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Abstract

The cell surface orchestrates plasminogen activation through the concomitant binding of 

plasminogen and plasminogen activators to specific receptors. In this issue, Miles and colleagues 

describe their detailed phenotypic characterization of mice deficient in Plg-RKT, a key 

plasminogen receptor expressed in numerous tissues, but highly expressed by proinflammatory 

macrophages. The analysis provides critical and surprising new insights into the biology of this 

receptor.

The plasminogen activation system is a versatile proteolytic system with essential functions 

in thrombolysis, extravascular fibrin surveillance, suppression of fibrin-associated 

inflammation, tissue remodeling, tissue regeneration, and more. In addition to these 

physiological functions, deregulation of the plasminogen activation system is linked to the 

genesis, progression, or morbidity of a wide variety of important human diseases, including 

bacterial infection, cancer, neurodegenerative disorders, fibrosis, muscular dystrophy, and 

rheumatoid arthritis [1-31].

Plasmin, the key effector of most functions of the plasminogen activation system, is a multi-

domain trypsin-like serine protease consisting of a pan-apple domain, five kringle domains, 

and a serine protease domain. It is formed by proteolytic conversion of the catalytically-

inactive protease zymogen, plasminogen, by an endoproteolytic cleavage within the 

activation site of the serine protease domain. Plasminogen is predominantly synthesized by 

the liver and is present in remarkably high concentrations (1-2 μM) in plasma and in other 

extravascular fluids [32, 33]. Plasminogen is converted to plasmin either by tissue 

plasminogen activator (tPA) or by urokinase plasminogen activator (uPA), which are two 

closely related trypsin-like serine proteases that typically are synthesized, activated, and/or 

released after disruption of tissue homeostasis, leading to spatially and temporally restricted 
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plasmin generation [3]. Once generated, plasmin is inhibited primarily by the fast-acting and 

abundant serpin-type protease inhibitor, α2-antiplasmin, [34, 35], while tPA- and uPA-

mediated activation of plasminogen mainly is inhibited by the serpin-type protease inhibitor, 

plasminogen activator inhibitor-1 (PAI-1) [36, 37]. Following inhibition by their cognate 

inhibitors, plasmin and plasminogen activators are internalized by members of the low-

density lipoprotein receptor family for lysosomal degradation [38, 39].

Although tPA and uPA both can activate plasminogen in solution, the activation is 

inefficient, and the newly generated plasmin is susceptible to rapid inhibition by α2-

antiplasmin. Rather, the molecular pathways that mediate the conversion of plasminogen to 

plasmin under physiological conditions involves the formation of ternary complexes 

between plasminogen and plasminogen activator, with the fibrin polymer or the surface of 

cells serving as the two principal sites for plasminogen activation. Fibrin strongly promotes 

activation of plasminogen by tPA by serving as a scaffold for the binding of tPA and 

plasminogen in a manner that brings the two molecules in close apposition and 

simultaneously protects the newly generated plasmin from inactivation by α2-antiplasmin 

[40-43]. Both tPA and uPA mediate cell surface plasminogen activation through the binding 

to specific cellular receptors that may be constitutively expressed, or induced in response to 

disruption of tissue homeostasis.

Although cell surface binding has long been recognized to be critical to both the conversion 

of plasminogen to plasmin and for the subsequent physiological functions of plasmin, the 

identification and validation of specific cell surface receptors for plasminogen has proved to 

be a remarkably complex task and the subject of extensive and long-standing investigation 

(reviewed in [44]). Two factors seem to have contributed to this: The first is the peculiar 

ability of plasminogen to bind to proteins containing a C-terminal lysine residue via its 

kringle domains [45]. That this mode of binding is indeed employed by plasminogen during 

its activation on the cell surface was revealed in early studies, showing that treatment of cells 

with carboxypeptidase B, which removes C-terminal lysines from proteins, largely abolished 

the potentiation of plasminogen activation by cells [46]. However, it follows that a large 

number of cell surface-exposed proteins with C-terminal lysine residues will be amenable to 

plasminogen binding, although this binding may not be productive in terms of stimulating 

plasminogen activation or affording protection from α2-antiplasmin. The second factor is 

the unusually high concentration of plasminogen (1-2 μM) in plasma and interstitial fluids, 

which means that even cell surface proteins with relatively low affinity for plasminogen 

must be considered candidate receptors for productive plasminogen activation.

