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Abstract

We introduce a quantitative and automated method for personalized cranial shape remodeling via 

fronto-orbital advancement surgery. This paper builds on an objective method for automatic 

quantification of malformations caused by metopic craniosynostosis in children and presents a 

framework for personalized interventional planning. First, skull malformations are objectively 

quantified using a statistical atlas of normal cranial shapes. Then, we propose a method based on 

poly-rigid image registration that takes into account both the clinical protocol for fronto-orbital 

advancement and the physical constraints in the skull to plan the creation of the optimal post-

surgical shape. Our automated surgical planning technique aims to minimize cranial 

malformations. The method was used to calculate the optimal shape for 11 infants with age 

3.8±3.0 month old presenting metopic craniosynostosis and cranial malformations. The post-

surgical cranial shape provided for each patient presented a significant average malformation 

reduction of 49% in the frontal cranial bones, and achieved shapes whose malformations were 

within healthy ranges. To our knowledge, this is the first work that presents an automatic 

framework for an objective and personalized surgical planning for craniosynostosis treatment.
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1 Introduction

Craniosynostosis is a condition affecting 1 of every 2100-2500 [1] live births in which one 

or more cranial sutures fuse prematurely. In many cases, this results in an abnormal growth 

pattern of the cranial bones and malformations. If untreated, craniosynostosis can cause 

increased intra-cranial pressure, impaired brain growth, visual problems and cognitive delay 

[2].
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Depending on which cranial suture is prematurely fused, craniosynostosis can be classified 

as sagittal, coronal, lambdoid or metopic. Furthermore, sometimes craniosynostosis can 

involve more than one suture. The case of metopic craniosynostosis is particularly 

challenging to diagnose, since the metopic suture fuses early in healthy subjects and, 

therefore, suture fusion alone is not an indicator of pathology. Studying the degree of 

malformation is then essential to assess metopic craniosynostosis and to decide if surgical 

intervention is necessary.

Fronto-orbital advancement [3] is a widely used interventional approach to correct for 

metopic craniosynostosis. During this intervention, the surgeon removes the frontal cranial 

bones and advances them forward to create a “normal” head shape with sufficient space to 

allow for healthy brain growth, as shown in Fig 1. However, how to create a normal cranial 

shape remains a subjective surgical art.

There is a lack of objective methods to quantify cranial malformations in clinical practice, 

which makes diagnosis, the decision to go for a surgery, and the intervention planning very 

dependent on the surgeon’s expertise. Mendoza et al. [4] proposed a method to quantify 

malformations objectively from CT images using a statistical atlas. In our work, we focus on 

the specific case of metopic craniosynostosis, and we base on the method to quantify 

malformations from [4] to address the problem of creating the optimal post-surgical shape 

via fronto-orbital advancement surgery.

Some previous works have addressed the need of interventional planning for fronto-orbital 

advancement. However, most reported techniques are based on free-hand approaches for 

advancing the lateral supraorbital region [5, 6]. Other works [7, 8] proposed the use of a set 

of predefined templates and computer aided design software packages to plan fronto-orbital 

advancement interventions. However, none of these approaches solved the problem of 

objectively finding a personalized and optimal shape to target during the intervention, since 

they were based on subjective assessment of malformations. In addition, manual human 

interaction was necessary in all these works and the results were still very dependent on the 

specialist.

Our automated method employs image registration through a novel and invertible poly-rigid 

transformation inspired by [9]. Importantly, our technique incorporates the concept of purely 

rigid regions within the clinical protocol for fronto-orbital advancement surgery to create the 

optimal personalized cranial shape to target during cranial shape remodeling. In addition, it 

does not only provide the surgeon with a shape to target during the intervention, but it also 

calculates how much each bone has to be displaced during the intervention in mm. To our 

knowledge, this is the first time a fully automatic and objective method is proposed for 

fronto-orbital advancement planning.

2 Methods

2.1 Objective quantification of malformations

CT is the standard imaging modality used to assess cranial deformities. To quantify 

malformations, we used the approach described in [4]. To summarize, a patient’s cranium 
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was registered to a reference image template. Once the volumes were aligned, a single-

layered, genus-zero surface was obtained using ShrinkWrap [10], obtaining a triangular 

mesh representing the cranial shape as a result. Then a template-guided graph-cut method 

based on [11] was used to segment cranial bones and sutures from the volume segmented 

from the CT image. Note that with such an approach, in presence of a fused suture, the 

segmentation algorithm is only driven by the template and the suture is delineated as in the 

template. Finally, cranial malformations were quantified in relation to the closest normal 

shape extracted from a statistical atlas built from healthy subjects using Signed Distance 

Function (SDF) representations of the surfaces, thus avoiding the problems related to 

landmark correspondences.

