X, R, ZRS, Y, Δ, ΔV). We make the typical assumptions for randomized clinical 

trials of SUTVA (no-interference between units and only one version of treatment) (Rubin, 

1978), ignorable treatment assignment (Z ⊥ W(1), W(0)), random censoring (C(z) ⊥ R(z), 

R(z)S(z), T(z), V(z)) for z = 0, 1, whether S is observed depends only on the observed data 

O (missing at random), and W1, ···, Wn and O1, ···, On are independent copies of W and O, 

respectively.

2.2. Vaccine Efficacy Curve Parameters for Enabling Bridging

In general, principal stratification analysis assesses treatment effects in “principal strata 

subgroups” defined by joint potential outcomes under each treatment assignment (Frangakis 

and Rubin, 2002). For our problem, we first define principal strata by early failure status 

I(T(z) > τ), and secondly intersect S(1) with these principal strata to form a finer 

stratification that delineates the subgroups for inference. Four principal strata subgroups are 

defined by the cross-classification of I(T(1) > τ) and I(T(0) > τ):

Gilbert and Hudgens (2008) and sequel articles including Gabriel and Gilbert (2014) 

developed methods for estimating the “VE surface,” which contrasts risks of the clinical 

endpoint over time under the two treatment assignments in principal strata defined by the 

immune response (S(1), S(0)) in the EAS stratum, the only one of the four in which both 

S(1) and S(0) are defined:

(1)

for z = 0, 1. The closely related marginal VE curve contrasts the treatment-specific clinical 

risks averaged over the distribution of S(0),

where the principal strata of interest are defined by {T(1) > τ, T(0) > τ, S(1) = s1}.

A transport formula could be developed based on riskz(·|s1, s0) or on mriskz(·|s1). We restrict 

attention to the latter marginal risks, with the corresponding conditional cumulative vaccine 

efficacy defined as

We focus on the marginal risks because they are easier to estimate than the risks, given the 

lower dimensionality of the principal strata, and because there are many applications 
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amenable to working with the marginal risks. In particular, one major application area has 

S(0) constant (the “Constant Biomarker” scenario), including for our HIV vaccine example 

where S(0) is zero in all placebo recipients (Gilbert and Hudgens, 2008). For this application 

area riskz(·|s1, s0) = mriskz(·|s1), such that the analysis is identical using risks or marginal 

risks. In scenarios where S(0) is not constant, the other major application area where the 

marginal risks approach works is if one can assume that S(0) does not modify vaccine 

efficacy after accounting for S(1) and X. While this is typically a strong assumption 

warranting caution, there may be applications where the assumption is plausible, for 

example if X includes a measurement of S at baseline, such that S(0) is a repeated measure 

of the same variable measured at baseline (Gabriel and Gilbert, 2014).

We similarly define the mark-specific VE curve, VE(t, v|s1) ≡ 1 − mrisk1(t, v|s1)/mrisk0(t, v|

s1), where

for z = 0, 1. The parameters may also condition on X: VE(t, v|s1, x) = 1 − mrisk1(t, v|s1, x)/

mrisk0(t, v|s1, x), VE(t, v|x) ≡ 1 − risk1(t, v|x)/risk0(t, v|x), and VE(t|x) = 1 − risk1(t|x)/

risk0(t|x), with riskz(t, v|x) ≡ P(T(z) ≤ t, V(z) = v|T(1) > τ, T(0) > τ, X = x) and riskz(t|x) ≡ 
P(T(z) ≤ t|T(1) > τ, T(0) > τ, X = x). Study of these VE curves is a study of effect 

modification–how does VE vary with (X, S(1)) across EAS subgroups defined by (X, S(1))? 

Table 1 defines the terms needed for the transport formula.

We develop the results assuming “No-early-VE”, P(I(T(1) > τ) = I(T(0) > τ)) = 1, which 

implies that the EH and EP strata are empty and can be ignored, greatly simplifying 

identifiability. No-early-VE has been assumed in most articles on the evaluation of principal 

surrogate endpoints, and is discussed further in Section 3.4. We also develop the results 

relaxing No-early-VE to “No-early-harm”, P(T(1) ≤ τ, T(0) > τ) = 0, under which the EP 

stratum may not be empty and must be dealt with. This second approach allows beneficial 

VE before the immune responses are measured, which can readily occur (e.g., Capeding et 

al., 2014; Villar et al., 2015). Because it is more complicated, we relegate it to 

Supplementary Materials B. The No-early-harm assumption is a monotonicity assumption 

commonly used in causal inference that simplifies identifiability, and No-early-VE is a 

stronger version that is equivalent to monotonicity in both directions.

2.3. Is Use of a Surrogate Endpoint S Critical for Bridging?

Traditionally, bridging is based on a surrogate (i.e., replacement) endpoint, which may be 

defined conceptually as an intermediate response endpoint measured in both treatment 

groups that can be used for reliable inferences about clinical treatment efficacy without 

needing to measure the clinical endpoint (FDA Guidance Document, 2007). Here we avoid 

the term surrogate, because the needed attribute of S for the transport formula is that it 

modifies vaccine efficacy, and being an effect modifier is a distinct property from being a 

valid surrogate endpoint (Gilbert et al., 2015). For example, our transport formula makes no 

assumptions about whether S satisfies the Prentice (1989) criteria for a valid surrogate 
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endpoint; rather it requires inclusion of all effect modifiers S regardless of the extent to 

which they adhere to the Prentice criteria.

3. Immuno-Bridging Transport Formula

3.1. Set-Up

Suppose a previous Phase III vaccine efficacy trial showed significant overall benefit VE(t) 
> 0 for a fixed time t ∈ (τ, τ1] of interest, as for our motivating example the RV144 trial. Our 

goal is to estimate VE(t) in a new setting of interest based on (1) the estimated VE(t, v|s1, x) 

curve from the previous Phase III trial(s), (2) assumptions about how this curve transports to 

the new setting, (3) data on the distributions of X, S(1), V, and (4) information on 

background risk mrisk0(t, v|s1, x) in the new setting. A Phase I/II randomized trial is 

conducted in the new setting, which randomizes m participants to the new vaccine or new 

placebo (Z = 1* or Z = 0*), and uses identical procedures for measuring the same covariates 

X and immune responses S(1). Participants are followed until time τ when samples are 

collected for measuring S(1). The trial has most of the same random variables as the 

previous efficacy trial, with potential outcomes (S(z*), T(z*), C(z*), Δ(z*)) for z* = 0, 1 and 

observed random variables (Z*, X*, S*, Y*, Δ*), except that (Y(z*), Δ(z*)) is observed only if 

Y(z*) ≤ τ and hence (Y*, Δ*) is observed only if Y* ≤ τ. Because the Phase I/II trial does not 

follow participants long enough to directly assess VE*(t) ≡ 1 − P(T(1*) ≤ t)/P(T(0*) ≤ t) for 

time points t > τ, interest centers on estimating VE*(t) for a fixed time t ∈ (τ, τ1] based on 

the full data set from the previous efficacy trial and on the data set ( ), i = 

1, ··· m from the Phase I/II trial, where . Based on these data we develop a 

transport formula for additive-difference vaccine efficacy, VEd*(t) ≡ P(T(1*) ≤ t) − P(T(0*) ≤ 

t), and for multiplicative-reduction vaccine efficacy, VE*(t) = 1 − P(T(1*) ≤ t)/P(T(0*) ≤ t).

