
Temporal stability in chronic wound microbiota is associated 
with poor healing

Michael Loesche1,§, Sue E. Gardner2,*,§, Lindsay Kalan1, Joseph Horwinski1, Qi Zheng1, 
Brendan P. Hodkinson1, Amanda S. Tyldsley1, Carrie L. Franciscus3, Stephen L. Hillis4, 
Samir Mehta5, David J. Margolis1,6, and Elizabeth A. Grice1,7,*

1University of Pennsylvania, Perelman School of Medicine, Department of Dermatology

2University of Iowa, College of Nursing

3Comprehensive Access and Delivery Research and Evaluation (CADRE) Center, Iowa City VA 
Health Care System

4University of Iowa, Departments of Radiology and Biostatistics

5University of Pennsylvania, Perelman School of Medicine, Department of Orthopaedic Surgery

6University of Pennsylvania, Perelman School of Medicine, Department of Biostatistics and 
Epidemiology

7University of Pennsylvania, Perelman School of Medicine, Department of Microbiology

Abstract

Microbial burden of chronic wounds is believed to play an important role in impaired healing and 

development of infection-related complications. However, clinical cultures have little predictive 

value of wound outcomes, and culture-independent studies have been limited by cross-sectional 

design and small cohort size. We systematically evaluated the temporal dynamics of the 

microbiota colonizing diabetic foot ulcers (DFU), a common and costly complication of diabetes, 

and its association with healing and clinical complications. Dirichlet multinomial mixture 

modeling, Markov chain analysis, and mixed-effect models were used to investigate shifts in the 

microbiota over time and its associations with healing. Here we show to our knowledge previously 

unreported temporal dynamics of the chronic wound microbiome. Microbiota community 

instability was associated with faster healing and improved outcomes. DFU microbiota were found 

to exist in one of four community types that experienced frequent and non-random transitions. 

Transition patterns and frequencies associated with healing time. Exposure to systemic antibiotics 

destabilized the wound microbiota, rather than altering overall diversity or relative abundance of 

specific taxa. This study provides to our knowledge previously unreported evidence that the 
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dynamic wound microbiome is indicative of clinical outcomes and may be a valuable guide for 

personalized management and treatment of chronic wounds.

INTRODUCTION

Chronic, non-healing wounds affect 6.5 million patients annually in the US and are an 

increasing public health and economic threat, exceeding estimated annual treatment costs of 

$9.7 billion (Bickers et al. 2006). Chronic wounds almost always affect individuals with an 

underlying predisposition (e.g. obesity, advanced age, diabetes) and are often disguised as a 

comorbid condition. A major type of chronic wound is the diabetic foot ulcer (DFU), a 

common complication of diabetes that results from neuropathy coupled with mechanical 

stress and tissue breakdown. Those with diabetes have a 15–25% lifetime incidence of DFU 

(Valensi et al. 2005) and result in amputation in 15.6% of cases (Ramsey et al. 1999). 

Projections estimate that diabetes will continue to increase in prevalence (Guariguata et al. 

2014); thus addressing management and treatment strategies for this complication is critical.

Microbial bioburden is believed to contribute to impaired healing of chronic wounds and it is 

estimated that over 50% of DFUs are infected upon presentation (Prompers et al. 2007); 

however, infections are difficult to diagnose due to the diminished or absent clinical signs in 

DFUs resulting from peripheral neuropathy and/or vascular disease (Glaudemans et al. 

2015). Without clinical suspicion, wound cultures provide little diagnostic value, as bacteria 

colonize all open wounds. Our previous work demonstrated that clinical cultures 

underestimate bacterial diversity and load when compared to culture-independent 

techniques, based on the prokaryote-specific 16S ribosomal RNA (rRNA) gene. Multiple 

dimensions of the microbiota may be important, including microbial diversity, microbial 

load, and abundance of potential pathogens (Gardner and Frantz 2008). Although other 

studies have used culture-independent methods to examine DFUs and other chronic wound 

microbiomes, these studies employed cross-sectional designs (Dowd et al. 2008; Price et al. 

2009; Gontcharova et al. 2010; Gardner et al. 2013; Wittebole et al. 2014; Wolcott et al. 

2015) and the relationship between the wound microbiome and outcomes has not been 

rigorously examined.

