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INTRODUCTION AND THE DIGITALIZATION

The formal theory of symbolic logic, as developed by Boole,' Peirce,2 Jevons,3
and Schrdder4 before 1900 and by Whitehead, Russell, Hilbert, G6del, and others
after the turn of the century, is universally recognized for its fundamental im-
portance as a cornerstone of scientific method and thought. Yet it has remained
largely a philosophic and esoteric realm of study, and there have existed no methods
of actual straightforward computation for direct large-scale applications to specific
types of realistic problems. The purpose of this paper is not to present any new
results in the formal theory of symbolic logic, but rather to offer a new system of
digitalized computational methods in the propositional calculus for application to
the great number of practical nonnumerical problems that so frequently occur in
science, industry, and government. The object was to formulate a logical
"arithmetic" of extreme simplicity, which would provide, for this realm of non-
numerical problems, systematic methods of solution as simple, straightforward,
and versatile as those of numerical analysis are for problems of a numerical nature.
The theory of Boolean equations becomes a special instance of the more general
methods presented in this paper.

It is perhaps not generally realized how wide a range of problems can be attacked
and solved by methods of symbolic logic and the related Boolean algebra, which is
the calculus of sets and classes. Direct application of logic can always be an aid
to deductive reasoning-such as determining consequences of given premises, rules,
or axioms and making hypotheses or theorems from which the given premises or
factual relationships can be deduced. Besides the use of logical propositional
methods in problems concerned with sentences, such as analysis of military in-
formation reports and legal and insurance documents, there appear to be even more
important applications to fields of operations research, biology, medicine, design
of experiments, etc., where the utility of symbolic logic per se is not- as immediately
evident. Now that the results of the propositional calculus of symbolic- logic are
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made computationally feasible by these new digitalized techniques, it is hoped that
they can be directed toward successful solution of many such problems-two
examples of problems in biochemistry being given at the end of this paper. The
digitalization of the methods in terms of the binary number system provides easy
mechanization on existing high-speed electronic computers or on a special electronic
digital logic machine.

This paper will contain no proofs, although the foundations of the methods are
briefly indicated. Also, it is assumed that the reader is familiar with the methods
of symbolic logic6 and Boolean algebra7 as given in the elementary reference texts.

REVIEW OF DEFINITIONS AND NOTATION

Propositions are sentences that can be called either true or false and are sym-
bolized by At or X7, Propositions can be combined by the propositional operations
"", "+", and "-", where "A,-A." (read "A. and A.") is true when both AR and
A. are true; "A. + A," (read A7 or A,) is the inclusive or; and "A7" is the negation
of A, (read "not A."). (The analogous set or class interpretation of the symbols
as intersection, union, and complementation, respectively, is easily recognized.)
An uncombined proposition is called an elementary element, while a combination of
propositions by the propositional operations is called a combined element or Boolean
function, this latter sometimes being denoted by f7(Al, A2, ...)

It is important to distinguish between two different meanings of truth. Some
combined elements are true due to the form of the combination, independent of
the truth values of the component parts, as, for example, X. + X7 and (X,X-) +
(Xr + X,). (-S + X.). Such elements are called tautologically true, or simply
tautologies, and are denoted by I. (The intrinsically false element is denoted by
0. Hence i = 0.) On the other hand, a certain combined element, not a tautol-
ogy, may be called true under the circumstances of a problem, this being called
factual (sometimes empirical) truth. (We will not distinguish between the language
and the metalanguage but will leave the distinction to be ascertained from the
context.)
Two combined elements that are emphasized in all the original as well as in the

modern works in logic are Xr.X + X,XT and X7 + X,. The former is read
"X, is equivalent, to X," (in truth value), abbreviated by X, = X,; and when
7="X., then f(Xr, A1, A2, ...) = f(X,, Al, A2, ...) for any f. The latter is

read "Xe, impliesAX," or "if X, then X,", abbreviated by X, X,. Note that
this combination is true if X, and X, are both false, which might seem contrary
to usual. usage in language; but the proposition "If you can do that trick, then
I'll eat my hat" actually has this meaning. In general, the difficulties in formulat-
ing a problem in symbolic logic are no more formidable than the precisely analogous
task in mathematics and-depend primarily on how well defined the problem is to
begin with.. However, only the computational aspects of already formulated
problems are -considered in this paper.