Let F*(s1|x) be the cdf of S(1*) conditional on X* and T(1*) > τ, T(0*) > τ; H*(x) be the cdf 

of X* conditional on T(1*) > τ, T(0*) > τ; and F*(s1, x) ≡ P(S(1*) ≤ s1, X* ≤ x|T(1*) > τ, 

T(0*) > τ) be the joint conditional cdf. Define  [and ] parameters identical to 

the mrisk0(·) [risk0(·)] parameters with (T(0), V(0), S(1), X) replaced with (T(0*), V(0*), 

S(1*), X*). Define the “bridging assumption function”

(2)

which measures the ratio of vaccine efficacies for the new and original settings for each 

value of (t, v, s1, x), thereby expressing a bridging assumption of how the mark-specific VE 
curve differs in the two settings. This ratio has approximate interpretation as the ratio of 

multiplicative vaccine-reductions in average mark-specific per-exposure probabilities of 

acquisition of HIV (Gilbert, McKeague, and Sun, 2008), which aids thoughtful specification 

of ϕ(·). Specification of bridging assumptions through the function ϕ(·) is a key difference of 

the current approach compared to Pearl and Bareinboim’s (2011) approach.
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3.2. Transport Formula

For any fixed t ∈ (τ, τ1], the “immuno-bridging transport formula” is

(3)

and VE*(t) = −VEd*(t)/P(T(0*) ≤ t) (Supplementary Material C provides a proof). This 

formula averages VE(t, v|s1, x) over the EAS* new study population using four weighting 

factors: (1) the relationship between VE*(t, v|s1, x) and VE(t, v|s1, x), ϕ(t, v|s1, x); (2) the 

conditional biomarker distribution in the new setting, F*(s1|x); (3) the baseline covariate 

distribution in the new setting, H*(x); and (4) the background/placebo arm conditional 

marginal risk  in the new setting. Factors (2) and (3) may be re-written as 

[dF*(s1|x)/dF(s1|x)]dF(s1|x) and [dH*(x)/dH(x)]dH(x), highlighting re-calibration by 

differences in the immune response and baseline covariate distributions, and similarly for 

factor (4) as we discuss below.

Estimation of VEd*(t) and VE*(t) is achieved by substituting estimates for VE(t, v|s1, x), 

F*(s1|x), H*(x), , P(T(0*) > τ), and P(T(0*) ≤ t) into equation (3), and 

assuming a specified form for ϕ(t, v|s1, x). We next list a set of assumptions sufficient for 

consistently estimating VEd*(t) and VE*(t) using the formula, followed by some proposed 

approaches to estimating terms. The list of the assumptions will make evident that it is 

highly challenging to assure valid implementation of the transport formula. Indeed, an 

objective of this work is to explain in specific and component terms the challenges posed to 

reliably inferring VE*(t) in a new setting without directly estimating VE*(t) using the 

clinical endpoint data.

3.3. Assumptions for the Transport Formula

The set of assumptions needed for the transport formula to provide consistent estimates of 

VEd*(t) and VE*(t) for a fixed t ∈ (τ, τ1] are listed below.

1. Assumptions for the original Phase III trial: (A) Standard assumptions in a 

randomized trial listed in Section 2.1; (B) No-early-VE: P(I(T(1) > τ) = I(T(0) > 

τ)) = 1; (C) VE(t, v|s1, x) is consisently estimated.

2. Assumptions for the new Phase I/II trial: (A) Standard assumptions in a 

randomized trial listed in Section 2.1; (B) F*(s1|x) and H*(x) are consistently 

estimated; (C) No-early-VE*: P(I(T(1*) > τ) = I(T(0*) > τ)) = 1.

3. Assumptions combined over the two trials: (A) The support of (X*, S(1*), V*) 

is contained in the support of (X, S(1), V); (B) The variables (X, S(1), V) and 

(X*, S(1*), V*) used in the transport formula are selected such that, for each v in 

the support of V*, (X, S(1)) includes all modifiers of VE(t, v|s1, x) and (X*, 
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S(1*)) includes all modifiers of ; (C) ϕ(t, v|s1, x) is correctly 

specified.

4. Assumptions about background risk in the new setting:  is 

consistently estimated. Separate assumptions are not listed for P(T(0*) > τ) and 

P(T(0*) ≤ t) because these terms can be consistently estimated given the other 

assumptions above, based on formulas (8) and (9) in Section 4.3. [These 

assumptions assure consistent estimation of the integrands in (8) and (9), 

therefore assuring consistent estimation of the integrals.]

The common support assumption 3(A) is needed for the transport formula to provide 

empirical estimates of VE*(t); without it, the formula can only provide predictions of VE*(t) 
for what-if modeling scenarios. The critical assumptions 3(B) and 3(C) require subject-

matter knowledge for achieving plausibility. Because the three major factors (1) VE(t, v|s1, 

x), (2) , and (3) ϕ(t, v|s1, x) in the transport formula modularly measure 

distinct scientific elements, we stated the sufficient conditions 3(B) and 3(C) in terms of 

capturing the effect modifiers of vaccine efficacy in the original Phase III trial [factor (1)] 

and capturing the prognostic factors in the new setting [factor (2)], combined with correctly 

specifying the bridging assumption function ϕ(·) for these selected variables [factor (3)]. 

Because the effect modifiers and prognostic factors may be different for different disease 

types v, the practioner must seek to include all modifying covariates for any type V = v of 

disease. In particular, this is seen by expressing 3(B) as follows. Let Xall and Sall(1) 

represent all participant covariates at baseline and time τ under vaccine assignment, 

measured or unmeasured, and similarly let Vall represent all pathogen features at the time of 

the disease endpoint. Then 3(B) states that (X, S(1), V) and (X*, S(1*), V*) used in the 

transport formula satisfy 

and 

for all (x, s1, v) in the support of (X*, S(1*), V*).