Microbial communities exhibit a wide range of stabilities across the human body (Ding and 

Schloss 2014; Flores et al. 2014); however, what these differing stabilities mean for the 

health of the community or the host remain poorly understood. Very little is known about the 

dynamics of the wound microbiota during healing, deterioration, or exposure to antibiotics. 

To date, no study has investigated the microbial dynamics of chronic wounds. These 

dynamics may contain information about the vulnerability of the wound to opportunistic 

infections or provide insight as to the origin of stalled wound healing. It is critical to study 

these dynamics to enhance our understanding of chronic wounds and improve our ability to 

effectively treat them.

We address several important limitations of previous studies by performing a study designed 

to capture the longitudinal dynamics of microbiota colonizing DFUs and examining the 

association between the DFU microbiome and clinical outcomes. Microbiota were sampled 

from DFUs every two weeks for 26 weeks or until healed. We employed high throughput 
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sequencing of the 16S rRNA gene to define multiple metrics of the microbiome, including 

diversity, stability, and relative abundance of potential pathogens and identified microbiomic 

features associated with DFU clinical outcomes. Though our study was focused on the 

microbiota in DFU, many of these findings may be true of other chronic wounds and should 

be considered in future studies and treatments of chronic wounds.

RESULTS

We enrolled 100 subjects into a prospective, longitudinal cohort study to analyze temporal 

dynamics of DFU microbiota and association with outcomes using culture-independent 

approaches. DFU microbiota was collected at initial presentation (baseline) and resampled 

every two weeks until: 1) DFU healed; 2) lower extremity amputation; or 3) the conclusion 

of 26 weeks of follow up. All subject received standardized treatment of surgical 

debridement and offloading. Of the 100 enrolled subjects, 31 experienced an infection-

related complication, defined as: 1) amputation; 2) wound deterioration, or 3) development 

of osteomyelitis. Table S1 summarizes clinical factors by complication status.

Characterization of the DFU microbiota at baseline

DFU microbiomes were determined by sequencing of hypervariable regions V1 through V3 

of the 16S ribosomal RNA (rRNA) gene. The most abundant genus identified was 

Staphylococcus, present in 345 of the 349 samples, with an average relative abundance of 

22.77%. The second, third, and fourth most abundant genera were Streptococcus (11.98%; 

318 of 349 samples), Corynebacterium (11.46%; 346 of 349 samples), and Anaerococcus 
(7%; 300 of 349 samples), respectively. All other genera represented <5% of bacterial 

relative abundance in this dataset. A more detailed characterization can be found in Table 

S2. We further classified Staphylococcus operational taxonomic units (OTUs) to species 

level for 79.5% of the OTUs. Of the 22.77% attributed to Staphylococcus, 13.3% was 

classified as S. aureus, 5.3% was S. pettenkoferi, and 4% was not further classified. While S. 
aureus is a common DFU isolate, the high abundance of S. pettenkoferi was surprising as 

this species was only recently characterized in 2007 (Trülzsch et al. 2007), though it was 

identified as the cause of osteomyelitis in patient with a chronic DFU in France (Loïez et al. 

2007).

DFU microbiota can be partitioned into four community types

We assigned DFUs to community types with the Dirichlet multinomial mixture (DMM) 

model-based approach (Holmes et al. 2012). The DMM model supposes a more biologically 

relevant distribution of data, which overcomes limitations of alternative methods such as k-

means (Holmes et al. 2012) and PAM clustering (Ding and Schloss 2014). The DFU 

microbiomes were clustered into 4 groups, or Community Types (CT), by minimizing the 

Laplace approximation (Fig. S1). The top five differentiating taxa contributed 48.9% of the 

total difference between a one and four component model, though the major distinguishing 

taxa were Streptococcus (25.6%) and S. aureus (11.8%) (Fig. 1A). CT3 DFUs were 

characterized by high relative abundances of Streptococcus (median = 64.0%). CT4 DFUs 

were comprised of relatively high levels of S. aureus (median=23.8%). CT1 and CT2 were 

highly heterogeneous with no dominant taxa contributing more than a median of 5% of total 

Loesche et al. Page 3

J Invest Dermatol. Author manuscript; available in PMC 2017 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relative abundance. This was also reflected by Theta values, a measure of cluster variability 

with smaller values corresponding to highly variable communities, which were 3.7 and 6.9, 

for the CT1 and CT2 compared to 16.4 and 10.5 for CT3 and CT4, respectively. Community 

type summaries are described in greater detail in Table S3.

