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Abstract

Amyloid-beta plaques are a hallmark of Alzheimer’s disease (AD) that can be assessed by 

amyloid imaging (e.g., Pittsburgh B compound [PiB]) and summarized as a scalar value. Summary 

values may have clinical utility but are an average over many regions of interest, potentially 

obscuring important topography. This study investigates the longitudinal evolution of amyloid 

topographies in cognitively normal older adults who had normal (N = 131) or abnormal (N = 26) 

PiB scans at baseline. At 3 years follow-up, 16 participants with a previously normal PiB scan had 

conversion to PiB scans consistent with preclinical AD. We investigated the multivariate 

relationship (canonical correlation) between baseline and follow-up PiB topographies. 

Furthermore, we used penalized regression to investigate the added information derived from PiB 

topography compared to summary measures. PiB accumulation can be local, that is, a topography 

predicting the same topography in the future, and/or distributed, that is, one topography predicting 

another. Both local and distributed PiB accumulation was associated with conversion of PiB status. 

Additionally, elements of the multivariate topography, and not the commonly used summary 

scalar, correlated with future PiB changes. Consideration of the entire multivariate PiB topography 

provides additional information regarding the development of amyloid-beta pathology in very 

early preclinical AD.
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1. Introduction

Alzheimer’s disease (AD) is characterized by a long preclinical period wherein pathology 

accumulates in the absence of overt symptoms (Price et al., 2009). The deposition of 

amyloid-beta (Aβ), measured via positron emission tomography (PET) using Pittsburgh 

compound B (PiB) (Klunk et al., 2004), is one of the earliest measurable pathological 

changes in AD (Braak and Del Tredici, 2012; Jack et al., 2013) and can be monitored 

longitudinally (Sojkova et al., 2011; Villemagne et al., 2011; Vlassenko et al., 2011). The 

results of PiB scans are often summarized into a single scalar metric defined as an average 

over a group of regions known to accumulate the most of Aβ plaques in symptomatic AD. 

PiB scans assessed in this way are dichotomized as either PiB negative (PiB−) or PiB 

positive (PiB+) (Mintun et al., 2006). A PiB+ scan in a cognitively normal individual is 

interpreted as presumptive evidence for preclinical AD (Jack et al., 2012; Morris et al., 

2014; Sperling et al., 2011) and predicts clinical progression (Morris et al., 2009). 

Dichotomizing PiB status is potentially clinically useful but reduces complex and potentially 

informative topographies to a single scalar metric.

The earliest detectably abnormal amyloid topography is relatively focal but becomes more 

expansive as the disease progresses (Braak et al., 2011; Thal et al., 2002). Understanding of 

this early topography, how it differs from the topography of the highest PiB retention at the 

more advanced stages of AD and how it progresses in the early stage of the disease remains 

unclear. Multivariate statistical techniques, well suited for examining local and distributed 

phenomena, may help to characterize better the relationships in longitudinal amyloid 

topographies as assessed by PiB.

In this study, we followed 157 cognitively normal participants who were PiB− (N = 131) or 

PiB+ (N = 26) at baseline as assessed by a summary scalar value of mean cortical (MC) 

standardized uptake value ratio (SUVR). These participants were followed longitudinally 

(mean follow-up: ~3 years). In participants who developed significant PiB accumulation 

(i.e., became PiB+), we investigated the topographic progression of PiB accumulation using 

canonical correlation. Canonical correlation identifies pairs of highly correlated 

topographies. We then compared the ability of the single scalar value and topographic 

measures to capture the underlying PiB accumulation associated with the development of 

preclinical AD.

2. Methods

2.1. Subjects

Participants were community dwelling volunteers (age range 45–85 years) enrolled in the 

Adult Children Study project at the Washington University in St Louis Knight Alzheimer 

Disease Research Center. All participants were cognitively normal, both at baseline and at 

follow-up PiB scans, as assessed by a Clinical Dementia Rating score of 0 (Morris, 1993) 

and the Mini-Mental Status Examination. Participants were in good general health with no 

neurological, psychiatric, or systemic medical illness that could disrupt longitudinal 

participation. Each participant underwent magnetic resonance imaging (MRI) and PiB PET 

(described in the following section). Baseline scans were dichotomized as either PiB− or 
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PiB+ (criteria described in the following section) and a second scan was performed on 

average 3.29 years later (standard deviation = 1.22 years; minimum = 0.96 years; maximum 

= 6.47 years). Participants were divided into 3 groups based on their PiB status at baseline 

and follow-up: CNnn (cognitively normal, PiB− at both scans, N = 115), CNnp (cognitively 

normal, PiB− at first scan but PiB+ at second scan, N = 16), or CNpp (cognitively normal, 

PiB+ at both scans, N = 26). Complete demographic information is shown in Table 1.

