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In this paper, the dynamical behaviors for a stochastic SIRS epidemic model with nonlinear incidence and vaccination are
investigated. In the models, the disease transmission coefficient and the removal rates are all affected by noise. Some new basic
properties of themodels are found. Applying these properties, we establish a series of new threshold conditions on the stochastically
exponential extinction, stochastic persistence, and permanence in the mean of the disease with probability one for the models.
Furthermore, we obtain a sufficient condition on the existence of unique stationary distribution for the model. Finally, a series of
numerical examples are introduced to illustrate our main theoretical results and some conjectures are further proposed.

1. Introduction

As is well known, transmissions of many infectious diseases
are inevitably affected by environment white noise, which is
an important component in realism, because it can provide
some additional degrees of realism compared to their deter-
ministic counterparts. Therefore, in recent years, stochastic
differential equation (SDE) has been used widely by many
researchers to model the dynamics of spread of infectious
disease (see [1–5] and the references cited therein). There are
different possible approaches to include effects in the model.
Here, we mainly introduce three approaches. The first one is
through time Markov chain model to consider environment
noise in SIS model (see, e.g., [6] and the references cited
therein). The second is with parameters perturbation (see
[2, 5, 7] and the references cited therein). The last issue to
model stochastic epidemic system is to perturb around the
positive equilibria of deterministic models (see, e.g., [1, 8, 9]
and the references cited therein).

Now, we consider stochastic epidemic models with
parameters perturbation. The incidence rate of a disease
denotes the number of new cases per unit time, and this plays
an important role in the study ofmathematical epidemiology.
In many epidemic models, the bilinear incidence rate 𝛽𝑆𝐼

is frequently used (see [2, 5, 7, 8, 10–17]), and the saturated
incidence rate 𝛽𝑆𝐼/(1 + 𝑎𝐼) is also frequently used (see,
e.g., [18–22]). Comparing with bilinear incidence rate and
saturated incidence rate, Lahrouz andOmari [23] and Liu and
Chen [24] introduced a nonlinear incidence rate 𝛽𝑆𝐼/𝜑(𝐼)
into stochastic SIRS epidemic models. In [25], Tang et al.
investigated a class of stochastic SIRS epidemic models with
nonlinear incidence rate 𝛽𝑓(𝑆)𝑔(𝐼):𝑑𝑆 = (Λ − 𝛽𝑓 (𝑆) 𝑔 (𝐼) − 𝜇𝑆 + 𝛿𝑅) 𝑑𝑡− 𝜎𝑓 (𝑆) 𝑔 (𝐼) 𝑑𝐵 (𝑡) ,𝑑𝐼 = (𝛽𝑓 (𝑆) 𝑔 (𝐼) − (𝜇 + 𝛼 + 𝛾) 𝐼) 𝑑𝑡+ 𝜎𝑓 (𝑆) 𝑔 (𝐼) 𝑑𝐵 (𝑡) ,𝑑𝑅 = (𝛾𝐼 − (𝜇 + 𝛿) 𝑅) 𝑑𝑡.

(1)

Lahrouz et al. [26] studied a deterministic SIRS epi-
demic model with nonlinear incidence rate 𝛽𝑆𝐼/𝜑(𝐼) and
vaccination. If the transmission of the disease is changed
by nonlinear incidence rate 𝛽𝑓(𝑆)𝑔(𝐼), and to make the
model more realistic, let us suppose that the death rates
of the three classes in the population are different, then a
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more general deterministic SIRS model is described by the
following ordinary differential equation:𝑆̇ = (1 − 𝑞) Λ − 𝛽𝑓 (𝑆) 𝑔 (𝐼) − (𝑑𝑆 + 𝑝) 𝑆 + 𝜀𝑅,𝐼̇ = 𝛽𝑓 (𝑆) 𝑔 (𝐼) − (𝑑𝐼 + 𝛾) 𝐼,𝑅̇ = 𝑞Λ + 𝑝𝑆 + 𝛾𝐼 − (𝑑𝑅 + 𝜀) 𝑅, (2)

where 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) denote the numbers of susceptible,
infectious, and recovered individuals at time 𝑡, respectively.Λ
denote a constant input of new members into the susceptible
per unit time. 𝑞 is the rate of vaccination for the new
members. 𝑝 is the rate of vaccination for the susceptible indi-
viduals. 𝑑𝑆 is the natural mortality rate or the removal rate of
the 𝑆. 𝑑𝐼 is the removal rate of the infectious and usually is the
sum of natural mortality rate and disease-induced mortality
rate. 𝑑𝑅 is the removal rate of the recovered individual. 𝛾
is the recovery rate of infective individual. 𝜀 is the rate at
which the recovered individual loses immunity. 𝛽 represents
the transmission coefficient between compartments 𝑆 and 𝐼,
and 𝛽𝑓(𝑆)𝑔(𝐼) denotes the incidence rate of the disease. For
biological reasons, we usually assume that functions𝑓(𝑆) and𝑔(𝐼) satisfy the following properties:
(H1) 𝑔(𝐼) is two-order continuously differentiable func-

tion; 𝑔(𝐼)/𝐼 is monotonically nondecreasing with
respect to 𝐼; 𝑔(0) = 0 and 𝑔󸀠(0) > 0.