To better visualize how CTs were associated with microbiota composition and clinical 

features, we generated a biplot depicting these relationships (Fig. 1B). As would be 

expected, the taxa vectors for Streptococcus and S. aureus are closely associated with the 

CT3 and CT4, respectively. Interestingly, the samples with the highest proportion of S. 
aureus are not included in CT4, demonstrating the importance of the whole community in 

distinguishing clusters. Streptococcus was closely associated with HbA1C levels and 

anaerobe levels with ulcer depth. Serum C-reactive protein levels (CRP) and white blood 

cell counts (WBC), both measures of inflammation used to inform the diagnosis of 

infections, localized separately with CT4 and CT3, respectively. Subject outcomes also 

contributed to data separation, with amputation localizing with CT1 and CT2, and unhealed 

subjects localizing with CT4. Further quantification of the correlation between clinical 

factors and DFU microbiota are provided in Table S4.

The frequency of Community Type transitions in DFU are associated with clinical 
outcomes

We next investigated the stability of the CTs by exploring the frequency and type of CT 

transitions. The DFU microbiota was highly dynamic with CT transitions occurring every 

1.76 study visits (approximately 3.52 weeks) on average (Fig. 2A). Transition frequencies 

were significantly associated with subject outcomes (healed = 1.60, unhealed = 2.04, 

amputation = 3.08 study visits/CT-transition). We further subdivided healed subjects into 

those whose ulcers closed in <12 weeks and those closed in >12 weeks. Consistent with our 

analysis, the faster healing subjects experienced greater transition frequencies (<12 weeks = 

1.45, >12 weeks 2.11 study visits/CT-transition, Wilcoxon p-value = 0.011).

We then questioned whether transition patterns between CTs were related to ulcer outcomes. 

By quantifying transitions between CTs we could represent the data as a Markov chain, with 

nodes representing CTs and edges representing transition frequencies by their weight (Fig. 

2B). The transition patterns between those that healed in <12 weeks and those that healed in 

>12 weeks were significantly different (p-value < 0.0001). In those who healed in <12 

weeks, CT1 and CT2 dominated the transitions and were noted to have high self-transition 

rates of 0.74 and 0.53, respectively. In contrast CT3 and CT4 experienced lower self-

transition rates of 0.23 and 0.29, and had a predilection for transitioning to CT2. For subjects 

that took >12 weeks to heal, there is a marked increase in self-transitions, with ulcers 

stalling in CT3 and CT4 at rates of 0.45 and 0.84, respectively, indicating that the stability of 

these CTs may be detrimental to wound healing. Analysis of the stationary distribution and 

expected recurrence time revealed similar trends (Table S5). The presence or absence of 

transitions between CT3 and CT4 also differentiated the two groups, with no recorded 

instances in wounds healing in <12 weeks. Together these findings suggest that community 

stability reflects a delayed healing phenotype.
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DFU with more dynamic microbiota heal faster than those with less dynamic microbiota

To address more subtle patterns of variation, which may not be apparent when examining 

broad community types, we used the inter-visit weighted UniFrac (WUF) distance as a 

proxy of stability. The weighted UniFrac metric measures the proportion of shared OTUs, 

their phylogenetic relationships, and their relative distributions on a scale of 0 to 1, with 

higher values indicating greater instability. We generated mixed-effect linear regressions to 

model the relationship between microbiota instability and time required to heal in those that 

healed within 24 weeks. This model suggests that all ulcers are slowly stabilizing at a rate of 

−0.024/visit; however, slow healing ulcers begin in a more stable state (−0.036 per visit 

required to heal) (Fig. 3A). Because mixed-effect models do not allow generation of a 

traditional R2 value, we calculated marginal and conditional pseudo-R2 values, which 

reveals an estimate of the variance due to the fixed effects alone and the combined model of 

fixed and random effects respectively. The marginal R2 was estimated to be 0.201 and the 

conditional to be 0.280, indicating that our model explains a moderate amount of the 

variation.