TIHE BASIS AND THE DIGITALZATION

To every proposition A, will be associated a binary number #A, called the
designation number of A,; in particular, this holds for the elementary elements.
The set of designation numbers for the elementary elements is called a basis, and
onie such basis for a system of three elementary elements Al, A2, A3 is:

VOL. 41, 1955 499



MATHEMATICS:. R. S. LEDLEY

876543221
#Al = 01010101
#A2 = 00110011
#A3 = 00001111

where the small numbers above the columns number the positions of the bits. In
general, it can be shown that in a system of n elementary elements the designation
numbers will have 2" positions. A basis is distinguished by the fact that the
columns represent the 2" possible combinations of 0, 1 taken n at a time. Thus
there are 2"f! bases; the basis shown will be used throughout this paper due merely
to its visual simplicity of pattern. The relation of a basis to the familiar truth
tables is evident. It will be convenient to denote the bit in the ith column and
rth row of a basis by bAi, .. ., A8]'. For example, in our basis b[Al, A2, 2 = 1.
The propositional operations are interpreted in terms of the designation numbers

in a manner reminiscent of vector addition as follows, where #A' represents the bit
0 or 1 in the ith position of #A,:
#(Ar+A,)i = #A' + #A according to the rule 1 + 1 = 1 + 0 = 0 + 1 = 1,

0+0 = 0;
#(Ar-A) = #A'v#A according to the rule 1 0 = 0.1 = 0.0 =0, 1 1= 1;

and #A' 0, 1 when #A' = 1, 0, respectively.

The operation "+" is called logical addition, "*" logical multiplication, and
inversion. Thus the designation number of a combined element with respect to
a particular basis is obtained by performing the operations indicated by the combi-
nation. For example, with respect to the basis given above, #(Al + A2-A3) -
10101010 + (00110011)*(00001111) = 10101010 + 00000011 = 10101011. The
set of all the 22V possible designation numbers forms a representation of a free
Boolean algebra. (Note that for elementary elements, #A' = b[A', ..., A,]', of
course.)
For the reverse process-namely, given the designation number, to find its

propositional representation-note that every product of all the elementary
elements or their negations, called an elementary product, has a single unit, i.e.,
#(A1A2.A3) = 00000001, #(A,1A2.A3) = 00000010, etc., for each of the 23 such
products. Hence a propositional representation called the disjunctive normal
form is obtained by forming the sum of those elementary products corresponding
to the units of the designation number. For example, 01100010 = #(A-A2-.A3 +
A1.A2A3 + A1.A2.A3). Other propositional representations can be systematicallV
generated, such as the simplest-sum-of-products form, simplest-product-of-sums
form, and the conjunctive normal form.8

Important observations are that #1 consists only of units, i.e., #I = 1 for'all i.
Hence #0O = 0 for all i. Also, X8- Xr if and only if #X. = #X, for all i. In
addition, X, - X* if and only if #X, has units in at least the same positions as does
#X,; i.e., if #Xr = 0, then #Xr, = 0, 1, but if #X - 1, then #X = 1.

COMPUTATIONAL METHODS

CONSTRAINTS

The concept of constraints is fundamental for the computational methods.
Constraints are -logical relations between the elementary elements which are to be
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considered as tautologically true, due to intrinsic or stated circumstances of a
problem. In other words, constraints are factually true combined elements
which are to remain true throughout a problem and therefore, with respect to this
problem, can be considered as tautologies. A systematic computational method
will be given that automatically guarantees the maintenance of any desired con-
straints throughout the solution of a problem. After constraints have been
applied, a constrained propositional calculus results, which can be interpreted in
terms of a nonfree Boolean algebra.

In particular, if H is an automorphism of a Boolean algebra B, such that "+,
"*", and "" are preserved [i.e., for X7, X., e B, H(X, + X,) = H(X,) + H(X8),
H(XrX.X) = H(X7) .H(X,), and H(A.) = H(Ar)], and if F(A1, A2, ...) eB repre-
sents a constraint, then we desire that H(F) = I. Under this automorphism,
equivalence classes are formed by the set { F} together with the sets {X} i, where
(F + X,) e {IF} for all X. e B. this being the kernel of H, and for X. f {F}, X8 e I XI i

if H(X8, F) = Xi. The equivalence classes form the elements of the nonfree
Boolean quotient algebra B/F, when the operations between the classes are defined
by {XJr + {X}, = {Xr + X8}, {X}7r{X}8 = {X,.XJ, and {X,} = {Xr}. If
#F has u units, then there will be 2(2" -u) distinct elements in each equivalence
class and 2u equivalence classes all together. This quotient algebra automatically
satisfies the constraints and represents a constrained propositional calculus.
Given the constraints F1, F2, ..., F., the computational method consists in first