2.2. MRI assessment

MRI consisted of an magnetization-prepared rapid gradientecho T1-weighted image 

collected on a Siemens (Erlangen, Germany) MR scanner. Images are processed using 

FreeSurfer software version 5.1 (Martinos Center for Biomedical Imaging, Charlestown, 

MA, USA) (Fischl et al., 2002). All FreeSurfer parcelations were assessed for accuracy by a 

skilled investigator (Karl A. Friedrichsen). Only gray matter regions were included in this 

analysis.

2.3. PET assessment

The PiB PET assessment has been previously described in detail (Su et al., 2013, 2014). 

Imaging was conducted on a Siemens 962 HR+ ECAT PET scanner or a Siemens Biograph 

40 scanner. PET data were analyzed using previously developed methods (Su et al., 2013, 

2015). FreeSurfer segmentation (Fischl et al., 2002) (http://freesurfer.net/) was used as the 

basis for quantitative analysis to obtain regional SUVR with cerebellar gray matter serving 

as the reference region. Partial volume correction was also performed using a regional 

spread function technique (Rousset et al., 1998; Su et al., 2015).

PiB positivity was defined using the MC SUVR across the precuneus, prefrontal, gyrus 

rectus, and temporal FreeSurfer regions of interest (ROIs) (Morris et al., 2010). A cutoff 

value of 1.42 was used which is comparable to an MC binding potential of 0.18 that was 

previously defined (Mintun et al., 2006; Su et al., 2013). Characteristic SUVR images are 

presented in Fig. 1. The equivalence for an MC SUVR of 1.42 and MC-BP of 0.18 was 

previously determined using regression in an independent sample (unpublished data). 

Because of the criticality of this cutoff for subsequent analyses, primary results are also 

replicated using an alternative cutoff determined from this sample (Supplementary Material).

2.4. Canonical correlation analysis

We investigated the progression of PiB topography in CNnp, CNnn, and CNpp groups 

separately. To do this, we calculated the canonical correlation between the PiB topography at 

baseline and the PiB topography at follow-up using 42 ROIs (Hardle and Simar, 2007; 

Hotelling, 1936). A canonical correlation is the weighted average of variables (termed 

canonical variables) in one distribution that are maximally correlated with the weighted 

average of variables from another distribution. There can be multiple significant canonical 

correlations that isolate unique variance (similar to PCA components).

Let X1, X2∈ℝN×M index the regional PiB SUVR in N subjects and M = 42 ROIs at time 

point 1 and 2, respectively. Define:
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In this case, Σ is rank deficient which precludes matrix inversion. Therefore, define 

, where α is an arbitrary parameter and Δ is a shrinkage target 

(Schafer and Strimmer, 2005). For this analysis, α is calculated in closed form as previously 

described (Ledoit and Wolf, 2003); Δ is defined as the diagonal matrix of Σ which ensures 

that  is full rank (Ledoit and Wolf, 2004). This approach was recently applied to analyze 

functional MRI data (Brier et al., 2015).

The number of significant canonical correlations is defined as the dimensionality of . 

Here, we estimate this dimensionality using an information criterion (Minka, 2000). For 

every significant canonical correlation there exist 2 canonical variables: one corresponding 

to the baseline PiB topography and another corresponding to the follow-up PiB topography. 

Let ai be the ith canonical variable corresponding to the baseline PiB topography; ai is 

defined as the ith eigenvector of . Similarly, let bi be the ith canonical 

variable corresponding to the follow-up PiB topography; bi is defined as the ith eigenvector 

of . The values of ai and bi are unit norm and maximize the correlation 

between  and .

2.5. Penalized regression

We fit an elastic net penalized regression model which uses the linear combination of an L1 

and L2 norm of the calculated β values as a penalty (also known as least absolute shrinkage 

and selection operator [LASSO] and ridge regression, respectively) (Hastie et al., 2001; 

Tibshirani, 1996; Zou and Hastie, 2005). Penalized regression differs from ordinary least 

squares (OLS) regression in that it enforces a penalty term that forces some favorable 

property on the resulting regression βs. The L1 penalty (LASSO) penalizes nonzero β values 

and thus forces small β values to 0 and retains a small number of nonzero β values. This 

results in a model that is more easily interpretable (i.e., has only a few terms to consider). 