(H2) 𝑓(𝑆) is two-order continuously differentiable func-
tion; 𝑓󸀠(𝑆) ≥ 0 and 𝑓󸀠󸀠(𝑆) ≤ 0 for all 𝑆 ≥ 0, and𝑓(0) = 0.

It is well known that the basic reproduction number for
model (2) is defined by𝑅0 = 𝛽𝑓(𝑆0)𝑔󸀠(0)/(𝑑𝐼+𝛾), where 𝑆0 =[(1 − 𝑞)𝑑𝑅 + 𝜀]Λ/(𝑑𝑆(𝑑𝑅 + 𝜀) + 𝑝𝑑𝑅). Applying the Lyapunov
function method and the theory of persistence for dynamical
systems, we can prove that, when 𝑅0 < 1, model (2) has a
globally asymptotically stable disease-free equilibrium 𝐸0 =(𝑆0, 0, 𝑅0) and, when 𝑅0 > 1, model (2) has a unique endemic
equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) and disease 𝐼 is permanent.

In this paper, we extend model (1) to more general
cases. As in [11], taking into account the effect of randomly
fluctuating environment, we assume that fluctuations in the
environment will manifest themselves mainly as fluctuations
in parameters𝛽,𝑑𝑆,𝑑𝐼, and𝑑𝑅 inmodel (2) change to random
variables 𝛽̃, 𝑑̃𝑆, 𝑑̃𝐼, and 𝑑̃𝑅 such that𝛽̃ = 𝛽 + error0,𝑑̃𝑆 = 𝑑𝑆 + error1,𝑑̃𝐼 = 𝑑𝐼 + error2,𝑑̃𝑅 = 𝑑𝑅 + error3.

(3)

Accordingly, model (2) becomes𝑑𝑆 = ((1 − 𝑞) Λ − 𝛽𝑓 (𝑆) 𝑔 (𝐼) − (𝑑𝑆 + 𝑝) 𝑆 + 𝜀𝑅) 𝑑𝑡− 𝑓 (𝑆) 𝑔 (𝐼) error0 𝑑𝑡 − 𝑆 error1 𝑑𝑡,

𝑑𝐼 = (𝛽𝑓 (𝑆) 𝑔 (𝐼) − (𝑑𝐼 + 𝛾) 𝐼) 𝑑𝑡+ 𝑓 (𝑆) 𝑔 (𝐼) error0 𝑑𝑡 − 𝐼 error2 𝑑𝑡,𝑑𝑅 = (𝑞Λ + 𝑝𝑆 + 𝛾𝐼 − (𝑑𝑅 + 𝜀) 𝑅) 𝑑𝑡 − 𝑅 error3 𝑑𝑡.
(4)

By the central limit theorem, the error term error𝑖 𝑑𝑡 (0 ≤𝑖 ≤ 3) may be approximated by a normal distribution with
zero mean and variance 𝜎2𝑖 𝑑𝑡 (0 ≤ 𝑖 ≤ 3), respectively.
That is, error𝑖 𝑑𝑡 = 𝑁̃(0, 𝜎2𝑖 𝑑𝑡). Since these error𝑖 𝑑𝑡 may
correlatewith each other, we represent themby 𝑙-dimensional
Brownian motion 𝐵(𝑡) = (𝐵1(𝑡), . . . , 𝐵𝑙(𝑡)) as follows:

error𝑖 𝑑𝑡 = 𝑙∑
𝑗=1

𝜎𝑖𝑗𝑑𝐵𝑗 (𝑡) , 0 ≤ 𝑖 ≤ 3, (5)

where 𝜎𝑖𝑗 are all nonnegative real numbers. Therefore, model
(4) is characterized by the following Itô stochastic differential
equation:𝑑𝑆 = ((1 − 𝑞) Λ − 𝛽𝑓 (𝑆) 𝑔 (𝐼) − (𝑑𝑆 + 𝑃) 𝑆 + 𝜀𝑅) 𝑑𝑡