1' = r

forming II (#F,,) and then reducing the reference basis to include only those
g =l1 # = T

columns j for which H (#FJ) = 1 (i.e., those columns corresponding to the unit
5L 1

positions of the product of the constraints). All computations with respect to
this reduced basis will automatically have #F,, = #I (1A = 1, 2, . . ., r), as desired.
For example, the constrained basis b,[Al, A2, A3] that will make A1, A2, A3 mutually
exclusive and exhaustive as is often desired in problems concerning classification of
subject matter, namely, A1.A2 = 0,AlA3 = 0, A2.A3 = 0,Al + A2 + A3 = I,
becomes

764

#Al = 100
#A2 = 010
#A3 = 001

For this constraint, A,, A2, A3 are called the components of the three-component
proposition A and form an example of an n-component proposition.

ANTECEDENCE AND CONSEQUENCE SOLUTIONS

The majority of logical problems involve given or accepted premises, hypotheses,
rules, or other logical relationships which are the given equations and essentially
comprise the statement of the problem. There are two types of solutions to a set
of given equations, the antecedence solutions and the consequence solutions. Ante-
cedence solutions are hypotheses or theories from which the given equations can
be deduced; consequence solutions can be deduced from the given equations. In
other words, the truth of the antecedence solutions is sufficient for the truth of the
given equations, but the truth of the consequence solutions is necessary for the
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truth of the given equations. If the given equations are true, then the consequent
solutions are true, while the antecedence solutions may or may not be true; but
the truth of the given equations can be deduced from the hypotheses embodied in
the antecedence solutions, this latter being the method for theory construction.

However, to produce just one antecedence or one consequence solution to given
equations is usually trivial; hence logical problems always require solutions of a
specified form or solutions involving only certain specified elementary elements or
both. Occasionally solutions with the required properties do not exist, and the
problem is extended to determine under what conditions such solutions do exist
for the given equations. (It is of historical interest to note that the problem of
solution to equations as posed by Schroder and others is merely a special case of the
general theory presented here, being antecedence solutions of the particular form
Xs= f)
More specifically, a complete set of antecedence solutions for given equations

is any set of constraints F that makes each of the equations true in the constrained
system B/F (i.e., that maps each equation into I). All combined elements that
become true (are mapped into I) in the constrained system B/E, the constraints
being the given set of equations E, are consequence solutions. With those defini-
tions in mind, the problem is summarized in Figure 1. The given equations E1,
... Er are combined elements or functions of the elementary elements Al,.
A i, X1, ..., Xk. The specified forms F1, ..., F5 for the antecedence or consequent

Condition for
Condition for Consequence Solutions

Antecedence Solutions

ANTECEDENCE GIVEN CONSEQUENCE
SOLUTIONS EOUATIDNS SOLUTIONS

of foms of forms

F(fl.-, * XI, ) E1(AI, AiX1 , I)F1(11,-- X-)

F2( | 2( F2(

here If, - f s (A 1, A,)

FIG. 1

solutions are, in general, known functions of X1, ..., Xk and of fi, ..., fj, where
the fj are as yet unknown functions of Al, ..., Ai. The object is to determine
explicitly the functions fy or, if they do not exist, conditions for their existence.
Summarizing, then, computational methods for determining the existence of
antecedence or consequence solutions of specified forms and, if they exist, for
generating all such solutions, or, if not, for determining conditions of existence,
will be presented.
The fundamental formulas for determining antecedence and consequence solu-

tions are the following:
ANTECEDENCE CONSEQUENCE

(FJk) (4Eki) = (R~i)| (Flk) X (EA) = (Rji)
wrhere (FJk), (Ek ). (Rj f) are Boolean matrices (of elements 0, 1 only), and ® repre-
sents logical matrix multiplication [i.e., if (Pik) 0 (Qki) = (S3{) then E PJkQki =

k

Sp with logical multiplication and addition]. The"i represents inversion of
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each individual element of the matrix. The formation of (Eke) and (Fj,), and the
interpretation of (Rji) as the desired solutions, proceed as follows.