For specifying ϕ(t, v|s1, x) in critical assumption 3(C), note that, in principle, ϕ(t, v|s1, x) 

should approximately equal 1 in the hypothetical scenario that (Xall, Sall(1), Vall) were used 

in the transport formula, because after all characteristics are accounted for there are no 

remaining factors to create differential vaccine efficacy in the two settings. Thus, the 

scientist aims to select sufficiently rich (X, S(1), V) to make ϕ(t, v|s1, x) plausibly near one 

and to narrow the range of the sensitivity analysis that varies ϕ(t, v|s1, x). 3(C) with ϕ(t, v|s1, 

x) = 1 is more readily credible for applications where the identical vaccine is tested in the 

original and new settings. Estimation via the transport formula combines empirical evidence 

with a bridging assumption, where consistent estimation may be obtained if ϕ(·) is correctly 

specified, e.g., as unity. For bridging to a new vaccine in the same setting, such a “perfect 

bridging assumption” ϕ(·) = 1 states that, within each baseline subgroup X = x, a vaccine-

induced immune response of S(1) = s1 corresponds to the same level of protective efficacy 

whether the original vaccine or new vaccine generated the response. This interpretation 

naturally extends for bridging to a new vaccine in a new setting. Carroll et al. (2006) defined 

transportability in the measurement error problem context where measurement error from 
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one study can be corrected using information on the measurement error process from 

independent data. They stated that parameters of a model can be transported from one study 

to another if the model holds with the same parameter values in both studies. Carroll et al.’s 

(2006) transportability assumption corresponds to our perfect bridging assumption ϕ(·) = 1, 

where the vaccine efficacy model as a function of X and S(1) is the same between the 

original setting and the new setting.

In the special case of no right-censoring, no mark V, and no clinical events before τ, the 

above transport formula collapses to the formula of Huang, Gilbert, and Wolfson (2013) 

based on S alone, which is similar to a formula in Follmann (2006). In addition, with no V, 

no clinical events before τ, and a different type of perfect bridging assumption, our transport 

formula is similar to one of Pearl and Bareinboim’s (2011) transport formulas (their 

Equation 5). In particular, their Equation 5 in our notation is

(4)

for z = 0, 1, which makes a perfect bridging assumption of invariant (s, x)–specific average 

causal effects in the two settings [surmised to be P(Y(1*) = 1|S(1*) = s, X* = x) − P(Y(0*) = 

1|S(0*) = s, X* = x) = P(Y(1) = 1|S(1) = s, X = x) − P(Y(0) = 1|S(0) = s, X = x)]. This 

formula is the same as ours for , but for  it differs, in that P(Y(0) = 1|S(0) = s, 

X = x) in (4) conditions on the observable S(0) = s instead of on the counterfactual S(1) = s. 

This difference means that a new distribution  is used in 

Pearl and Bareinboim’s formula (4) that is not used in our formula.

Under the assumptions, VE*(t) can be accurately estimated by substituting fixed terms and 

estimated terms into (3). In addition, the uncertainty in the bridging estimation can be 

quantified by accounting for multiple uncertainty sources including estimator sampling 

variability, potential misspecification of models used in estimating VE(t, v|s1, x) and 

, partial non-identifiability of VE(t, v|s1, x), and potential misspecification 

of ϕ(·). Below we implement this via bootstrap-based procedures for obtaining estimated 

uncertainty intervals (EUIs) (Vansteelandt et al., 2006).

3.4. Plausibility and Evaluation of the No-early-VE and Common Support Assumptions

The No-early-VE assumption is often violated in trials with a series of vaccinations and τ 
substantially after baseline, given the accrual of protective immunity over time. It is 

straightforward to diagnose a violation, by testing if vaccine efficacy by τ differs from 0. If 

relatively few clinical events happen by τ this violation may only minorly bias results; 

otherwise use of the method removing the No-early-VE assumption may be warranted.

The multivariate nature of (X, S(1), V) makes it challenging to check the common support 

assumption. For each marginal univariate distribution of the components of X and S(1), 

methods in the literature for testing for a common support of two distributions could be 

used, for example accessing tests of ‘support overlap’ in the propensity score matching 

causal literature. These diagnostic procedures can be carried out because samples of (X, 
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S(1)) and (X*, S(1*)) are available. In addition, domain knowledge aids in checking the 

assumption; for example immunological assays used to measure S(1) typically have lower 

and upper quantification readout limits, and based on knowledge of the vaccine regimens 

and immunology it may be expected that the whole range would be represented in both 

settings.

The more challenging problem involves checking the support assumption in terms of the 

mark variable V. Whereas a sample of (X, S(1), V) is available, as is a sample of (X*, V*), 

no sample is available for (X*, S(1*), V*) in the new setting, because the Phase I trial that 

measures S(1*) is not designed to capture clinical endpoints and hence measure V*. 

Consequently, domain knowledge is necessary for judging credibility of the common 

support assumption, which cannot be fully empirically checked until the future Phase III 

trial is conducted. If V is discrete categorical and is highly represented among circulating 

pathogen types in both the original and new settings across the levels of X, then the 

assumption may be quite plausible.

4. Estimation of the Terms in the Transport Formula

4.1. Estimation of the Mark-Specific VE Curve in the Original Phase III Trial

Qin et al. (2008) and Gabriel et al. (2014, 2015) developed methods for estimation of VE(t|
s1, x) from an efficacy trial, accommodating the right-censoring of T. These papers did not 

consider competing risks data but could be straightforwardly extended to estimate VE(t, v|s1, 

x) for a discrete V via a cause-specific Cox proportional hazards model (Prentice et al., 

1989). For the application we apply an alternative, new method for estimating VE(t, v|s1, x) 

for the special case of a dichotomous mark V (with levels 0 and 1) based on structural 

multinomial logistic regression modeling (described in Supplementary Materials D).

If the support of (X*, S(1*), V*) is contained in that of (X, S(1), V), then all values of 

 needed in the estimated transport formula can be obtained from estimates in 

the original efficacy trial. If not, for example if the new vaccine generates higher immune 

responses S(1*) than observed in the original trial, then application of the formula requires 

specification of VE(t, v|s1, x) at covariate levels (X* = x, S(1*) = s1) where there is no 

empirical data support from the original trial. For such applications the transport formula 

does not provide “estimates” of VEd*(t) and VE*(t) per se, but rather provides projections 

based on a what-if modeling scenarios.

