Skip to main content
. 2017 Jan 31;11:16. doi: 10.3389/fnhum.2017.00016

Figure 1.

Figure 1

Dynamic balance task (DBT) performance. Results are shown for Training Day 1 (TD1) and Training Day 2 (TD2), which were separated by 24 h. a-tDCS: anodal tDCS, s-tDCS: sham tDCS, abs improvement: absolute improvement, abs improvement TD1: online improvement: trial10–trial1, offline improvement: trial15–trial11, TD2: trial15–trial1, perc improvement: percentage improvement, weighted difference of first and last trial performance multiplied by 100, perc improvement TD1: online improvement: ((t10−t1)/t1*100), offline improvement: ((t15−t11)/t11*100), TD2: ((t15−t1)/t1*100), retention score: difference between trial 15 TD1 and trial 1 TD2 performance (t15TD1–t1TD2). (A) Behavioral results for Time in Balance (TiB) performance on both training sessions. There was no baseline difference in TiB between the two groups (trial1, TD1) which indicates that all participants started at the same performance level. Both study groups significantly improved their level of performance over time on TD1 as well as on TD2. Gray shaded box indicates the time of a-tDCS/ s-tDCS stimulation. (B) Absolute/Percentage Improvement for TD1. No significant differences between a-tDCS and s-tDCS group were observed when comparing their absolute or percentage improvement gain. On TD1, neither online (t1–10) nor offline effects (t11–15) of tDCS showed a significant group difference. Therefore, one can conclude that the concurrent application of tDCS over M1 leg area did not elicit DBT performance enhancement in our study cohort (C) Retention score. There was no significant difference regarding the retention scores of the two groups, which indicates that tDCS did not affect skill retention from TD1 to TD2.