The Formation of Matrices (Eki) and (Fjk).-Two bases enter into this calcula-
tion namely, b[Ai, ., Ai, X1, ., Xk] and b[f1, .. ,fj, X1, ..., XkI, where the fj's
are considered as elementary elements and both bases have the usual pattern,

pu r

the last rows being formed by the Xk's. Then form H (#E,) with respect to
P `= s #=A

[A ., Ai, X1, ..., Xk] and H (#F.) with respect to b[f1, .. fj, X1,
P=1 ,u~~~~~~~~I = r

Xk]. Now separate the positions of the designation number II (#E,,) into
,k= 1

2 successive groups of positions, with 2' positions in each group. Index the
groups from right to left by k (k = 1, . . ., 2k) and the positions in each group by
i (i = 1, ..., 2'). The rows of the matrix (Eki) are simply these respective groups

v = s
of positions. Similarly, H (#F,) is separated into 2k groups, this time of 2i

positions, the groups being indexed by k and the positions in each group by j (j = 1,
2J). The columns of the matrix (Fjk) are simply these respective groups of

positions.
In more mathematical terms, the formula for an element Eki of the matrix (Ekf)

,u =r IA= r

is Eki = H (#EP) for (p - 1) = (k - 1)2' + (i - 1). Similarly, (Fjk) = H
p= 1 Ad= r =l1

(#F,) for (q-1) = (k - 1) 2j + (j - 1). (Note, of course, that H (#EP) =
1A= r v = S j= 1
H E,)P and similarly for HI (#Fq)).
JA1 v=1

The Interpretation of (Rji).-Two bases are consulted in this process, namely,
b[f, ...,Ifj] and b[A1, ..., A i], both written in the usual pattern. The desired
solution is computed by means of the result array, which consists of an as yet
empty array with 2' columns and j rows; the columns are indexed by i from right
to left, the rows corresponding to fi, . .., fj assigned from top to bottom. Now,
having computed (Rji) by the proper formula, consider those pairs of indices j, i,
for which RjI = 1: place the jth column of b L, .. ., fj] in the ith column of the
result array. The rows of the result array thus filled are the designation numbers
of the corresponding fi, .. ., fj with respect to the basis b [Al, . ., A i] and hence
give the desired. explicit functions fi(Al, I., Ai), ., fj(A, .., Ai).

In more mathematical terms, #fm(Ai, ..., Ai)' = b[fi, ..., fj ] J for those j for
which Rjj = 1, and m = 1, ..., j, where #fm(Ai, ... A i) is interpreted with respect
to b[Ai, . .Ai].

Alulliple Sets of Solutions.-The occurrence of several columns of b [fr, ..., LI
in a single result-array column indicates multiple solutions, for each such column
letermines a different set of solutions. Hence the total number of different sets
of solutions is the product of the number of columns of b[fi, ., f j] in each array
column. If a column of the result array has no basis column in it, then no solutions
exist at all.

Conditions for the Existence of Solutions.-Consider the row ve(tor (Vj) com-
prising 21 units. If no solution exists, compute the rowv, vector (Ci) from the formula
(Vj) (0 (Rji) = (Ci). Thenl (Ci) is the designation number of the desired condition
for-the existence of solutions, as referred to b[A1, ...A,A . In order to impose
this condition new bases constrained by the condition must IIow replace b[Al,
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Ai, X1, . . ., XkI and b[Al, . . ., Ai], and the solution is computed exactly as above,
except that for "2"' now read "u", where u is the number of units in (Ca).
A Simple Example.-Consider the especially simple equation of historical interest

discussed at length by Schr6der, namely, A1X + A2X = 0, to be solved for ante-
cedence solutions of the form X = f(Al, A2). The computations proceed as follows:

b[f, X]: b[A, A2, X]:
#f = 0101 #Ai = 01010101
#X = 0011 #A2 = 00110011

#(f = X) = 1001 #X = 00001111
i 2121 #(A1X + A2X = O) = 11001010
k 2 1

i 4 3 2 1 4 3 2 1
k 2 1

whence (Fj,) = (10) and (Eki) = (11o0)- Substituting in the antecedence formulas,
(Fjk) ® (Eke) = (i?) ® (01i) - (001) = (ROi), whence (Rji) = (1010). To
interpret (Rj,),

b[f]: Result array:
j 2 1 i 4 3 2 1

#f = 01 #f A,1 0 1 none

Thus no solution exists. The condition for the existence of a solution is computed
by (Vj) 0 (R1j) = (11) 0 = (1110) to be interpreted with respect to
b[A1, A2]: #Al = 0101, #A2 = 0011, whence 1110 = #(Ai + A2), i.e., Al + A2 = I
in order that A1X + A2X = 0 have a solution.
The constrained basis b[A1, A2, X] becomes #Al = 010 010, #A2 = 001 001,

#X 00 111, whence #(A1X + A2X = 0) = 110101 and (Eki) = (?10). Then
#(Rjf) = (AT), and the result array is3}o~ 2 1

0 1

which, interpreted in terms of the constrained bases bc[Al, A2]: #Al = 010, #A2 =
001, is #f = 001 = #A2 and #f = 101 = #Ai. Hence, under the proper conditions,
the given equation has two solutions, X = A2and X = Ai.