2.2 Optimal personalized intervention planning

In this section, we introduce a method to plan the correction of metopic craniosynostosis via 

fronto-orbital advancement. Finding the optimal shape to target during the intervention can 

be viewed as an optimization problem, where a function quantifying the degree of 

malformations in the patient’s skull has to be minimized. We propose a solution based on 

image registration, where the goal is to deform the volumetric image of the subject's skull to 

minimize its malformations. In particular, we register the volumetric image of the subject's 

skull to the image of the closest normal skull in the statistical shape atlas. Our framework 

incorporates physical constraints, namely bone rigidity, and also constraints imposed by the 

clinical protocol of fronto-orbital advancement, namely that only the position of the frontal 

bones can be modified during surgery.

A simple solution could be to estimate a rigid transformation for each of the bones 

separately. Instead, we employ a global registration approach to include interactions between 

bones and avoid bone overlaps. In [12], a method to incorporate rigid regions to an image 

registration problem was proposed, while allowing other types of deformation in the rest of 

the image. A set of rigid transformations (one per rigid object) and a global deformable 

transformation were linearly combined, using distance functions applied to each object to 

estimate the weight of its transformation at any location in the image. Such scheme ensured 

the weight associated to the non-linear transformation to equal zero in the rigid regions. 

However, the method did not guarantee invertibility of the estimated transformation. In 

addition, the accuracy was limited by the refinement of the underlying grid of control points 

and the smoothness of the radial basis functions.

In [9], a method to estimate a global transformation by combining the speed vectors from a 

set of rigid transformations centered on fixed anchor points was proposed. Unlike most free-

form deformation approaches, this type of poly-rigid transformations solved problems 

related to large movements of objects. In addition, the resulting transformation was 

invertible. However, although the transformation was calculated from a set of local rigid 

transformations, no single region in the image was constrained to present a purely rigid 

transformation, as required in our application.

In our work, we extend the method presented in [9] by incorporating the concept of rigid 

regions introduced in [12], instead of using anchor points to define rigid transformations. 

Unlike in [12], we avoid the constraints related to using radial basis functions to define the 
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transformation and we propose to use smooth, continuous and differentiable weighting 

functions to control the transition between rigid and non-rigid regions, thus ensuring the 

invertibility of the transformation.

Transformation model—The speed vector at a point with coordinates x is calculated by 

averaging the speed vectors from each rigid transformation of an object [9]:

(1)

where νi(x,s) is the speed vector associated to the rigid transformation i at coordinates x and 

time s ∈ [0,1], and wi(x) is the weight of that rigid transformation at location x. The speed 

vector associated to each rigid transformation is calculated as:

(2)

where ti is the translation vector of the rigid transformation i, and Ai is a skew matrix. Eq. 

(2) is obtained by differentiating the trajectory equation T(x,s) = sti + exp(sAi)T(x,0). The 

matrix Ai is defined as the logarithm of the rotation matrix and is related to the rotation 

vector by the following equation [9]:

(3)

where r = (rx,ry,rz) is the rotation vector. In [9], the weights wi(x) were calculated using 

Gaussian functions centered at each anchor point defined on the image. This approach does 

not allow constraining different areas of the image to be purely rigid. In addition, the 

weighting functions proposed in [12] would not ensure the invertibility of the 

transformation, since they are not differentiable at the boundary of the rigid objects.

In our implementation, the rotation of each transformation is defined to be centered on the 

center of mass of the rigid object associated to it. We also calculate SDFs for each of the 

rigid objects in the image (i.e. the cranial bones), which take negative values inside the 

object and positive values outside. The weight function associated with the transformation of 

each rigid object can then be defined using a continuous, smooth and differentiable 

approximation to a Heaviside step function applied to the SDF of that object:

(4)

where SDFi(x) is the SDF calculated for object i at coordinates x, and c is a factor defining 

the slope of the function at the transition point (i.e. the object boundary).

Porras et al. Page 4

Clin Image Based Proced. Author manuscript; available in PMC 2017 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Next, we integrate the velocity at each point over time to estimate the trajectory according to 

the transformation model. A second-order discretization scheme was proposed in [9] by 

defining the following operator:

(5)

where I represents the identity matrix, and N is the number of discretization subintervals. 

Using Eq. 5, the trajectory of a point at coordinates x can be obtained recursively from the 

composition of that operator at different time instants: 

. In our implementation, we divide the 

temporal interval empirically into two subintervals. Although this number of discretization 

intervals was enough for our goal, in applications where larger displacements can be 

expected, discontinuities may appear and a higher discretization level may be chosen.

Dissimilarity measure—Our application aims to minimize deformities in the subject’s 

skull. In [4], the degree of malformation was quantified as the distance between the subject’s 

cranial shape and the reference shape (i.e. closest normal subject). In the image domain, this 

translates to minimizing the pixel intensity difference between the volumetric image of the 

patient’s cranium and the closest normal subject:

(6)

where M is the patient’s image, and F is the closest normal subject’s image.