4.2. Estimation of Covariate Distributions in the Phase I/II Trial in the New Setting

Under the assumptions of Section 3.3, F*(s1|x) = P(S(1*) ≤ s1|min(T*, C*) > τ, Z* = 1, X* = 

x), such that F*(s1|x) can be directly estimated from vaccine recipients in the Phase I/II trial 

who attend the study visit at time τ HIV negative with samples collected for measuring 

S(1*). Similarly, under No-early-VE, H*(x) = P(X* ≤ x|min(T*, C*) > τ), such that H*(x) can 

be estimated from the same participants as F*(s1|x), and, optionally, placebo recipients may 

also be included.
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4.3. Estimation of Background Disease Risk in the New Setting

Estimation of  is a challenging problem, because it is not possible for 

epidemiological data to be available for direct empirical estimation, due to the basic fact that 

the follow-up Phase III trial will occur in the future. However, epidemiological data on 

recent background disease incidence for V* = v-specific disease within baseline covariate 

levels X* = x in the new setting can be used for estimation of , under 

assumptions about how S(1*) affects these disease risks after accounting for X*, and 

assuming that the recent epidemiological data are representative of the future Phase III trial 

setting. We consider two approaches to estimating  based on recent 

epidemiological data. For Approach 1, we assume

(5)

for some specified paired functions wS(s1|x) and g(s1|x) chosen to ensure both constraints 

 and risk0(t, v|x) = ∫ mrisk0(t, v|s1, x)dF(s1|x) for 

all (t, v, x), which with (5) require

(6)

The idea of Approach 1 is to shift the problem from estimation of , which 

is hard, to the simpler problems of estimation of  and mrisk0(t, v|

s1, x). To estimate the former term, we factor it into two ratios reflecting (i) different 

background overall conditional disease cumulative incidences,

and (ii) different distributions of circulating and infecting pathogen types V,

The numerator of wV(t, v|x) measures the relative fraction of the circulating pathogen types 

potentially exposing and infecting subgroup X* = x participants in the new setting that are of 

type v, while the denominator measures this relative fraction in the original setting. Under 

Approach 1,

(7)

Gilbert and Huang Page 11

Epidemiol Methods. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We illustrate two choices of (wS, g) that satisfy the constraint (6). First, if F(s1|x) and F*(s1|

x) are continuous functions, then an equipercentile assumption may be expressed as g(s1|x) = 

F−1(F*(s1|x)) and wS(s1|x) = 1 where F−1(·|x) is the inverse of F(·|x). Second, under a 

location-shift model dF*(s1|x) = dF((s1 − μ(x))/σ(x)|x), we set g(s1|x) = (s1 − μ(x))/σ(x) and 

wS(s1|x) = 1.

To implement Approach 1, we need to estimate mrisk0(t, v|s1, x) and both terms wInc(t|x) 

and wV(t, v|x). The term mrisk0(t, v|s1, x) is estimated as part of the process for estimating 

the VE curve as addressed in Section 4.1. For wV(t, v|x), estimation of  must be 

based on epidemiological data in the new setting that depends on the quality of surveillance 

for incident disease cases and on the cataloging of the types v of disease cases. The 

numerator of wInc(t|x) may be estimated based on an epidemiological cohort study in the 

new setting, and the denominator through straightfoward analysis of the original Phase III 

trial. Because risk0(t|x) appears in the denominator of wInc(t|x), estimation could be unstable 

if risk0(t|x) is close to zero; thus reasonably precise estimation of risk0(t|x) for each x is 

needed (which is achieved in the RV144 Example due to ample sample size). The numerator 

of wV(t, v|x) may be estimated from a genomic epidemiological study of circulating 

pathogen types in the new setting, and denominator either through a genomic 

epidemiological study in the original setting or through straightforward analysis of the 

original Phase III trial.

Our Approach 2 to estimating  makes the stronger assumption that 

 and mrisk0(t, v|s1, x) = risk0(t, v|x), i.e., T(0*), V(0*) ⊥ 
S(1*)|X*, T(1*) > τ, T(0*) > τ and T(0), V(0) ⊥ S(1)|X, T(1) > τ, T(0) > τ. Plausibility of 

this assumption requires rich X that leaves no residual prognostic value of S(1*), which is 

unverifiable and typically not credible, such that Approach 1 may be better justified.

Approach 2 is implemented by estimating  in the same way as under Approach 

1, e.g., as . Approach 2 also has mathematical 

convenience that it majorly simplifies the estimation of VE(t, v|s1, x) in the original Phase 

III trial, because mrisk0(t, v|s1, x) becomes estimable without needing to impute the missing 

counterfactual immune response S(1) in participants assigned placebo Z = 0 (Follmann, 

2006).

Lastly, the terms P(T(0*) ≤ τ) and P(T(0*) ≤ t) should be estimated compatibly with the 

approach taken to estimation of . For Approach 1, using (7), this means that 

P̂(T(0*) ≤ t) should be compatible with P(T(0*) ≤ t) =

(8)

For Approach 2, this means that P̂(T(0*) ≤ t) should be compatible with

Gilbert and Huang Page 12

Epidemiol Methods. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(9)

4.4. Sensitivity Analysis to the Perfect Bridging Assumption

Given that direct data on clinical efficacy for the new setting of interest are not available, 

theories of mechanisms of protection, as encoded in the specified bridging assumption 

function ϕ(·), must be combined with empirical data to make bridging inferences. Because 

the form of ϕ(·) cannot be directly estimated until the new efficacy trial, a sensitivity analysis 

is warranted. One approach specifies a fixed constant Γ and estimates VE*(t) under each of a 

grid of constants , setting ϕ(t, v|s1, x) ≡ γ. Following the approach of Rosenbaum 

(2010), by estimating VEd*(t) [or VE*(t)] with a 95% confidence interval for each fixed γ, 

one obtains an estimated ignorance interval and a 95% estimated uncertainty interval for 

VEd*(t) [or VE*(t)] (Vansteelandt et al., 2006). A more sophisticated sensitivity analysis 

would follow this program using fixed constant functions Γ(s1, x) and γ(s1, x) or even Γ(t, v|

s1, x) and γ(t, v|s1, x).