Finding Antecedence and Consequence Solutions Involving Only Specified Elementary
Elements.-Let Al, ..., Ai be the specified elementary elements, all the rest being
included in the X1, ..., Xk. Then all the computations proceed as above. For
example, consider the problem of determining consequence solutions of A1X +
A2X = 0 involving only Al and A2. As above, (Eji) = (110°), but the desired
form is simply f, and so, since #f = 0101 as referred to bases b[f, X], (Fjk) = (n°)
Thus (Fik) X (Ek ) = (oo) ® (11°) - (81) = (H,1). Therefore, (Rji) -0001
whence

j 21 413 2 1

#f=01 #f 1 1 1 01,1
orf = A, + A2 andf = I. In other words, A, + A2 = I or, equivalently, A1lA2 =
O is the desired nontrivial solution.

Special Theorems.-Solutions of the form fm = Xm, m = 1, ..., k are particularly
important and occur frequently. For antecedence solutions of this form, (Fjk)
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is the identity matrix, and hence (Eki) = (R1 ) (as was seen in the above example),
enabling (R1i) to be written down directly. In addition, it can be shown that if,
to a set of given equations, both antecedence solutions and consequence solutions
of this form exist, then there is only one such set of solutions (i.e., no multiple
solutions), and it is the same for both cases. Also, if only one consequence (ante-
cedence) solution of this form exists, then it is also an antecedence (consequence)
solution of this form.

LOGICAL DEPENDENCE (CONDITIONS) AND LOGICAL INDEPENDENCE

Conditions on the Solutions.-Often it is desired to find only those solutions
A, . . ., fj which satisfy given conditions or constraints G(f1, . . ., fi) or, in other
words, only those fi, ..., fj for which the given combined element or function
G(fi, . . ., fj) = I. The computational procedure is similar to calculating solutions
with conditions on the Al, ..., A i, except that now bases constrained by G(fi,
. . ., fj) replace b[fi, . . ., fj, X1, . . ., Xk], and btff, . . ., fj] (where #G(f1, . . ., fj)
is determined with respect to bef1, ..., fj]); and for "2j" now read "u", where
u is the number of units in #G(f1, . . ., fA). All sets of solutions thus calculated will
automatically satisfy the given conditions.

Logically Independent Solution.-Since fi= fi(Al,.., A i), ..., f = fj(A,...
A i), it can happen that these equations imply a logical relation between fi, . . ., fi.
For example, if fi= A1-A2 and f2 = Al + A2, then fi -- f2. However, often a
prime requirement of sets of solutions for a problem is that they be logically inde-
pendent, that is, no relations of the form G(f1, . . ., fj) = I exist other than tautol-
ogies. Then fi, . . ., fj will be logically independent when the result array has at
least 2' different columns. Three cases arise: j = i, j < i, j > i. If j =- i, then
there can be no repeated columns in the result array for independent solutions.
For j < i, 2' different columns must appear in the array for independence. For
j > i there can be no independent set of solutions.

Determining the Logical Dependence between a Given Set of Solutions.-Given a
set of solutions, it is often desired to find the logical dependence between them,
if any exists at all. The computational method is to consider the result array for
this given set of solutions fi, . . ., fj. Rewrite the array, omitting any duplicate
columns, and adjoin to this (on the right) those columns necessary to make the
completed array a basis, say b'[fi, ..., fj], not necessarily of the usual pattern.
Then the designation number with zeros in the positions corresponding to the
adjoined columns, units elsewhere, produces the desired conditions between fi,
..., fj when referred to b'[fi, . . ., fj].