However, in data that are highly colinear the decision to retain one variable and discard a 

highly correlated variable is arbitrary (Zou and Hastie, 2005). The elastic net accommodates 

this data feature by allowing highly correlated predictor variables to enter the model 

simultaneously. This flexibility is accomplished by relaxing the L1 penalty with some 

fraction of an L2 penalty.

We fit 2 separate elastic net models: The first uses follow-up MC SUVR as an outcome 

variable and the second uses percent change in MC SUVR as an outcome variable. Let y = 

[y1, y2,…, yN]∈ ℝ be the outcome variable of interest, either follow-up MC SUVR or the 

percent change in MC SUVR between baseline and follow-up. Furthermore, let X = 

ℝN×[M+1] index the regional PiB SUVR in N subjects and M = 40 ROIs. The M + first 
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region is the baseline MC SUVR value which is included to investigate its sufficiency as a 

predictor. All variables were mean centered and made unit variance (z-scored). The estimate 

of penalized regression coefficients then has the form:

The first term is OLS regression. The second and third terms are the L2 and L1 norms, 

respectively. λ determines the overall penalty severity and α determines the relative 

contribution of the L1 and L2 penalty. Both parameters are selected by leave-one-out cross 

validation.

To compare the power of baseline MC SUVR and the entire topography to predict follow-up 

MC SUVR or percentage change in MC SUVR we compared the adjusted-R2 values:

For OLS, the df is the number of predictors. Similarly, for LASSO regression the number of 

df is the number of nonzero β values. However, in elastic net regression the number of df is 

complicated by the potential for colinearity in the selected predictors. Thus, df is defined as:

where Tr indicates the trace and  indicates the active predictor set (Zou and Hastie, 2005).

3. Results

We first investigated the evolution of PiB topography in the CNnp group. The number of 

significant canonical correlations was determined to be 3 using an information criteria 

(Minka, 2000). The first canonical correlation was characterized by the baseline topography 

in Fig. 2A and the follow-up topography in Fig. 2B. The baseline topography was dominated 

by large positive weights in the posterior cingulate, precuneus, and superior temporal regions 

balanced by negative weights in lateral frontal regions. At follow-up the topography was 

similar but now also included inferior and lateral temporal regions. These topographies were 

highly correlated (Fig. 2C; r = 0.58, p < 10−4). For example, the precuneus and temporal 

regions are positive in both topographies and lateral frontal regions are strongly negative. 

The original regional data are then projected onto these topographies yielding a single scalar 

value for each subject at baseline and follow-up. Put another way, the weighted average of 

PiB binding (weighted according to the loadings in the topographies) was calculated at 

baseline and follow-up. These baseline and follow-up scalar values were highly correlated 

(Fig. 2D; r = 0.99; p < 10−10) with follow-up significantly higher. Thus, this canonical 

correlation represents the accumulation of Aβ locally in regions already affected.
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The second canonical correlation, isolated after removing the variance related to the first 

canonical correlation, had a different pattern. The topographies of PiB for the baseline and 

follow-up scan are shown in Fig. 2E and F, respectively. The baseline topography was 

dominated by large positive weights in posterior cingulate, precuneus, and lateral parietal 

regions. In contrast, frontal regions dominated the follow-up topography. In contrast to the 

first canonical variable, the topographies were not as strongly correlated (Fig. 2G; r = 31; p= 

0.04). This indicates that baseline PiB topography predicts PiB values in a different 

topography at follow-up. Projection of the original data onto these topographies resulted in a 

strong positive correlation (Fig. 2H; r = 0.99; p < 10−10). The prediction of a distinct 

topography at follow-up based on a different topography at baseline suggests that this 

canonical correlation represents the expansion of Aβ topography to additional regions in the 

CNnp group.

The third canonical correlation has yet a different pattern. The topographies of PiB for the 

baseline and follow-up scan are shown in Fig. 2I and J and were moderately correlated (Fig. 

2K; r = .47, p = 0.002). The baseline topography was dominated by the anterior cingulate, 

whereas the follow-up topography was dominated by precuneus and subcortical regions. 