The first inter-visit distance, between the baseline study visit and following visit, includes 

the effect of the initial surgical debridement. Thus it was possible that the high instability in 

faster healing wounds was an artifact of the first study visit being weighted more. To address 

this concern, we investigated the relationship between healing time and the amount of 

change between baseline and the following visit (2 weeks’ time) using a traditional linear 

model. We found the same negative association between healing time and the inter-visit 

distance (R2 = 0.16, p<0.0001) (Fig. 3B), suggesting the effect is independent of 

debridement.

Effect of antibiotics on temporal stability in DFU microbiota

During the course of the study, 32 subjects required the administration of antibiotics, which 

afforded us the opportunity to glean the effects of antibiotics on ulcer microbiomes. 

Antibiotic exposure did not drive microbiota variation in our samples (Fig 1B). Furthermore, 

we did not detect any significant changes in community diversity as measured by the 

Shannon index or OTU richness, perhaps due to unique interactions between specific 

antibiotic classes and personal microbial communities. We binned antibiotics into categories 

based on their class and mechanism of action, and assessed their potential to disrupt 

microbial communities using the inter-visit WUF distances as before. We did not detect 

significant differences in microbial stability due to antibiotic class. However, in half of the 

cases, the antibiotics were prescribed to treat infections not involving the studied ulcer (e.g. 

other ulcers, urinary tract infection, upper respiratory infection, sinus infection). When we 

examined the subjects treated specifically for the study ulcer, we found that antibiotics 

administered produced significantly higher community disruption than if the antibiotic was 

given for a different indication (Fig. 4A).

In some cases, during the same time period that antibiotics were administered, the ulcer was 

designated as having a complication (wound deterioration or osteomyelitis). We modeled 

how these complications interacted with the antibiotics using mixed-effect linear regressions 

as before (Fig. 4B). We found that both complications and antibiotics contributed to 
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community disruption, though the larger effect was noted for antibiotics (WUF = 0.084 and 

0.140 respectively). Furthermore, targeted antibiotics and complications had an additive 

effect on the amount of community disruption (WUF = 0.201).

DISCUSSION

Here, we explore the temporal dynamics of the human chronic wound microbiota. 

Microbiome studies in other body sites have shown that disease states are associated with 

less stability (Martinez et al. 2008; Jenq et al. 2012; DiGiulio et al. 2015). Surprisingly, 

DFUs that experienced delayed healing or resulted in amputation were associated with 

increased stability, while the inverse was true for faster healing wounds. One way of 

interpreting these findings is to conclude that there is no “normal” DFU community. A 

wound is by definition an abnormal and transient state in physiology. As such, colonizing 

bacteria should be considered opportunistic and unlikely to have evolved harmonious 

methods of existing with the host. From this perspective, instability in the microbiome is a 

reflection of effective control of wound bacteria, which prevents any community structure 

from stabilizing. In contrast, a DFU with a stable outgrowth of certain bacteria reflects a 

stalled healing state where the colonizing bacteria have overridden the host’s defenses.

We found that the DFU microbiome can be partitioned into 4 community types. Increased 

community type transitions were associated with improved healing rates; however, these 

community type transitions were not random. In quickly healing ulcers, CT1 and CT2 were 

substantially more likely to remain unchanged, whereas CT3 and CT4 were more likely to 

transition to CT2. In slow or unhealing wounds, we found that CT3 and CT4 became much 

more resilient. These findings suggest that the prognostic capacity of transition frequencies 

would be augmented by information of community structure. Further studies are needed to 

delineate cause and effect relationships of the microbiota with the wound environment.

Despite the regular use of antibiotics to treat infections, little is known about their impact on 

microbial communities in chronic wounds. We did not detect any differences in community 

diversity or composition due to antibiotic exposure, unlike the gut where exposure to certain 

antibiotics is known to decrease diversity levels, predisposing to infection by Clostridium 
difficile (Dethlefsen and Relman 2011; Stein et al. 2013). Instead, as in other body sites 

(Keeney et al. 2014; Modi et al. 2014; Zhang et al. 2014; Mayer et al. 2015), antibiotics 

disrupted the microbiota. The extent of community disruption was not dependent on the 

class of antibiotic; rather it was whether the antibiotic was targeted towards the ulcer being 

studied. However, our analysis is limited by the biweekly sampling frequency, limiting the 

detection of short-lived changes.