EXAMPLES IN BIOCHEMISTRY

ENZYME CHEMISTRY

In biochemistry an enzyme often cannot be isolated easily, and therefore the
experiments performed often will involve several other enzymes. Consequently
a combination of reactions must be observed. In such a complex situation the
ordinary simple logical analysis usually used in experimental science is found
inadequate. In these cases the logical computational methods presented above
can be extremely useful for evaluating experimental results as well .as for planning
future experiments to yield the maximum information.
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Suppose that a chemist were studying enzymes, Al, A2, A3 in relation to reactions
X1, X2, X3. Suppose that he has done the following four experiments: (El)-A
solution containing none of Al, A2, A3 produced reaction X2 but not X1, and not X3.
(E2)-The solution contained A1 and either A2 or A3, or both; he could not be
sure. The reaction was neither X2 nor X1 and X3 together. (E3)-The solution
had A2 but not A1, or did not have A2 but had A3. Reactions X1 and X2 occurred,
or reaction X3 occurred but X1 did not. (E4)-The solution was obtained from a
source that had A3 and A, or A2 or both, or else had neither AI nor A3; the solution
turns color, which means X1 does not take place or both X2 and X3 do.
The antecedence problem is: What theories about the enzymes associated with

each reaction will explain the experimental results? The consequence problem is:
What combinations of enzymes are necessary for each reaction to take place?
The experiments and their designation numbers with respect to the usual basis

are as follows:

E1: A1,A2.A3 =11X2*93
0111 1111 0111 1111 1000 0000 0111 1111 0111 1111 0111 1111 0111 1111 0111 1111

E2: A1 (A2+A3) = X2 (X X3)
0001 0101 0001 0101 1110 1010 1110 1010 0001 0101 1110 1010 1110 1010 1110 1010

E3: A1.A2 + A2A3=X1X2+X11X3
1101 0001 1101 0001 1101 0001 0010 1110 0010 1110 1101 0001 0010 1110 0010 1110

E4: A3. (Al + A2) + A1.A3 = X1 + X20X3
1010 011 1 0101 1000 1010 0111 0101 1000 1010 011 1 0101 1000 1010 011 1 1010 011 1

5L = 4

Thus H (#E,) = 0000 0001 0001 0000 1000 0000 0000 1000 0000 0100 0100 0000 0010 0010 0010 0010
, = 1

For the antecedence problem the form of the solution is X1 = fl, X2 = f2, X3 = f3.
Recall for antecedence solutions of this special form that (Eki) = (Rji).
Hence

8765 4321
8 0000 0001
7 /0001 0000\
6 1000 0000
Sf0000 1000(E1i) = (Rji) = 4 0000 0100

3 0100 0000
2 0010 0010/
1 0010 0010

from which the solutions are read:

br[f, f2, f3]: Result array:
j 87654321 i 8 7 6 5 4 3 2

#i = 01010101 #fi 0 1 1,0 1 1 0 1,0 0
#f2 = 00110011 #f2 1 0 1,1 0 1 0 1,1 01
#f3 = 00001 111 #f3 O 1 1,1 0 O 1 1,1
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Hence there are four sets of antecedence solutions of the form X, = f8, namely,

XI = fl, where f, = A1.A3 + A1.A3, A3'(A1 + A2) + A1.A2 A3,
X2 = f2, wheref2 = A1 , A1
X3 = f3, wheref3 = A1lA2 + Ar A2, AlA2 + AlA2

A3V(A1 + A2) + ArA3, A1A3 + A1*A2*A3;
A1 , A1;
Al-A2+ Al-A2 , A1A2+A1lA2.

The first two sets are logically independent. The last two sets of solutions imply
that the reactions are not independent but that X2 X3 --'X1, and X1 X2X3 = 0,
respectively. For example, we write the designation numbers of the last solution,
cross off the repeating column, adjoin the missing column and obtain:

#(AlA3 + A1.A2oA3) = 0101 1000'1,
#Al = 1010 100,O1,

#(A1-A2 + A1.A2) = 0110 01l0 1,
1111 11 1 0 = #(fi f2 f3 = 0), orX X2X3 = 0.