Projection of the original data onto this topography resulted in a strong positive correlation 

(Fig. 2L; r = 0.99; p < 10−10). This canonical correlation represents a combination of local 

and distributed processes distinct from the 2 aforementioned processes. These canonical 

correlation analyses were replicated using an alternative cutoff (Supplementary Material).

One analytic decision present in the previous results is the averaging of homotopic regions 

into a single bilateral ROI. We sought to determine whether this assumption (similar results 

on the left and right) was supported by the data. To accomplish this, the number of columns 

in X was doubled to 2M corresponding to left and right regional SUVR values being 

represented separately. The number of canonical correlations in this lateralized data set was 

determined to be 3 by an information criteria (Minka, 2000). This was the same number of 

canonical correlations identified in the homotopic analysis described previously. There were 

2 critical analytic questions to be addressed: (1) were the topographies isolated in the 

lateralized analysis symmetric across the midsagittal plane and (2) were the same 

topographies isolated in the lateralized analysis similar to those in the homotopic analysis. 

To address the first question, within a single topography the loadings on the left were 

regressed onto the loadings on the right. For all topographies (3 canonical correlations with a 

baseline and follow-up topography) the left and right loadings were strongly related (all p < 

0.05). In each case, the 95% confidence intervals on the regression β crossed 1, suggesting 

equal values for the left and the right hemispheres. Nevertheless, the maximum likelihood β 
estimate favored a larger representation in the left hemisphere compared to the right 

hemisphere but this bias was not significant. We next examined whether the topographies 

isolated in the lateralized analysis were similar to the topographies isolated in the homotopic 

analysis. For each canonical correlation (both baseline and follow-up), the topography 

resulting from the homotopic analysis was highly correlated between the left and right 

(analyzed separately) hemisphere topographies resulting from the lateralized analysis (all r > 

0.65; all p < 0.001). These data suggest a bias toward representation of the left hemisphere, 

but this difference does not lead to significantly different PiB accumulation with respect to 

hemisphere.
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A single canonical correlation described the relationship between baseline and follow-up 

PiB topographies in the CNnn group (Fig. 3A and B). The baseline and follow-up 

topographies were not correlated (Fig. 3C) and did not demonstrate any obvious biological 

topography. Furthermore, the projected PiB values did not show systematic increases (Fig. 

3D), indicating no accumulation, consistent with their CNnn status.

A single canonical correlation described the relationship between baseline and follow-up 

PiB topographies in the CNpp group (Fig. 4). The baseline topography (Fig. 3A) was not 

significantly correlated with the follow-up topography (Fig. 4B; r = 0.12, p = 0.44). 

However, the projected PiB values were strongly correlated (r = 0.99; p < 10−10) and a 

dramatic accumulation was seen at follow-up, as reflected by data above the identity line 

(Fig. 4D). These results suggest that CNpp individual at baseline continues to have 

significant accumulation longitudinally.

We next turned to the question of defining the correlates of future PiB accumulation in those 

who were PiB− at baseline. Accepting that the MC SUVR is a reliable measure of the level 

of AD pathology, can follow-up values be understood as a function of the baseline scan? 

Across all subjects, the baseline and follow-up MC SUVR were highly correlated (r = 0.55, 

p < 10−11, Adj-R2 = 0.30) suggesting that, relative to the interindividual variance, MC 

SUVR values did not dramatically change over a period of 3 years. Importantly, only within 

just the CNnp group were the baseline and follow-up MC SUVR not correlated (r = 0.24, p 
= 0.36). Baseline MC SUVR was also not correlated with the percent change in MC SUVR 

across scans (r = 0.026, p = 0.77, Adj-R2 = −0.007). A negative Adj-R2 indicates poor model 

fit. Notably, the baseline MC SUVR and percent change in MC SUVR was negatively 

correlated in the CNpp group (r = −0.54, p = 0.0047), suggesting a slowing of PiB 

accumulation within this topography. Thus, an open question is what features in the baseline 

topography correlates with future change in MC SUVR.