Another limitation of this study is that relatively few subjects required amputations or did 

not heal during the study, perhaps a reflection of the regular care the subjects received for 

their DFUs at 2 week intervals. Therefore, we could not robustly analyze these specific 

outcomes with respect to the microbiota. To circumvent this obstacle, we relied upon 

alternative endpoints, including rate of healing and aggregate infection related complications 

(i.e. wound deterioration, osteomyelitis, amputation). The cohort was also disproportionately 

white and male, a reflection of the demographic composition at the study site. While a 
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homogeneous cohort is advantageous from a study design standpoint, limiting potential 

variability due to race and sex, the findings should be interpreted with caution. Studies in 

more diverse cohorts should be conducted to determine if the findings presented here are 

broadly applicable across race and sex.

In some reports, over half of DFUs are infected at the time of presentation (Prompers et al. 

2007); however, identifying reliable criteria to diagnose an infection is complicated by the 

attenuated response to infections in diabetic persons (Brem and Tomic-Canic 2007). While 

our results would benefit from validation in larger cohorts, and their applicability to other 

types of chronic wounds needs to be tested, we provide evidence that the temporal dynamics 

of the wound microbiome may be useful for identifying stalled wounds requiring antibiotic 

treatment. We envision that these findings will ultimately guide clinicians in the 

management of chronic wounds in a personalized manner.

MATERIALS AND METHODS

Study Design

A prospective, longitudinal cohort design was used to examine DFU microbiota and 

outcomes in 100 subjects. DFU microbiota was collected at initial presentation (baseline) 

and resampled every two weeks until: 1) DFU healed; 2) lower extremity amputation; or 3) 

the conclusion of 26 weeks of follow up. The Institutional Review Boards at the University 

of Iowa and the University of Pennsylvania approved all study procedures.

Setting and Sample

Subjects were enrolled from September 2008 through October 2012 at the University of 

Iowa Hospitals and Clinics (UIHC) and the Iowa City Veteran’s Affairs Medical Center 

(VA). Subjects were recruited through local media advertisements and from outpatient 

clinics at UIHC and the VA. The target population was diabetic adults (i.e., 18 years of age 

or older) with a DFU on the plantar surface of the foot and ankle/brachial or toe/brachial 

indexes > 0.5 to ensure the sample was a homogenous group of neuropathic DFUs. 

Individuals meeting these criteria were enrolled after providing informed written consent.

We standardized the management of the study DFUs after enrollment, including ulcer 

dressings (i.e., Lyofoam®, Molnlycke Health Care), devices used for offloading (i.e., total 

contact casts were used for 87 subjects; DH boots for 13 subjects), and ulcer debridement 

(i.e., aggressive sharp debridement of necrotic tissue in the wound bed was completed at 

baseline and callus on the wound edge was removed every two weeks), in order to minimize 

the number of factors unrelated to ulcer bioburden that could impact DFU outcomes. DFU 

management did not include antimicrobial dressings, topical antimicrobials, and/or systemic 

antibiotics, unless an infection-related complication was present at enrollment or occurred 

during follow-up. Baseline data were collected immediately after enrollment. Study data 

were collected every two weeks until one of the study endpoints was reached.
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Study Variables

Clinical factors—The research team measured a set of clinical factors in order to identify 

pertinent co-variates for the analyses and to comprehensively describe the study sample. At 

baseline, demographic data, diabetes type and duration, and duration of study ulcer were 

collected using subject self-report and medical records. Standard laboratory tests were used 

to measure baseline glycemic control (haemoglobin A1c levels), as well as immune (White 

blood cell count) and inflammatory markers (C reactive protein). The research team assessed 

each subject for ischemia using toe-brachial index and for neuropathy using 5.07 Semmes-

Weinstein monofilament. Transcutaneous oxygen pressure was measured at baseline and at 

each follow-up visit, using a transcutaneous oxygen monitor (Novametrix 840®, 

Novametrix Medical Systems Inc.). Ulcer location was categorized as forefoot, midfoot, or 

heel.