The list of candidate receptors for plasminogen reported thus far is exhaustive, and includes 

the membrane-associated proteins S100A10 (in complex with annexin A2 within the 

annexin A2 heterotetramer) [47] and Plg-RKT (see below), as well as, surprisingly, proteins 

with a normally intracellular location and function including cytoplasmic proteins (α-

enolase [46], cytokeratin 8 [48], actin [49]) and nuclear proteins (TIP49a [50] and histone 

H2B [51]). A subset of integrins have also been identified as plasminogen receptors, 

including αVβ3, αMβ2, and αIIbβ3. The role of these integrins as plasminogen receptors is 

notable in that these receptors do not engage plasminogen through a C-terminal lysine and 

do not significantly enhance plasminogen activation (reviewed in [44]).
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Originally identified from a membrane proteome screen of differentiated mouse 

macrophages, the 147- amino acid Plg-RKT is unique compared to previously described 

plasminogen receptors, as it is present exclusively on the cell surface, being synthesized as 

an integral membrane protein that supports plasminogen binding through a C-terminal 

lysine. Plg-RKT is highly conserved across mammalian species with homologs also in 

Xenopus, Drosophila, and zebrafish, and, importantly, all of the mammalian orthologs of 

Plg-RKT contain a C-terminal lysine residue [52]. Like many of the proposed plasminogen 

receptors, Plg-RKT is broadly expressed in mammalian tissues and notably in many 

hematopoietic-derived cells. Plg-RKT also significantly enhances plasminogen activation by 

supporting binding of plasminogen activators. tPA binds Plg-RKT through the same C-

terminal lysine domain and, thus, can enhance plasmin generation through plasminogen 

bound to an adjacent Plg-RKT molecule. In addition, Plg-RKT is clustered on the cell surface 

with uPA when bound to its receptor uPAR. This colocalization of plasminogen activators 

and plasminogen has been proposed as a key mechanism by which Plg-RKT regulates cell 

surface associated plasmin generation [44, 52, 53].

The broad expression pattern of plasminogen receptors in general, and Plg-RKT in particular, 

coincides with the numerous physiologic and pathophysiologic processes in which cell-

surface associated plasmin generation has been proposed to participate (i.e., thrombus 

resolution, inflammation, bacterial infection, wound healing, neuronal function, tumor 

progression, metastasis, muscle injury and repair, and bone homeostasis). However, the 

numerous identified candidates, as well as the overlapping cellular expression pattern of 

these proteins, complicate defining the precise roles of specific plasminogen receptors in 

various processes. In order to address this concept and provide a valuable new tool for in 
vivo analysis of the PA system, Miles and colleagues recently generated Plg-RKT knockout 

(Plg-RKT
−/−) mice through a standard homologous recombination strategy in mouse 

embryonic stem cells (see pages XXX of this issue of JTH). The baseline characterization of 

these animals supports key roles for plasmin(ogen) that are linked to Plg-RKT binding and 

plasmin functions that are independent of Plg-RKT. Furthermore, unexpected phenotypes 

suggest novel functions for Plg-RKT independent of plasminogen itself.

Like plasminogen knockout (Plg−/−) mice, Plg-RKT
−/− mice are viable and fertile. Although 

Plg-RKT
−/− female mice can carry a litter to term, they are incapable of supporting even an 

initial litter of neonates to weaning. This failure of pup survival was linked to a severe 

lactation defect where milk production in Plg-RKT
−/− females was severely decreased within 

2 days postpartum. Plg−/− mice also have a documented impairment in lactational 

competence, however it is markedly less severe. Indeed, many Plg−/− females can support a 

first litter to weaning, but routinely fail to support a second litter indicating a significant 

deleterious event following the first mammary gland involution episode. The mammary 

gland defect observed in Plg−/− mice was linked to persistent fibrin accumulation [31, 54]. 

The fact that the phenotype in Plg-RKT
−/− mice was more severe than that observed for 

Plg−/− mice suggests a plasminogen-independent mechanism. It is possible that Plg-RKT 

serves as a receptor for a second, as yet unidentified, protease that functions to modify the 

ECM during mammary gland development. Alternatively, it is possible that Plg-RKT works 

in concert with other cell surface or integral membrane proteins to support mammary gland 

development. To this end, it is notable that mammary epithelial cell deficiencies in either β1 
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integrin or the gap junction protein connexin 43 have similar mammary gland defects with 

diminished milk production as that described for Plg-RKT
−/− mice [55, 56]. The precise 

cellular and molecular basis of lactation incompetence in Plg-RKT
−/− remains to be 

established.

Perhaps the most striking spontaneous phenotype for Plg−/− mice is a severe wasting disease 

leading to early mortality experienced by both male and female mice. Survival analysis of 

Plg-RKT
−/− mice indicated survival patterns similar to wildtype mice and body wasting was 

not observed, at least for male mice. Female Plg-RKT
−/− did show a progressive reduction in 

weight gain over time starting at 4.5 weeks of age, however the mechanistic basis for this 

gender-specific diminution in growth rate remains undefined. The severe wasting disease 

and early mortality characteristic of Plg−/− mice is mechanistically linked to multi-organ, 

persistent fibrin accumulation, as superimposing fibrinogen-deficiency on Plg−/− mice 

rescued both the progressive weight loss and early mortality [15]. A multi-organ histological 

survey revealed no evidence of extravascular fibrin deposits in Plg-RKT
−/− mice, and Plg-

RKT
−/− mice did not display other related phenotypes typically observed in Plg−/− mice (e.g., 

rectal prolapse, ligneous conjunctivitis) [5, 14-16]. Interestingly, mice deficient in either 

annexin A2 or S100A10 have increased microvascular fibrin deposition in multiple organs 

suggesting that, unlike Plg-RKT, the annexin A2-S100A10 plasminogen receptor plays a key 

role in baseline plasmin-mediated fibrin surveillance and clearance [57]. Annexin A2-

S100A10-deficient mice also display a compromised ability to clear arterial thrombi 

following injury [58, 59]. Whether or not Plg-RKT plays any role in thrombus clearance, be 

it the clearance of arterial thrombi or venous thrombi, remains to be established. However, 

Plg-RKT
−/− mice provide an ideal tool for addressing these very questions in an in vivo 

model system.