To investigate which features of the baseline topography correlate with the follow-up MC 

SUVR and percent change in MC SUVR, we fit 2 separate elastic net models using 

individual regional SUVR values as predictors. The β coefficients corresponding to the 

minimum cross-validation error for each model are shown in Table 2 and depicted visually 

in Fig. 5. Positive values predict relatively higher MC SUVR or positive changes in MC 

SUVR in the first (predicting MC SUVR) and second model (predicting percent change in 

MC SUVR) and negative values predict relatively lower MC SUVR or negative changes in 

MC SUVR. Importantly, the baseline MC SUVR only entered the model for predicting 

follow-up MC SUVR and not for predicting the change in MC SUVR. The correlation 

between the predicted follow-up MC SUVR and the actual MC SUVR was significantly 

correlated (r = 0.73, p < 10−22) and after correcting for the number of predictors was better 

than baseline MC SUVR alone (Adj-R2 = 0.50 compared with 0.30). Similarly, the predicted 

percent change in MC SUVR was significantly correlated with the actual percent change in 

MC SUVR (r = 0.54, p < 10−10) and, after correcting for the number of predictors, was 

better than baseline MC SUVR alone (Adj-R2 = 0.25 compared with −0.007).
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4. Discussion

This report uses two multivariate techniques (canonical correlation and penalized regression) 

to describe expanding Aβ topographies, as assessed by PiB, and identifies patterns of 

deposition correlated with future PiB accumulation. Canonical correlation finds 

topographies that represent local and distributed accumulation in those who develop 

preclinical AD as assessed by a scalar cutoff. Critically, within cognitively normal 

individuals similar accumulation is absent in the group that remains PiB− at both time points 

but is present in those who became PiB+ at follow-up or who remained PiB+ at both time 

points. Evidence of Aβ pathology (e.g., in the CNnp group) is sufficient for classification as 

stage 1 preclinical AD (Jack et al., 2012; Sperling et al., 2011). Given that these participants 

became PiB + over a 3-year interval, this group represents the very earliest identifiable 

stages of preclinical AD. One method of operationalizing these criteria is through a scalar 

cutoff applied to some mean PiB binding index (Mintun et al., 2006). This is a potentially 

clinically useful method for summarizing the data and is predictive of eventual symptomatic 

conversion (Morris et al., 2009). However, the baseline MC SUVR failed to strongly 

correlate with future changes in MC SUVR, limiting its utility in early disease stages. In 

contrast, the multivariate topography, not restricted to regions typically involved in the late 

stages of AD, strongly correlated with change in MC SUVR in a penalized regression 

analysis. Overall, these data demonstrate that accounting for the multivariate PiB topography 

may help to understand and characterize the development of AD pathology over the different 

stages of the disease.

The application of multivariate statistics to the study of PiB topographies allows for the 

investigation of novel neurobiology. Previous work using mass univariate approaches 

necessarily included a data reduction step, for example, averaging over many regions of 

interest. This approach is powerful when the relevant topography is known. However, in the 

earliest stages of preclinical AD the relevant topography is unknown. Canonical correlation 

and penalized regression consider the entire topography in a minimally biased manner to 

maximize explanatory power. In this report, the additional power resulting from considering 

the entire distribution is leveraged to describe the topography of PiB associated with 

conversion to preclinical AD. Importantly, the identified topography is distinct from the 

maximally effected topography in late stage AD.

A critical analytic decision in the analysis of PiB data is resolution at which the analysis 

should be conducted. Currently, 3 analytic strategies dominate the literature: analysis of (1) 

global PiB binding over the entire cortex, (2) composite PiB binding in an a priori 

topography, or (3) regional/voxelwise PiB binding. The first 2 approaches are strong data 

reduction approaches that have demonstrated utility for predicting future symptomatic 

conversion (Ma et al., 2014; Morris and Price, 2001) though regional analysis may offer 

diagnostic advantages (Aizenstein et al., 2008). The notable feature of both of these 

approaches is the definition of a region of interest a priori (the whole cortex in the case of 

the former, specific topographies in the case of the latter). However, the relevant topography 

where PiB deposition maximally occurs changes with disease progression (Villain et al., 

2012); the topography that predicts symptomatic conversion may not be useful for detecting 

changes associated with earliest disease onset. Regional analyses allow for the flexibility to 
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identify novel topographies but can yield varied results owing to the increased number of 

degrees-of-freedom (Engler et al., 2006; Grimmer et al., 2010; Jack et al., 2009; Kadir et al., 

2012; Rinne et al., 2010; Villemagne et al., 2011). The presently reported results make use 

of multivariate techniques well suited to compiling regional data into meaningful 

topographies. Application of such approaches is especially important when the topographies 

of interest are not known a priori.