− 𝑓 (𝑆) 𝑔 (𝐼) 𝑙∑
𝑗=1

𝜎0𝑗𝑑𝐵𝑗 (𝑡) − 𝑆 𝑙∑
𝑗=1

𝜎1𝑗𝑑𝐵𝑗 (𝑡) ,
𝑑𝐼 = (𝛽𝑓 (𝑆) 𝑔 (𝐼) − (𝑑𝐼 + 𝛾) 𝐼) 𝑑𝑡

+ 𝑓 (𝑆) 𝑔 (𝐼) 𝑙∑
𝑗=1

𝜎0𝑗𝑑𝐵𝑗 (𝑡) − 𝐼 𝑙∑
𝑗=1

𝜎2𝑗𝑑𝐵𝑗 (𝑡) ,
𝑑𝑅 = (𝑞Λ + 𝑝𝑆 + 𝛾𝐼 − (𝑑𝑅 + 𝜀) 𝑅) 𝑑𝑡

− 𝑅 𝑙∑
𝑗=1

𝜎3𝑗𝑑𝐵𝑗 (𝑡) .

(6)

Model (6) in the special case where 𝑓(𝑆) = 𝑆, 𝑔(𝐼) = 𝐼,
and 𝑝 = 𝑞 = 0 has been investigated by Yang and Mao in [11]
and in the special case where 𝜎1𝑗 = 𝜎2𝑗 = 𝜎3𝑗 = 0 (1 ≤ 𝑗 ≤ 𝑙)
and 𝑝 = 𝑞 = 0 also has been discussed in [25]. It is well
known that, in a stochastic epidemic model, the dynamical
behaviors, like the extinction, persistence, stationary distri-
bution, and stability of the model, are the most interesting
topics.Therefore, in this paper, as an important extension and
improvement of the results given in [11, 25], we aim to discuss
the dynamical behaviors of model (6). Particularly, we will
explore the stochastic extinction and persistence in the mean
of disease with probability one and the existence of stationary
distribution.

This paper is organized as follows. In Section 2, we
introduce some preliminaries to be used in later sections. In
Section 3, we establish the threshold condition for stochastic
extinction of disease with probability one of model (6). In
Section 4, we deduce the threshold conditions for the disease
being stochastically persistent and permanent in the mean
with probability one. In Section 5, we discuss the existence
of the stationary distribution of model (6) under some
sufficient conditions. In Section 6, the numerical simulations
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are presented to illustrate the main results obtained in this
paper and some conjectures are further proposed. Finally, in
Section 7, a brief conclusion is given.

2. Preliminaries

Through this paper, we let (Ω,F, {F𝑡}𝑡≥0, 𝑃) be a complete
probability space with a filtration {F𝑡}𝑡≥0 satisfying the usual
conditions (that is, it is right continuous and increasing while
F0 contains all 𝑃-null sets). In this paper, we always assume
that stochastic model (6) is defined on probability space(Ω,F, {F𝑡}𝑡≥0, 𝑃). Furthermore, we denote 𝑅3+ = {(𝑥, 𝑦, 𝑧) :𝑥 > 0, 𝑦 > 0, 𝑧 > 0}, 𝜎2𝑖 = ∑𝑙𝑗=1 𝜎2𝑖𝑗, 0 ≤ 𝑖 ≤ 3, and𝜎2 = ∑3𝑖=0 𝜎2𝑖 .

Firstly, on the existence and uniqueness of global positive
solution for model (4) we have the following result.

Lemma 1. Assume that (H1) and (H2) hold; then, for any
initial value (𝑆(0), 𝐼(0), 𝑅(0)) ∈ 𝑅3+, model (6) has a unique
solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) defined for all 𝑡 ≥ 0, and the solution
will remain in 𝑅3+ with probability one.

This lemma can be proved by using a similar argument as
in the proof of Theorem 3.1 given in [11]. We hence omit it
here.

Lemma 2. Assume that (H1) and (H2) hold and let(𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) be the solution of model (6) with initial value(𝑆(0), 𝐼(0), 𝑅(0)) ∈ 𝑅3+. Then lim sup𝑡→∞(𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)) <∞ 𝑎.𝑠. Moreover, let ℎ(𝑥, 𝑦, 𝑧) be any continuous function
defined on 𝑅3+; then for each 1 ≤ 𝑗 ≤ 𝑙 we have

lim
𝑡→∞

1𝑡 ∫𝑡
0

ℎ (𝑆 (𝑠) , 𝐼 (𝑠) , 𝑅 (𝑠)) 𝑑𝐵𝑗 (𝑠) = 0. (7)