5. Application to HIV Vaccine Efficacy Trials

We consider bridging the multiplicative-reduction vaccine efficacy through 39 months of 

follow-up of the ALVAC-gp120 prime-boost vaccine versus placebo [VE(t = 39)] that was 

observed in the RV144 Thai trial (Rerks-Ngarm et al., 2009), to estimate VE*(t = 39) in the 

planned HIV Vaccine Trials Network (HVTN) 702 Phase III trial in South Africa. HVTN 

702 will test a similar ALVAC-gp120 prime-boost vaccine regimen versus placebo and has 

primary objective to estimate VE*(t) over time t with particular interest in the durability of 

efficacy out to 39 months, VE*(t = 39). The RV144 trial provided the HIV vaccine field the 

first result of a partially efficacious HIV vaccine [estimated VE(t = 39) = 0.31, 95% 0.004 to 

0.52], and HVTN 702 builds on this partial success in testing the efficacy of a putatively 

improved version of the RV144 vaccine regimen. The HVTN 702 trial is preceded by the 

HVTN 100 Phase IIa trial in the same study population in South Africa that is currently 

studying the immune responses induced by the vaccine.

The RV144 and HVTN 702 efficacy trials differ in (1) the vaccine regimens [different HIV 

sequences in the ALVAC and gp120 vaccines (two subtype AE strains and one subtype B 

strain for RV144 and three subtype C strains for HVTN 702) and different adjuvants used to 

deliver the gp120 boost (Alum for RV144 and MF59 for HVTN 702)]; (2) circulating HIV-1 

genotypes and phenotypes exposing trial participants (e.g., subtype AE in RV144 and 

subtype C in HVTN 702); (3) immune responses induced by the vaccine regimens; (4) host 

immune genetics; (5) participant demographics including country, race/ethnicity, gender, 

BMI, and level and pattern of HIV risk-taking behavior (RV144 participants were Thai, low 

risk, and low BMI whereas HVTN 702 participants will be mostly Black South African, 

high risk, and higher BMI for women); and (6) intensity of HIV exposure (much higher 

exposure in HVTN 702). We select V as the indicator of whether the amino acid (AA) at 

position 169 in an HIV infected individual’s V2 Envelope HIV sequence sampled at 

diagnosis of infection mismatches the corresponding AA in the HIV strains contained in the 
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vaccine (Rolland and Edlefsen et al., 2012). In addition, we select S as the magnitude of 

binding antibodies to the V1V2 portion of a gp70-scaffolded Envelope protein (Haynes et 

al., 2012), and select X as the indicator of whether an individual carried a CC or TT (CT/TT) 

genotype at position 126 in intron 2 of the Fc-γ receptor 2C gene locus (Li et al., 2014). 

These choices are based on published results that the vaccine efficacy in RV144 significantly 

depended on these variables after multiplicity correction (see Supplementary Materials A for 

details).

For the input terms VE(t = 39, v|s1, x), for v = 1, we set  for all s1 

and x, because  (95% CI = −2.58 to 0.33); this choice invokes the 

assumption that the vaccine did not increase the risk of v = 1 HIV infection (which “de-

noises” the estimation). Alternatively, VE(t = 39, v = 1|s1, x) could be estimated similarly as 

VE(t = 39, v = 0|s1, x) without making the assumption of zero vaccine efficacy against type 

v = 1 HIV. For v = 0, we set  based on estimation methods described in 

Section 4.2 and Supplementary Materials B and D; Figure 1 shows  as 

a function of S(1) = s1 for the subgroups x = 0 (CC genotype) and x = 1 (CT/CT).

Because S(1) is missing in Z = 0 participants, there is a non-identifiability issue in 

estimating all parameters in the conditional risks that constitute the VE(t = 39, v = 0|s1, x) 

parameters. As one approach to achieve identifiability, our estimation approach assumes 

VE(t = 39, v = 0|s1 = 0, x = 0) = 0, which is the “average causal necessity” (ACN) scenario 

(Gilbert and Hudgens, 2008) for the X = 0 subgroup. We could alternatively carry out the 

estimation enforcing an additional assumption of ACN for X = 1 as well as for X = 0, but it 

is not necessary for identifiability, such that we leave the risk for the S(1) = 0, X = 1 

subgroup to be estimated. (Here we seek to only specify the minimum assumptions needed 

to achieve identifiability.) In the RV144 trial, vaccine efficacy for the X = 0 subgroup was 

estimated to be near 0 whereas vaccine efficacy for the X = 1 subgroup was estimated to be 

well above 0, making it more consistent with empirical data to assume ACN for X = 0 but 

not for X = 1. Below we also report a sensitivity analysis that instead assumes ACN for the 

X = 1 subgroup.

We estimate F*(s1|x) and H*(x) based on the ongoing HVTN 100 Phase IIa trial. HVTN 100 

is enrolling 212 vaccine recipients, and will measure baseline covariates X* in all of these 

participants and immune responses S(1*) in all who attend the Month 6 visit HIV negative 

(i.e., with min(T*, C*) > 6 months). Because the data are not yet available for HVTN 100, 

for illustrative purposes we first use the data from the RV144 trial [assuming S(1*)|X*, T(1*) 

> τ, T(0*) > τ =d S(1)|X, T(1) > τ, T(0) > τ], and secondly consider scenarios where the new 

vaccine increases immune responses compared to RV144. Figure 2 shows the empirical 

estimates of F*(s1|x) for each subgroup x = 0, 1 in RV144. We estimate H*(x) based on a Fc-

γ receptor genetics in a sample of n = 131 Black South Africans (Lassauniere et al., 2014). 

Because 49% carried CT or TT, we set P̂(X* = 1|T(1*) > τ, T(0*) > τ) = 0.49 (compared to 

0.28 in RV144; Table S8 of Li et al., 2014).

Supplementary Materials A describes the full details of the methods used for estimation of 

 for each v, x ∈ {0, 1} via equation (5), which we accomplish by 
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assuming the equipercentile model for F*(s1|x) described in Section 4.3 and estimating the 

three terms wInc(t|x), wV(t, v|x), and mrisk0(t, v|s1, x) separately. The numerator of wInc(t|x) 

is estimated from a recent HIV vaccine efficacy trial in South Africa (Gray et al., 2014) in a 

study population expected to be similar to the HVTN 702 study population, and the 

denominator is estimated from RV144. The numerators and denominators of wV(t, v|x) are 

estimated from the LANL HIV Sequence Data Base, the numerator based on 254 HIV-1 

sequences from South Africans collected between 2008 and 2013 (60% with v = 0) and the 

denominator based on 207 HIV-1 sequences from Thais collected during the RV144 trial 

between 2003 and 2009 (72% with v = 0). Lastly, mrisk0(t, v|s1, x) is estimated as a 

component step for estimating VE(t, v|s1, x). The estimates of the individual terms are 

shown in Table 2.