The conversion from PiB− to PiB+ necessarily involves deposition of additional Aβ. That 

additional deposition is not haphazard but usually follows a stereotypical progression (Braak 

and Braak, 1997; Thal et al., 2002). We report on distinct processes using canonical 

correlation analysis. We find evidence of a local and distributed process. In the local process, 

regions with PiB deposition at baseline simply accumulate more PiB plaques by the follow-

up scan. However, in the distributed process, PiB in a particular topography correlates with 

PiB deposition in a different topography. Specifically, this progression represents the well-

documented spread of Aβ deposition from posterior regions to more anterior regions (Thal 

et al., 2002).

The penalized regression model identifies topography of PiB retention that correlates with 

future PiB accumulation, either total value or percent change. Critically, the summary scalar 

was not a strong correlate of future percent change in PiB burden. The regions with positive 

β values largely overlap with known areas of Aβ retention early in the disease (Thal et al., 

2002). However, not all regions overlap with previously defined summary metrics used for 

operationalizing the PiB+ definition. Notably, the previous scalar metric was defined based 

on the observations in the symptomatic stage of AD and does not necessary reflect the 

spatial pattern of PiB deposition in early preclinical stage (Mintun et al., 2006). This may 

lead to a biased view of early PiB burden using the MC SUVR approach. The caudate 

nucleus deserves specific discussion. Although it is known that caudate develops Aβ 
deposits throughout the disease (Thal et al., 2002), it is not commonly noted as a prominent 

initial contributor to PiB topography in late onset AD (but see Kemppainen et al., 2007). 

Nevertheless, the caudate nucleus is identified in both penalized regression models. 

However, it has been noted that individuals with autosomal dominant AD have particularly 

intense PiB retention in the striatum (Klunk et al., 2007). The independent evidence from 

this study and the study of autosomal dominant AD suggests some important, or at least 

reliable, process may be ongoing in the striatum early in AD.

The penalized regression identified several regions which were negatively loaded in both 

regression models. The presence of these negatively loaded regions demonstrates that the Aβ 
topography associated with advancing disease is specific. That is, PiB binding alone is not 

sufficient but rather it must be deposited in the disease causing topography. Amyloid in 

negatively loaded regions does not contribute to early disease pathophysiology. Indeed, Aβ 
is only present in the primary motor and sensory cortices much later in the disease (Braak 

and Braak, 1997), likely after symptoms develop. This potentially reflects that participants 

who have PiB retention in the precentral gyrus are unlikely to be PiB− at baseline. Thus, 

negatively loaded regions may serve as control regions by accounting for binding that is not 

because of Aβ or AD-related processes, especially at early disease stages. The presence of a 
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negatively predictive region indicates that it is not simply high values of PiB retention that 

predict conversion to PiB+ status but rather PiB deposition in a specific topography.

Only a small number of participants converted from PiB− status to PiB+ status which limits 

the robustness of this study. Additionally, the definition of converter compared with 

nonconverter is based on crossing a PiB threshold. Although such thresholds have been 

demonstrated to be potentially clinically useful (Mintun et al., 2006; Morris et al., 2009), 

other choices for a cutoff may be equally valid. Regardless of the precise definition, the 

primary scientific points remain: local and distributed processes are involved in the 

conversion to preclinical AD and consideration of the entire multivariate Aβ topography 

identifies correlates of advancing Aβ accumulation. A related point pertains to the 

prognostic information related to individuals who remain PiB− for the duration of the study 

but accumulate more PiB than average. These individuals are likely at an increased risk for 

developing preclinical AD in the future but longer follow-up time is required.

In summary, this study identified canonical correlations between baseline and follow-up PiB 

topographies in patients who converted from PiB− to PiB+. Penalized regression identified a 

topography association with future Aβ accumulation. Future studies could validate these 

regression models for their predictive power.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Baseline and follow-up SUVR images for the CNnn, CNnp, and CNpp group. Baseline and 

follow-up SUVR images for 3 randomly selected participants in each group. Abbreviations: 

CNnn, cognitively normal, PiB− at both scans; CNnp, cognitively normal, PiB− at first scan 

but PiB+ at second scan; CNpp, cognitively normal, PiB+ at both scans; SUVR, 

standardized uptake value ratio.
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Fig. 2. 
Canonical correlation analysis reveals distinct amyloid accumulation processes. The results 

corresponding to the first, second, and third canonical correlations are organized as 

individual rows. The first column (A, E, and I) shows the canonical variable (a) 

corresponding to the baseline PiB topography. The second column (B, F, and J) shows the 

canonical variable (b) corresponding to the follow-up PiB topography. These topographies 

are unit norm. The third column (C, G, and K) shows the correlation between the 2 

canonical variables within a single canonical correlation. The fourth column (D, H, and L) 

shows the projection of the original data onto the canonical variables. Red line is the identity 

line. Abbreviation: PiB, Pittsburgh compound B. (For interpretation of the references to 

color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 3. 
Canonical correlation analysis in the CNnn group reveals minimal amyloid accumulation. 