Microbiome—Ulcer specimens were collected using the Levine technique. After cleansing 

with non-bacteriostatic saline, an Amies swab (Copan, Italy) was rotated over a 1-cm2 area 

of viable wound tissue in the center of the wound bed for five seconds, using sufficient 

pressure to extract wound-tissue fluid, DNA was isolated from swab specimens as 

previously described (Gardner et al. 2013). Levine’s swab technique was used because it 

samples the viable, deep wound tissue in a non-invasive manner, allowing for serial 

sampling of the wound over time. Levine’s swab produces comparable results to tissue 

specimens for microbial load and diversity (Gardner et al. 2006). Amplification of the 16S 

rRNA gene V1–V3 region was performed as described previously (Meisel et al. 2016), using 

the Illumina MiSeq platform with 300 bp paired-end ‘V3’ chemistry. This resulted in a 

dataset of 7,702,607 high quality, classifiable sequences used in the final analysis, with a 

mean of 22,070 (range 1,206–69,167) sequences per sample. Sequence pre-processing 

followed methods described previously (Meisel et al. 2016), modified by performing denovo 
OTU clustering via UCLUST, assigning taxonomy with BLAST, and subsampling at 1200 

sequences per sample. Sequences corresponding to the taxa “Geobacillus”, “Bacillus”, and 

“Lactococcus” were removed as these were identified as contaminants in the negative 

controls. QIIME 1.9.0 (Caporaso et al. 2010) was used for initial stages of sequence 

analysis. Sequences were clustered into OTUs (operational taxonomic units, a proxy for 

‘species’) using UCLUST (Edgar 2010) at 97% sequence similarity. Microbial diversity was 

calculated using the following alpha diversity indices: 1) Shannon diversity index; 2) Faith’s 

phylogenetic distance (PD); and 3) number of observed OTUs. Taxonomic classification of 

sequences were made using BLAST, as implemented in QIIME.

Outcomes—Members of the research team, who were blinded to the microbiota status, 

assessed healing and infection-related complications every two weeks. Ulcer closure was 

assessed using the Wound Healing Society’s definition of “an acceptably healed wound,” a 

valid and reliable definition (Margolis et al. 1996). The outcome “healed by 12 weeks” was 

defined as wound closure before or at 12 weeks of follow-up. “Development of infection-

related complications” was defined as wound deterioration, new osteomyelitis, and/or 

amputations due to DFU infections.
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Wound deterioration was defined as the new development of frank erythema and heat, and 

an increase in size > 50% over baseline. Two members of the research team independently 

assessed each DFU for erythema and heat. Two members of the research team independently 

assessed size using the VeVMD® digital software system (Vista Medical, Winnipeg, 

Manitoba, Canada), which was loaded on a Dell Latitude D630 laptop computer (Dell, 

Round Rock, Texas). Digital images were taken that contained the ulcer, a 3×3 square-

centimeter image orientation card, and a single-point wound-depth indicator (i.e. A cotton-

tipped swab that had been placed in the deepest aspect of the DFU and marked where the 

swab intersected with the plane of the peri-wound skin) and uploaded into the VeVMD 

program. VevMD tools were used to trace the ulcer outline and a line along the wound depth 

indicator to generate measures of depth and surface area.

Osteomyelitis was assessed using radiographs and MRI at baseline and during follow-up 

visits when subjects presented with new tracts to bone, wound deterioration, elevated 

temperature, elevated white count, elevated erythrocyte sedimentation rate, or elevated C-

reactive protein. If these indicators were absent at follow-up, radiographs were not retaken. 

Subjects experiencing lower limb amputations had their medical records reviewed by the 

research team to ensure amputations were due to DFU infection, and not some other reason.

Data Analyses

The R Statistical Package (R Core Team 2016) was used for all computations. Non-

parametric Wilcoxon rank-sum tests were used to compare differences between groups. 

Spearman correlations were used to correlate continuous variables. Kruskal-Wallis tests, 

followed by Wilcoxon rank sum post-hoc tests, were used for categorical variables. Linear 

models were calculated in base R; mixed-effect regressions were generated using the NLME 

package (Pinheiro et al. 2007). Partial and conditional pseudo-R2 values were calculated 

using the piecewiseSEM package (Lefcheck 2016). Sample biplot was generated using the 

Breadcrumbs package as done in (Morgan et al. 2015). Differences in Markov chain 

transition frequencies were tested with a Fisher’s test and simulated p-value. Dirichlet 

multinomial mixture modeling was performed using the R package Dirichlet Multinomial 

(v1.10.0). Counts were calculated at the highest level of taxonomic classification. The 

number of community types was determined by selecting the number of Dirichlet 

components that minimized the Laplace approximation of the model evidence (Holmes et al. 