We apply the transport formula under the perfect bridging assumption ϕ(·) ≡ 1 by plugging 

the estimated terms into the formula (3), yielding  with 95% bootstrap 

confidence interval 0.11 to 0.66. (See Supplementary Materials E for a description of the 

bootstrap procedure.) As a sensitivity analysis, we repeated the analysis for a grid of fixed γ 
= ϕ(t, v|s1, x) values varying between  and Γ with Γ = 1.25 (Figure 3a), which gives an 

estimated ignorance interval of 0.28 to 0.43 and a 95% EUI of 0.09 to 0.82. Next, we 

repeated the analysis of Figure 3a supposing the vaccine in HVTN 100 produces higher 

immune responses than in RV144, in one or both of the genotype subgroups. In particular, 

we modified the estimates F̂*(s1|x) of Figure 2 in three ways by moving a random sample of 

75% of the original Si(1) values with percentile p ≤ 0.50 in RV144 to the percentile p* = p 
+ 0.50, for (b) all CC participants; (c) all CT/TT participants; or (d) all participants. Figures 

3b–d show the resulting estimates of VE*(t = 39), showing similar estimated ignorance 

intervals compared to Figure 3a and to each other, with estimated VE*(t = 39) only slightly 

increasing for the scenarios with increased V2 immune responses in the new setting. Thus, 

the overall result is that vaccine efficacy is predicted to be slightly higher in the new setting 

than was previously observed in RV144 (also summarized in Table 3). This only-slight 

increase is explained by the fact that the VE curves only slightly increased with S(1) (Figure 

1), limiting the impact of improving V2 responses, combined with the facts that 

 for all (s1, x) and the frequency of v = 1 is greater in South Africans 

(40%) than Thais (28%).

To examine the common support assumption 3(A), note that the BAMA assay used for 

measuring S(1) has lower and upper readout limits, and from RV144 we directly observed 

that S(1) takes values over the whole range for each subgroup X = 1 and X = 0. Moreover, 

we know that S(1*) also takes values over the whole range for each subgroup X* = 1 and X* 

= 0, by the way we simulated the data. Lastly, V is simple, being binary, and the data on (X, 

V) and (X*, V*) show that each of the four possible levels is well-represented in each of the 

original and new settings. Taken together these results strongly suggest (but do not prove) 

the common support assumption.

We repeated the analysis assuming average causal necessity (ACN) for the x = 1 (higher 

protected) subgroup instead of for the x = 0 subgroup (Figure 4, Table 3). Now the increase 

in V2 immune responses S(1) leads to a greater increase in estimated VE*(t = 39), which 
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occurs because the estimated VE(t = 39, v = 0|s1, x = 1) curve is steeper than in the previous 

analysis.

We also consider the scenario where all vaccine recipients achieve S(1*) in the highest 

region of possible immune responses supported by the binding assay, uniformly distributed 

between 9 and 10.1 (10.1 is the upper quantification limit of the assay). This scenario 

represents a case where a “putatively much stronger” vaccine is identified in HVTN 100. 

The predicted VE*(t = 39) increases by 20% to 30% (Table 3).

Lastly, to illustrate how the method can be used to project what overall vaccine efficacy 

could be achievable if additional HIV strains are added to a refined multivalent version of 

the vaccine regimen, we consider the scenario that a v = 1 HIV strain is added to the vaccine 

construct. This follows the paradigm for traditional vaccinology to put multiple pathogen 

genotypes in a vaccine to broaden protection against genetically diverse pathogens (e.g., 

Capeding et al., 2014; Villar et al., 2015). We consider the scenario that the v = 1 and v = 0 

strains protect equally well against pathogen-matched type v disease, expressed as VE(t, v = 

1|s1, x) = VE(t, v = 0|s1, x). As such, in implementing the transport formula we use an 

estimated VE(t, v = 1|s1, x) equal to the estimated VE(t, v = 0|s1, x) in the previous analyses. 

The resulting estimated ignorance intervals for the scenarios in Figures 3(d) and 4(d) are 

now 0.42 to 0.65 and 0.44 to 0.70, respectively (Table 3). The predicted VE*(t = 39) majorly 

increases because 40% of the circulating HIV-1s in South Africa are of type v = 1, against 

which a vaccine without a v = 1 strain confers no protection.

6. Discussion

This article develops an immuno-bridging transport formula for predicting overall vaccine 

efficacy VE*(t) in a new setting based on a previous Phase III vaccine efficacy trial(s) and a 

Phase I/II biomarker endpoint trial in the new setting, plus epidemiological data on disease 

incidence in the new setting and genomic epidemiological data on the pathogen genotypes in 

the previous and new settings. One application is quantifying uncertainty about predicting 

VE*(t) in the absence of an efficacy trial, explaining in specific and component terms the 

challenges posed to reliably inferring VE*(t) in a new setting without directly estimating 

VE*(t) from clinical endpoint data. A second application is “Go/No-Go” decision-making 

about whether a new vaccine tested in a Phase IIa trial should be advanced to an efficacy 

trial in the original or new setting (elaborated in Supplementary Materials F). For example, 

the HVTN is testing multiple candidate HIV vaccines in Phase I/II trials in South Africa 

with objective to down-select up to three vaccines into an efficacy trial. The transport 

formula provides a criterion for advancement, where regimens with higher estimated VE*(t) 
would be favored. While this article focuses on the vaccine field, the Go/No-Go application 

is of broad relevance across clinical trials research. A third highly related application is 

guidance for selecting study endpoints in Phase I/II vaccine/treatment trials prior to the next 

efficacy trial; for example biomarkers S(1) that are stronger effect modifiers of vaccine/

treatment efficacy in the previous efficacy trial(s) may be preferred.
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6.1. Which Variables (X, S(1), V) to Include in the Transport Formula?

A basic challenge posed to applying the transport formula is how to choose the baseline 

covariates X, intermediate response endpoints S(1), and marks V to make the formula 

accurate? As stated above, for validity the (X, S(1)) selected for use in the transport formula 

must be the only effect modifiers of mark-specific vaccine efficacy in the original and new 

settings and be the only prognostic factors for disease in the new setting, for each type V of 

disease. This condition implies that application of the formula depends on the integration of 

subject-matter knowledge. Selecting (X, S(1), V) will generally be easier when the new 

setting entails a nearly identical vaccine as studied originally, and more difficult for a new 

vaccine, moreso the extent to which it differs from the original vaccine. Pearl and 

Bareinboim (2011) provide various criteria for covariates that are necessary to include 

versus necessary to not include.