For the consequence problem, the form of the solution and corresponding designa-
tion numbers with respect to b[fi, f2, f3, X1, X2, X3] are as follows:

#(Xi1 -*fi) 1111 1111 0101 0101 1111 1111 0101

#(X2 -* f2) 1111li i1111 0011 0011 0011

#(X3 .-*f3) 1111 1111 1111 1111 1111 1111 1111
v = 4

H (#F,) = 1111 1111 0101 0101 0011 0011 0001
h = 1

hencee

0101 1111 1111 0101 0101 1111 1111 0101 0101

0011 1111 1111 1111 1111 0011 0011 0011 0011

1111 0000 1111 0000 1111 0000 1111 0000 1111

0001 0000 1111 0000 0101 0000 0011 0000 0001

1000 000(0
/1100 0000

1010 0000
0000(Fik) =

1000 1000
and (Fik)

1100 1100
1010 1010
1111 1111

(Eki) = (Rji), whence (Rji) =

0000 0001
(0001 0001
1000 000]
1001 1001
0000 0101 I
0101 0101
1000 0101
1111 1111

whence the result array:
i 8 7 6 5 4 3 2 1

#9fi 1010 11 1 1111 11 1010 12
#f2 1111 10 1 1010 11 1100 1
#f3 1100 11 1 1100 10 1111 1

Since the most significant set of solutions for this form is the minimum set, i.e., the
solutions with the most zeros, we choose

#fi = 0111 1010
#f2 = 1010 1010
#f3 = 0110 0110

= #[A3-(A1+ A2) + A,.A3],
= #Al, or
= #[AlA2 + AlA2],

X1-A3-(A1 + A2) + A1,A,;
X2 A1 ;
X3 A1 A2 + A1.A2.
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THE PROTEIN DECODING PROBLEM

According to present views,9 hereditary informations are stored in chromosomes
in the form of long sequences of four different units (known as bases)
constituting the molecules of nucleic acid. In the process of protein synthesis,
these polynucleotide sequences must be translated into the corresponding poly-
peptide sequences of twenty different amino acids. Thus there must exist a
mechanism which carries through such translations in a unique way, producing
a long word written in a twenty-letter alphabet for each long number written in
the four-digital system. Since twenty different triplets can be formed (with
disregard to order) out of four different elements, it is inviting to associate each
amino acid in the resulting polypeptide chain with a group of three bases in the
original polynucleotide sequence. One can make different assumptions as to the
type of correlation involved. For example, we can assume that while one amino
acid is defined by three neighboring bases, its neighbor is given by the next three
bases:

-1-3-4-3-2-8.

E M

Or one can make the assumption of overlapping triplets, in which case each base is
participating in the choice of more than one amino acid. For example, we may
have the scheme

E A M

or the more restrictive scheme
N

-1-3--4-3-2.

E A

The possibility is also not excluded that because of twisting of the chain, non-
neighboring bases participate in the choice, as in the following:

-I-&--4--3-2 4-3--1;-3-2--

E N M

In all overlapping translation codes, one should expect a stronger or weaker inter-
symbol correlation, i.e., some restriction in the choice of neighboring amino acids.
Thus, comparing these restrictions with actually observed sequences of amino acids
in protein chains, one should be able to find the correct coding procedure and the
one-to-one correspondence between the twenty amino acids and the twenty hypo-
thetical triplets of bases. Since there are 20! = 2.3 X 101k such one-to-one corre-
spondences (which equals the number of seconds in the age of the universe), the
straightforward test of all possibilities is out of the question, and it is desirable to
find a systematic and feasible procedure for solving the problem (with the aid of
high-speed electronic computing machines).

Use of the Logical Computational Methods Developed Above.-To illustrate the
method of solution, it is best to consider a much simpler case which makes more
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transparent the computational methods involved and can easily be extended to
the complex problem given above. Suppose that there were only three kinds of
amino acids and only three types of base triplets allowed. Let the rules of combina-
tion involve groups of three consecutive triplets, and let the first position of the group
be denoted by A, the second by B, and the third by C. In addition, the subscript
1, 2, or 3 will denote which one of the three allowed triplets is in the position, i.e.,
A2 stands for "The first position has triplet 2". Hence As, B,, and C, for s = 1,
2, 3, are each three component propositions. Similarly, let Xr, Yr, Z, where r = 1,
2, 3, represent the positions of one of the three amino acids, considered in consecu-
tive groups of three. Let the hypothetical conditions on the sequences of triplets
be:

Al, B2 C3 + C2 Al *B2 C1 + C2
A1B3 C2 + C3 A1lB3 C1 + C3
A2 B, C1+ C3 A2-B, C, + C2
A2. B3 C1 + C3 A2 -B2 C1 + C2
A3-B, C, + C2 A2.B3 C2 + C3
A3*B2 C1 + C2 A3.B2 C2 + C3
Al -B, C, + C3 AA3*B3 C1+ C3

Suppose that the experimental results gave the following conditions on the amino
acids:

X3 Y3-Z2+ Z3, Xi Y1 -Z1 + Z2, X2.Y2- ZI + Z2

The problem is to find antecedence solutions of the form Xr = fT, Yr = g,, and
Zr = hr for r = 1, 2, 3. Introducing the following shorthand: 1 represents the

1 ~~~00
column 0, 2 the column 1, and 3 the column 0, since A,, Bs, C, (and Xr, Yr, Zr) are

0 0 1'
three component propositions, find for b[A,, B, C,] (or b[fr, 9r, hr]):
i (orj): 272625 24 2322 21 20 19 1817 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1

#A, (or #fr) = 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
fB,(or #gr) = 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3
#C, (or #hr) = 111 1 1 1 1 1 1 2 2 2 222 2 2 2 3 33 3 33 3 33

However, observe that we really know all possible answers, because there must be
a one-to-one correspondence between the components of Xr and those of A,; and,
in addition, the same correspondence must hold between Yr and B, and Zr and C,.
Hence the 3! possible solutions are as follows:
Solution number: 1 2 3 4 ,1 f

Xi = A1, A2, A1, A1, A,, A43
X2 = A2, A1, A3, Al, A3, A2
X3 = A3, A3, A2, A2, A1, A1

Letting P = 121233, Q = 213312, R = 332121, the result array for the solutions
with respect to b[A,, B, Cs] can be written as follows:

i 27 26 25 24 23 22 21 20 19 18 17 i6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

#fr PQR PQR PQR PQR PQIR PQIR PQR P Q R P Q R
#gt PPP QQQ RRR PPP QQQ RIRR PPP Q.Q:Q R R R
#hr PPP PPP PPP QQQ QQQ QQQ RRR RRR R R R

Vol.. 41, 1955 509



MATHEMATICS: R. S. LEDLEY

where this is to be interpreted as 3! = 6 solutions (not 627 solutions according -to
the notation used above), where each solution corresponds to the same respective
column for i = 1, ..., 27. Hence (Rji) can be constructed, where we put the
number of each solution in the proper Rjj element. Thus we obtain Figure 2.

Ii--3 4
__ .--4|----a-

(g i)
F4i 3

FIG. 2

However, this matrix (Rji) would be the result with no conditions on A8, B8,
Cs0 Xr) Yr, Z.. Adding the conditions to b[A8, B,, Cs, Xr, Yr, Z,] amounts to
eliminating some columns (corresponding to the zeros of the conditions on As,
B., Cs) and some rows (corresponding to zeros of those on Xr, Yr, Zr) as indicated
in Figure 2. Now only those solutions remain that are contributed to by every
column. Hence, solution 1 is eliminated, for it does not appear in column 19 or
column 9, and so forth. Only solution 4 is not eliminated and hence, under the
given and experimental conditions, it is the only valid hypothesis.
Now we are able to sketch briefly the feasible method of solving this problem

by means of computers.'0 First, there is a method for putting the n! permutations
of 1, . . ., n into one-to-one correspondence with 1, . . ., n!, so that the correspond-
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ence can be easily accomplished in either direction. Thus these integers will
number the solutions uniquely. Second, there is also a systematic procedure for
determining the solution number, given i and j (= k). So choose some allowed
column io, and find the solution numbers for all j that have not been eliminated
due to constraints. Solution numbers not found by this step cannot be valid
solutions, for they do not appear in this column i0. Third, there is a procedure
for determining j, given i and the solution number- So for all other allowed
columns i, and for each solution number just obtained, Try to determine j. Those
solutions for which no allowed j can be found for every allowed i cannot be valid
solutions. The remaining solutions are valid.
Of course, for 3! = 6 solutions it is easiest to try them all. However, the feasible

method just presented is intended for choosing one out of the 20! possible solutions
of the original problem. The (Rji) matrix in this case is 8,000 X 8,000, but, when
a few hundred conditions are applied to A,, B,, C,, X,, YJ, ZT, it will reduce to about
5,000 X 5,000. It is estimated that the complete calculation 'should take a com-
puter no more than a hundred hours. On the other hand, to try 20! solutions,
a computer put to work in the days of the Roman Empire, at a rate of one million
solutions per second, 24 hours a day, all year round, would not yet be close to
finishing the job.
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Problem. The kind encouragement of Dr. Nicholas M. Smith and the Operations
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* This paper is an excerpt of a technical memorandum which is being published by the Opera-
tions Research Office and is part of an investigation of methods for applying symbolic logic to
operations research problems.
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