2012). Each sample was assigned to the community type that had the largest posterior 

probability. Inter-visit distances were calculated using the weighted UniFrac distance 

between consecutive visits. If visits were discontinuous (i.e. missing sample) no distances 

were reported.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The DFU microbiome clusters into four Community Types
(A) DFU samples partitioned into four clusters by Dirichlet multinomial mixture model. 

Mean relative abundances of bacterial taxa in DFU samples assigned to each Community 

Type. Relative abundance is shown on the Y-axis. Taxa are filtered to those with a mean 

abundance greater than 1%. (B) Sample similarity between DFU microbial communities 

were calculated using the Bray-Curtis distance and these distances were ordinated and 

visualized via non-metric multidimensional scaling (NMDS). Each taxonomic contribution 

to community differentiation is overlaid with black text and “x” indicating the exact 

location. The impacts of various metadata are depicted as vectors labeled with gray text. 

Success of NMDS ordination is represented by the stress score, which measures the 

agreement between the 2-D and multidimensional representations. Stress scores range from 

0 to 1 and scores below 0.3 are considered good approximations. Samples, taxa, and 

metadata that are closer together are more related. Samples are color-coded based on 

community type.
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Figure 2. DFU Community Types are dynamic
(A) Per patient illustration of Community Type switching grouped by outcome. Depicted on 

the X-axis is visit number. Each row on the Y-axis represents a subject with a DFU. Colored 

boxes illustrate which Community Type was colonizing the DFU at the indicated visit 

number. Empty tiles represent a missed visit, whereas gray tiles indicate that a sample was 

not collected or available for analysis at that time point. The black diamonds indicate that 

the patient received antibiotics since the last visit. Only subjects that participated in >1 study 

visit are shown. (B) Markov chain visualization depicting the differential transition 

probabilities between community types of DFUs that healed in 12 weeks or did not. Each 

node represents a Community Type, arrows indicate the transition direction and probability 

(thickness), node size represents number of samples. Annotated are the self-transition 

probabilities.
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Figure 3. 
Inter-visit Weighted UniFrac distances associations with healing time for subjects that 

healed during the study. X axes represent the study visit; study visits were 2 weeks apart. (A) 

Inter-visit distances are shown for each subject and depict a negative trend over time. Line 

and point colors represent the number of study visits that the ulcer persisted (red = 1, green 

= 8). Ulcers stabilize at a rate of −0.024/visit, but start at a lower rate in those ulcers that 

require more time to heal (−0.036 per visit required to heal). (B) Inter-visit distances 

between baseline and first study visit as a function of number of visits until healing. A 

negative correlation is found even within this initial comparison (R2 = 0.1601, p<0.0001).
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Figure 4. 
Effects of antibiotics on microbial communities in DFUs. (A) Boxplot showing the inter-

visit Weighted UniFrac distances of subjects during exposure to antibiotics split by 

indication. Antibiotics given for the ulcer being studied produces greater community 

disruption than antibiotics given for other ulcers or other infections. Antibiotic class did not 

yield more information. (B) Boxplot showing the inter-visit distances of all samples binned 

by event type (complication, antibiotics, both, or none). Antibiotics and ulcer complications 

both disrupt the microbiota, and their combined effect is additive.

Loesche et al. Page 15

J Invest Dermatol. Author manuscript; available in PMC 2017 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	RESULTS
	Characterization of the DFU microbiota at baseline
	DFU microbiota can be partitioned into four community types
	The frequency of Community Type transitions in DFU are associated with clinical outcomes
	DFU with more dynamic microbiota heal faster than those with less dynamic microbiota
	Effect of antibiotics on temporal stability in DFU microbiota

	DISCUSSION
	MATERIALS AND METHODS
	Study Design
	Setting and Sample
	Study Variables
	Clinical factors
	Microbiome
	Outcomes

	Data Analyses

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