In practice, often particular S(1) variables are known to be strong effect modifiers of VE(t, 
v), making it obvious to pick these variables. Moreover, commonly vaccine efficacy is 

known to vary with a particular pathogen feature V such as serotype, making it obvious to 

include this feature. A recent dengue vaccine efficacy trial illustrates this situation, which 

tested a vaccine containing four dengue strains, one of each serotype (Capeding et al., 2014; 

Villar et al., 2015). The trial assessed vaccine efficacy against each serotype v = 1, 2, 3, 4, 

and measured the level of neutralization to each of the four dengue strains in the vaccine 

(four variables Sv(1), v = 1, 2, 3, 4). Prior to the trial, the dengue vaccine field had 

knowledge that for each v = 1, 2, 3, 4, VE(t, v|s1, x) would likely be higher for subgroups 

with higher levels of Sv(1) = s1.

6.2. How to Handle the Dimensionality of X?

If X is discrete categorical with a reasonable amount of data support at each level, then the 

transport formula can be applied without invoking parametric models for the conditional 

distribution of S(1) given X, and mriskz (t, v|s1, x) can be estimated separately for each x. 

However, if X is higher dimensional, then some parametric modeling assumptions are 

needed, and if X is high dimensional, then specialized p > n regression models are needed. 

One approach to addressing both issues would estimate mriskz (t, v|s1, x) using a supervised 

statistical learning approach that considers a large set of potential models defined by 

different sets of the covariates within X and different models, for example using 

nonparametric loss-based ensemble learning (van der Laan et al., 2007), with cross-validated 

area-under-the ROC curve as a criterion for model selection (van der Laan, Hubbard, and 

Pajouh, 2013). Existing supervised statistical learning methods may be applied to estimate 

mrisk1 (t, v|s1, x) given the identifiability of this parameter from the observed data. For 

mrisk0(t, v|s1, x), additional research would be needed given the identifiability challenge.

6.3. How to Specify the Bridging Assumption Function ϕ(·|·)?

For the transport formula to work well in applications it is neccessary that the bridging 

assumption function ϕ(t, v|s1, x) = VE*(t, v|s1, x)/VE(t, v|s1, x) can be meaningfully 

specified and varied in a sensitivity analysis. We suggest that if ϕ(t, v|s1, x) is approximately 

a ratio of multiplicative vaccine-reductions in average mark-specific per-exposure 

probabilities of acquisition of the pathogen under study, then ϕ(·|·) can be interpreted as a 
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“pure biological susceptibility” parameter akin to a challenge trial, thus making a default 

assumption ϕ(t, v|s1, x) = 1 reasonable given carefully selected (X, S(1), V), and facilitating 

an interpretable sensitivity analysis. This biological parameter approximation is more 

accurate for a rare event trial (Gilbert, 2001), suggesting that the formula may be most 

appropriate for such settings, which are the norm in vaccine efficacy trials. Moreover, while 

our approach focuses on cumulative vaccine efficacy parameters, the approach could be 

adapted to instead use proportional mark-specific hazards vaccine efficacy parameters 

(Gilbert and Sun, 2014), and applied to settings where the proportional hazards assumption 

is approximately true (e.g., Capeding et al., 2014; Villar et al., 2015). The advantage of the 

hazard ratio approach is that ϕ(t, v|s1, x) has a closer approximation to a ratio of average per-

exposure vaccine efficacies (Gilbert, 2001). However, a disadvantage is that the proportional 

hazards VE parameter is only a causal effect of treatment assignment under a strong 

assumption that will fail if there is treatment efficacy, such that it is only an approximately 

causal approach (Hernán, 2010); whereas in contrast the cumulative vaccine efficacy 

approach is based on true causal effects.

6.4. VE Curve Principal Stratification Versus Observables-Only Transport Formula

Our transport formula is based on VE curves VE(t, v|s1, x) that measure vaccine efficacy in 

sub-populations defined by (X, S(1)), which are not identifiable from the standard 

assumptions in the Phase III efficacy trial and the observed data, because the vaccine-

induced immune responses S(1) are not directly measurable in placebo recipients (Follmann, 

2006). The rationale for this approach is that for many vaccine fields one or more immune 

response biomarkers are known or hypothesized to be (very) strong effect modifiers of 

vaccine efficacy (Plotkin, 2010), and the principal stratification framework studies treatment 

effect modification across such post-randomization subgroups (Frangakis and Rubin, 2002; 

Gilbert and Hudgens, 2008; Gilbert et al., 2015). To avoid the identifiability challenge, an 

alternative transport formula would be based purely on parameters identifiable from the 

standard assumptions and observed data. However, a challenge posed to this observables 

approach is how to specify an interpretable bridging function that expresses a perfect 

bridging scenario as a special case and provides a basis for sensitivity analysis? A difficulty 

is that bridging functions based purely on observables may aggregate biological and 

behavioral/ecological differences between the old and new settings, which may be 

dominated by behavioral/ecological factors; for example in the HIV vaccine illustration the 

cumulative infection rate in placebo recipients is approximately 10 times higher in the new 

setting than the old setting. Nevertheless, the “purely observables” approach certainly merits 

full investigation, given its advantage in avoiding the use of partially non-identified 

parameters, and it is beyond the scope of this work to make this comparison. We do note, 

however, that under our Approach 2 for estimating  described in Section 

4.3, our transport formula is a version of an observables-only transport formula, because 

with this approach VE(t, v|s1, x) is identified from the standard assumptions in randomized 

trials (albeit Approach 2 makes a strong assumption that must be used with caution). In 

addition, if the principal stratification framework is deemed unappealing for an application 

but controlled effects can be well-defined and are appealing, our alternative version of the 

transport formula based on controlled effects may be considered (Supplementary Materials 

A).
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6.5. Transport Formula Under the No-Early-Harm Assumption

Supplementary Materials G develops the transport formula relaxing the No-early-VE 

assumption to the No-early-harm monotonicity assumption, showing that the formula 

becomes more complicated, for example involving three bridging assumption functions 

instead of one. Therefore the problem of immuno-bridging is majorly simplified if one can 

at least approximately assume no vaccine efficacy by the time τ that immune responses/

intermediate endpoints are measured. Accordingly, most of the principal surrogate endpoint 

evaluation literature has assumed No-early-VE or has considered the simplified scenario that 

no clinical events happen before the potential surrogates are measured. The current research 

indicates that in some settings this issue must be accounted for to achieve a cogent transport 

formula, for example in the two Phase III dengue vaccine efficacy trials mentioned above, 

the immune responses were measured far after randomization (τ = 13 months) and No-early-

VE was clearly majorly violated (Capeding et al., 2014; Villar et al., 2015). The simpler 

transport formula will be most easily justified in settings where strong effect modifying 

biomarkers are available shortly after vaccine/treatment initiation, for which No-early-VE 

may be justified, or minor violations will not materially affect the bridging prediction. 