The initial identification of Plg-RKT from macrophages implicated the receptor in 

macrophage function and inflammation. Indeed, Plg-RKT
−/− mice were shown to have an 

~80% reduction in macrophage recruitment to the peritoneal cavity of mice using the 

thioglycollate model. This finding was consistent with previous studies showing that 

systemic administration of an antibody against Plg-RKT reduced macrophage trafficking to 

the peritoneal cavity following thioglycollate injection by 49% [53]. Modifying 

inflammation and macrophage activity appears to be a point of commonality for many of the 

plasminogen receptors, as multiple plasminogen receptors, including annexin A2-S100A10, 

enolase-1, histone 2B, TATA-binding protein interacting protein, αMβ2, and Plg-RKT, are 

expressed on the cell surface of monocytoid cells. Accordingly, targeting other individual 

plasminogen receptors similarly reduced macrophage migration in the mouse thioglycollate 

model. Antibodies directed against histone 2B and enolase-1 significantly reduced 

macrophage accumulation by 48% and 24%, respectively [60]. Additionally, S100A10−/− 

mice display 53% less macrophage recruitment following thioglycollate stimulation [59]. 

Each of these findings aligned well with results of thioglycollate challenge in Plg−/− mice. A 

65% reduction in macrophage recruitment following thioglycollate challenge in Plg−/− mice 

compared to wildtype mice was observed [61]. That elimination or blockade of any one 

plasminogen receptor on macrophages results in a significant diminution of migration 

following an identical chemotactic stimulus is intriguing and suggests one of two 

possibilities: (i) individual plasminogen receptors may be working coordinately as part of a 
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complex, such that loss of any one member significantly impacts the functionality of all or 

(ii) individual receptors may support different critical aspects of the migratory process with 

each step requiring plasminogen. Indeed, a more in depth characterization of the migratory 

process with respect to the role of plasminogen and receptors, including the impact of 

combinatorial loss of receptors is warranted.

Beyond simple studies of macrophage migration, the broader role of Plg-RKT and other 

plasminogen receptors in inflammation and inflammatory disease remains an open question. 

Inflammatory stimuli increase surface expression of several plasminogen receptors (annexin 

A2-S100A10, enolase-1, histone 2B, and Plg-RKT) and multiple plasminogen receptors 

(annexin A2, enolase-1, histone 2B) are targets of autoantibody production in the context of 

autoimmune diseases [62-65]. Plg-RKT
−/− mice do not appear to be particularly susceptible 

to spontaneous infectious or inflammatory events. Note that a modest increase in dermatitis 

was reported for Plg-RKT
−/− mice but strain C57Bl/6 animals are inherently susceptible to 

dermatitis [66]. However, perhaps a more interesting open question is to understand the 

contribution of cell surface-associated plasmin activity and Plg-RKT to specific 

inflammatory diseases, particularly those where macrophages play a preeminent role in 

pathogenesis (e.g., microglial cells and neuroinflammatory disease, Kupffer cells and 

hepatotoxic injury, M1-type adipose tissue macrophages and obesity). Indeed, given that 

extravascular fibrin deposits are a near universal feature of inflammatory foci, it will be 

interesting to determine whether plasmin-Plg-RKT plays a role in clearing inflammation-

associated pathological fibrin deposits or whether Plg-RKT-restricted plasmin activity 

functions in inflammation through fibrin-independent mechanisms. Further, the PA system 

and macrophages each are implicated in tumor progression. Plg-RKT is upregulated in many 

tumor types and may play a role in this disease. It is also possible that Plg-RKT may function 

in cancer through a mechanism linked to M2-type tumor promoting macrophages. Such 

possibilities highlight both the complexity of the PA system in disease and the need for more 

in-depth analyses.

In conclusion, Plg-RKT
−/− mice provide a valuable new reagent for understanding the 

contribution of cell surface-associated plasminogen activation in physiological and 

pathological processes. These mice should help provide clarity to the expanding and 

complicated field of plasminogen receptor biology by better defining roles for the most 

unique member of this receptor family. Further, these mice have the capacity to expand our 

knowledge of basic cell biology, as the current data suggests Plg-RKT may serve vital 

biological roles through mechanisms independent from plasminogen binding and activation. 

That Plg-RKT
−/− mice are viable and largely phenotype-free in the absence of a specific 

challenge suggests that pharmacological targeting of Plg-RKT in a pathological context 

would be a viable and attractive novel therapeutic strategy.
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