Optimization—We used a regular gradient descent optimizer for the objective function. 

Given the transformation model described above, a set of parameters defining as many rigid 

transformations as objects (i.e. cranial bones) can be optimized. However, for the surgical 

treatment of metopic craniosynostosis via fronto-orbital advancement, only the cranial 

frontal bones require advancement, while the rest of the bones are kept in the same position 

during the intervention. For that reason, the optimization is constrained so the translation 

and rotation parameters of the non-frontal bones are not modified.

Evaluation—For each patient with metopic craniosynostosis, malformations were 

quantified using the method summarized in section 2.1. After segmenting the cranial bones 

and sutures as in [4], we used our method to register the binary volumetric images of the 

patient’s skull to its closest normal from the statistical atlas. The estimated transformation 

calculated was then applied to the subject’s cranial shape to obtain the optimal shape to 

target during the intervention. As an example, Fig. 2 shows the interventional plan calculated 

for one example patient with severe metopic craniosynostosis.
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2.3 Data

To create the statistical atlas of normal cranial shapes, we used axial CT images of 100 

healthy infants (age 5.80±3.31 months). In-plane pixel size ranged 0.26-0.49 mm, with axial 

spacing smaller or equal to 5mm, in line with common clinical practice for craniosynostosis 

[13]. For the experiments, we used retrospective CT images from 11 subjects (age 3.8±3.0 

months) diagnosed with metopic craniosynostosis.

3 Results

Average malformations calculated for the 11 cases analyzed were 3.12±1.38 mm for the 

right frontal (RF) bone and 3.34±1.52 mm for the left frontal (LF) bone. A Student’s t-test 

was used to check if these results were statistically different to the results reported in [4] for 

patients with metopic craniosynostosis (3.20±2.07 mm for the RF bone and 2.57±1.71 mm 

for the LF bone). Differences were not statistically significant, obtaining p = 0.90 and p = 

0.23 for the RF and LF bones, respectively.

After creating the optimal post-surgical shape, malformations were significantly reduced to 

1.62±0.99 mm for the RF bone and 1.67±0.99 mm for the LF bone (p < 0.01), representing 

an average reduction of 49%. These values were within the range reported in [4] for healthy 

subjects (1.11±0.63 mm for the RF bone and 1.13±0.50 mm for the LF bone), with p = 0.15 

and p = 0.11 for the RF and LF bones, respectively. As an example, Fig. 2 shows the 

interventional plan for one severe patient, where it is possible to observe a significant 

reduction of malformations in the frontal bones of the optimal post-surgical shape (c) with 

respect to the pre-operative shape (a). Note that, after the surgery, cranial bones will resume 

their normal growth and this will also play an important role in developing a normal skull 

shape.

4 Conclusions

Our technique for fronto-orbital advancement surgical planning, based on a method for an 

objective quantification of malformations, constitutes the first fully automatic and objective 

framework for metopic craniosynostosis assessment and interventional planning. We 

introduced a method based on image registration that takes into account bone rigidity and 

clinical protocol constraints, and computes a smooth and invertible transformation to 

reconstruct the optimal cranial shape during the intervention. We demonstrated that the post-

surgical shape reconstructed with our method and the surgical plan to achieve it can 

significantly reduce malformations in the frontal bones by 49%. In addition, malformations 

in the optimal shapes obtained were within healthy ranges. Importantly, we do not only 

provide the optimal shape to target during the intervention, but we also provide information 

about how much each bone has to be displaced and in which direction to achieve that 

optimal shape.

Future work includes the integration of our method in the clinical workflow for its 

validation. It will also be adapted to allow for bone exchange and bending, considering the 

mechanical properties of the bones. Finally, the versatility of this framework will allow 

extending it for treatment planning of other types of craniosynostosis.
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Fig. 1. 
Metopic craniosynostosis and fronto-orbital advancement. (a) Axial plane view of the CT 

image on one patient with metopic craniosynostosis. White arrows show major areas with 

malformations. The orange arrow shows ridging on the fused metopic suture. (b) Cranial 

volume of the patient in (a) extracted from CT, together with its closest normal shape (green) 

estimated as in [4]. The coronal sutures are delineated in blue and the fused metopic suture 

is shown in red. (c) Representation of the personalized optimal shape to target during a 

frontoorbital advancement intervention, where the left (LF) and right frontal (RF) bones are 

advanced forward with respect to the left (LP) and right parietal (RP) bones.
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Fig. 2. 
Surgical planning. (a) Lateral (top) and axial (bottom) views of the malformations (color 

coded) estimated on one patient’s skull shape, together with its closest normal shape (white 

wireframe). (b) Suggested cut lines (red) based on coronal and metopic sutures 

segmentation, together with the optimal position for the frontal bones computed with the 

proposed method, shown as a wireframe. (c) Malformations estimated on the optimal post-

surgical shape, together with its closest normal shape (white wireframe).
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