Moreover, the controlled effects approach may be best suited to settings where no or very 

few clinical events occur before τ, given the difficulty in conceiving of the intervened 

biomarker-specific vaccine efficacy curve otherwise.

6.6. Final Remarks

Implementation of the proposed transport formula entails estimation of ignorance intervals 

and uncertainty intervals, in order to account for sampling variability as well as for: (1) 

partial non-identifiability of the mark-specific conditional vaccine efficacy curve VE(t, v|s1, 

x), (2) uncertainty in the assumptions used to estimate , and (3) possible 

deviations from the perfect bridging assumption. This research shows that, even under No-

early-VE, a large amount of data from the original efficacy trial(s) is needed for precise 

estimation of VE*(t), highlighting the importance of conducting direct clinical endpoint 

Phase III trials. However, the identical immuno-bridging formula applies if a set of previous 

efficacy trials is used instead of a single efficacy trial, where trial-level and subject-level 

features of the trials can be included as covariates in the transport formula. In some areas of 

clinical research, meta-analysis data are available from a large number of mega-trials 

(Staessen et al., 2005), illustrating that, in principle, it is possible in practice to generate the 

requisite data for obtaining relatively precise inferences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Based on the RV144 Phase III efficacy trial data, estimated vaccine efficacy curves 

 with 95% bootstrap confidence intervals by the method described in 

Supplementary Material D with v = 0 an HIV with Lysine at position 169 of the HIV 

Envelope protein and immune response S(1) = s1 the binding antibody level to a scaffolded 

gp70-V1V2 protein (Zolla-Pazner et al., 2014), in the two subgroups of trial participants 

defined by x = 0 (CC at position 126 in intron 2 of the Fc-γ receptor 2C gene locus) and by 

the complement subgroup x = 1 (CT or TT at this locus). The analysis assumes average 

causal necessity (ACN) for the X = 0 subgroup, VE(t = 39, v = 0|s1 = 0, x = 0) = 0.

Gilbert and Huang Page 22

Epidemiol Methods. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Based on RV144 data from 205 HIV uninfected vaccine recipients of S(1*) the binding 

antibody level to a scaffolded gp70-V1V2 protein measured by BAMA at τ = Month 6.5, 

panel (a) shows nonparametric maximum likelihood estimates of F*(s1|x) = P(S(1*) ≤ s1|

T(1*) > τ, T(0*) > τ, X* = x) for each of the two subgroups x = 0 (CC) and x = 1 (CT or 

TT). Panel (b) shows boxplots of S(1*)|X* = x.
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Figure 3. 
For bridging the vaccine efficacy of the RV144 trial to the HVTN 100/702 trial setting: 

Estimated VE*(t = 39 months) with 95% bootstrap confidence intervals for fixed sensitivity 

parameter γ varying from 0.8 to 1.25 and under average causal necessity for the X = 0 

subgroup, assuming (a) F̂*(s1|x) is from RV144; or F̂*(s1|x) is from RV144 modified by 

moving a random sample of 75% of the original SI values with percentile p ≤ 0.50 in RV144 

to the percentile p* = p + 0.50, for (b) the x = 0 (CC) subgroup; (c) the x = 1 (CT/TT) 

subgroup; or (d) all participants. Estimated ignorance intervals and 95% estimated 

uncertainty intervals (EUIs) are listed.
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Figure 4. 
The analysis of Figure 3 repeated assuming average causal necessity for the X = 1 subgroup 

instead of the X = 0 subgroup, VE(t = 39, v = 0|s1 = 0, x = 1) = 0, under which the estimated 

curves  are steeper in s1 (stronger effect modification).
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Table 3

Estimated VE*(t = 39) × 100% in the New Setting (HVTN 702) Under Different Estimation and Modeling 

Approaches1

S(1*) Distribution ACN Assump. Est. (95% CI) γ = 1 Ign. int.2 95% EUI1

Same as RV144 (Fig. 3A) for X = 0 34.6 (11.1, 65.8) (27.7, 43.3) (8.9, 82.2)

Higher3 for X* = 0 (Fig. 3B) for X = 0 36.1 (11.0, 65.9) (28.9, 45.2) (8.8, 82.4)

Higher3 for X* = 1 (Fig. 3C) for X = 0 36.6 (11.0, 65.9) (29.3, 45.7) (8.8, 82.4)

Higher3 for All (Fig. 3D) for X = 0 38.1 (10.6, 67.0) (30.5, 47.6) (8.5, 83.7)

Same as RV144 (Fig. 4A) for X = 1 38.0 (14.0, 67.2) (30.4, 47.5) (10.9, 84.1)

Higher3 for X* = 0 (Fig. 4B) for X = 1 42.7 (14.0, 68.5) (34.2, 53.4) (11.2, 85.7)

Higher3 for X* = 1 (Fig. 4C) for X = 1 39.2 (14.0, 68.5) (31.3, 49.0) (11.2, 85.7)

Higher3 for All (Fig. 4D) for X = 1 43.9 (16.5, 75.5) (35.1, 54.9) (13.2, 94.3)

Higher4 for All for X = 0 40.7 (6.7, 74.2) (31.8, 50.9) (2.6, 93.4)

Higher4 for All for X = 1 55.8 (23.2, 94.0) (44.8, 70.1) (19.3, 100)

Model Adding a v = 1 Strain Assuming 

Higher3 for All for X = 0 52.3 (15.1, 92.7) (41.8, 65.3) (12.0, 100)

Higher3 for All for X = 1 60.3 (23.6, 100) (48.2, 75.4) (18.8, 100)

Higher4 for All for X = 0 55.8 (6.3, 100) (44.1, 69.6) (0.0, 100)

Higher4 for All for X = 1 76.7 (33.3, 100) (61.5, 96.3) (26.9, 100)

1
The estimation is done as described in Table 2, except for new elements listed in this table.

2
Computed for ϕ(t, v|s1, x) = γ with γ ranging over [  Γ] for Γ = 1.25, where ϕ(t, v|s1, x) ≡ VE*(t = 39, v|s1, x)/VE(t = 39, v|s1, x).

3
Estimation scenario of equal support of (X*, S(1*)) and (X, S(1)), where the distribution of S(1*) follows a modification of F̂*(s1|x) from RV144 

data (Figure 2) by moving a random sample of 75% of the original Si(1) values with percentile p ≤ 0.50 in RV144 to the percentile p* = p + 0.50.

4
Estimation scenario of equal support of (X*, S(1*)) and (X, S(1)), where the distribution of S(1*) is uniformly distributed in the highest range of 

immune responses supported by the binding assay, [9, 10.1].
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