Canonical correlation analysis in the CNnn group using the same presentation style as Fig. 1 

in the main text. (A) and (B) represent the maximally correlated baseline and follow-up 

topographies, respectively. (C) depicts the correlation between the two topographies. The 

critical feature here is that the correlated topographies do not exhibit marked accumulation 

(the data are along the identity line in D). Abbreviations: CNnn, cognitively normal, PiB− at 

both scans; PiB, Pittsburgh compound B.
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Fig. 4. 
Canonical correlation analysis in the CNpp group reveals substantial amyloid accumulation. 

Canonical correlation analysis in the CNpp group using the same presentation style as Fig. 1 

in the main text. (A) and (B) represent the maximally correlated baseline and follow-up 

topographies, respectively. (C) depicts the correlation between the two topographies. The 

critical feature here is that the correlated topographies exhibit marked accumulation (the data 

are above the identity line in D). Abbreviations: CNpp, cognitively normal, PiB+ at both 

scans; PiB, Pittsburgh compound B.
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Fig. 5. 
Topography of baseline Pittsburgh compound B deposition that correlates with follow-up 

and % change in mean cortical standardized uptake value ratio. Graphical representation of 

the information in Table 2. First row shows MC definition. Color bar indicates regression β 
values. Abbreviation: MC, mean cortical. (For interpretation of the references to color in this 

figure legend, the reader is referred to the Web version of this article.)

Brier et al. Page 18

Neurobiol Aging. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brier et al. Page 19

Table 1

Demographic information

Variable CNnn CNnp CNpp p

N 115 16 26 N/A

Age in y at baseline scan (SD) 59.5 (8.77) 66.4 (8.67) 68.2 (6.3) <0.001

Gender (male/female) 35/80 5/11 10/16   0.73

Education in y (SD) 16.1 (2.4) 15.4 (2.5) 15.4 (2.4)   0.90

APOE ε4+ (% carriers)    23 (20)      9 (56)    17 (65) <0.001

MC SUVR at baseline (SD) 0.97 (0.07) 1.17 (0.10) 2.12 (0.60) <0.001

MC SUVR (follow-up) 1.02 (0.09) 1.47 (0.31) 2.48 (0.56) <0.001

MMSE at baseline 29.3 (0.86) 29.3 (1.09) 28.9 (1.51)   0.73

MMSE at follow-up 29.4 (0.92) 29.4 (0.96) 29.0 (1.42)   0.89

Follow-up time in y (SD) 3.30 (1.45) 3.26 (1.20) 2.99 (1.26)   0.37

Mean (standard deviation) or counts for demographic variables.

Key: APOE ε4, apolipoprotein E ε4 positive indicates at least one APOE ε4 allele; CNnn, cognitively normal individuals, PiB negative at both 
scans; CNnp, cognitively normal, PiB-negative at first scan but PiB positive at second scan; MC SUVR, mean cortical standard uptake volume ratio 
of PiB deposition; MMSE, Mini-Mental Status Examination; SD, standard deviation.
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Table 2

Elastic net regression coefficients

Region Predictor Value

Follow-up MC SUVR % Change in MC SUVR

Posterior cingulate   0.032   0.023

Rostral middle frontal   0.028

Rostral anterior cingulate   0.027   0.014

Precuneus   0.025

Baseline MC SUVR   0.021

Caudate   0.017   0.011

Frontal pole   0.016   0.002

Caudal anterior cingulate   0.010   0.004

Caudal middle frontal   0.005

Parahippocampal gyrus   0.003

Pericalcerine −0.003

Transverse temporal −0.001

Insula −0.004 −0.004

Precentral gyrus −0.015 −0.016

Postcentral gyrus −0.027 −0.023

Table of penalized (elastic net) regression coefficients. Blank spaces correspond to coefficients equal to zero.

Key: MC SUVR, mean cortical standard uptake volume ratio.
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