Proof. Let 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡); then we have frommodel
(6) 𝑑𝑁 (𝑡) = (Λ − 𝑑𝑆𝑆 (𝑡) − 𝑑𝐼𝐼 (𝑡) − 𝑑𝑅𝑅 (𝑡)) 𝑑𝑡 − 𝑃 (𝑡)≤ (Λ − 𝜇𝑁 (𝑡)) 𝑑𝑡 − 𝑃 (𝑡) , (8)

where 𝜇 = min {𝑑𝑆, 𝑑𝐼, 𝑑𝑅} and𝑃(𝑡) = ∑𝑙𝑗=1(𝜎1𝑗𝑆(𝑡)+𝜎2𝑗𝐼(𝑡)+𝜎3𝑗𝑅(𝑡))𝑑𝐵𝑗(𝑡). By the comparison theorem of stochastic
differential equations, we further have

𝑁 (𝑡) ≤ 𝑁 (0) 𝑒−𝜇𝑡 + Λ𝜇 (1 − 𝑒−𝜇𝑡) − 𝑄 (𝑡) , (9)

where

𝑄 (𝑡) = 𝑙∑
𝑗=1

∫𝑡
0

𝑒−𝜇(𝑡−𝑠) (𝜎1𝑗𝑆 (𝑠) + 𝜎2𝑗𝐼 (𝑠)
+ 𝜎3𝑗𝑅 (𝑠)) 𝑑𝐵𝑗 (𝑠) . (10)

Define 𝑋(𝑡) = 𝑁(0) + 𝐴(𝑡) − 𝑈(𝑡) − 𝑄(𝑡), where 𝐴(𝑡) =(Λ/𝜇)(1−𝑒−𝜇𝑡) and𝑈(𝑡) = 𝑁(0)(1−𝑒−𝜇𝑡). It is clear that from
Lemma 1 and (9) 𝑋(𝑡) is nonnegative for 𝑡 ≥ 0, and 𝐴(𝑡) and

𝑈(𝑡) are continuous adapted increasing processes for 𝑡 ≥ 0
and 𝐴(0) = 𝑈(0) = 0. Therefore, by Theorem 3.9 given in
[27], we obtain that lim𝑡→∞𝑋(𝑡) < ∞ a.s. exists. From (9),
we further have

lim sup
𝑡→∞

𝑁 (𝑡) < ∞ a.s. (11)

Denote

𝑀𝑗 (𝑡) = ∫𝑡
0

ℎ (𝑆 (𝑠) , 𝐼 (𝑠) , 𝑅 (𝑠)) 𝑑𝐵𝑗 (𝑠) . (12)

By (11), we have1𝑡 ⟨𝑀𝑗, 𝑀𝑗⟩ (𝑡) = 1𝑡 ∫𝑡
0

(ℎ (𝑆 (𝑠) , 𝐼 (𝑠) , 𝑅 (𝑠)))2 𝑑𝑠
≤ sup
𝑡≥0

{(ℎ (𝑆 (𝑡) , 𝐼 (𝑡) , 𝑅 (𝑡)))2} < ∞. (13)

Hence, the strong law of large number (see [27, 28]) implies
lim𝑡→∞(1/𝑡)𝑀𝑗(𝑡) = 0 a.s. This completes the proof.

For any function ℎ(𝑡) defined on 𝑅+0 = [0, +∞), we
denote the average value on [0, 𝑡] by ⟨ℎ(𝑡)⟩ = (1/𝑡) ∫𝑡

0
ℎ(𝑠)𝑑𝑠.

Lemma 3. Assume that (H1) and (H2) hold. Let (𝑆(𝑡), 𝐼(𝑡),𝑅(𝑡)) be any positive solution of model (6); then

⟨𝑆 (𝑡)⟩ = [(1 − 𝑞) 𝑑𝑅 + 𝜀] Λ𝑑𝑆 (𝑑𝑅 + 𝜀) + 𝑝𝑑𝑅− 𝑑𝐼 (𝑑𝑅 + 𝜀) + 𝑑𝑅𝛾𝑑𝑆 (𝑑𝑅 + 𝜀) + 𝑝𝑑𝑅 ⟨𝐼 (𝑡)⟩ + 𝜑 (𝑡) , (14)

where function 𝜑(𝑡) is defined for all 𝑡 ≥ 0 satisfying
lim𝑡→∞𝜑(𝑡) = 0.
Proof. Taking integration from 0 to 𝑡 for model (6), we get𝑆 (𝑡) − 𝑆 (0)𝑡= (1 − 𝑞) Λ − 𝛽 ⟨𝑆 (𝑡) 𝑔 (𝐼 (𝑡))⟩ − (𝑑𝑆 + 𝑝) ⟨𝑆 (𝑡)⟩+ 𝜀 ⟨𝑅 (𝑡)⟩

− 1𝑡 ∫𝑡
0

𝑙∑
𝑗=1

(𝑆 (𝑠) 𝑔 (𝐼 (𝑠)) 𝜎0𝑗 + 𝑆 (𝑠) 𝜎1𝑗) 𝑑𝐵𝑗 (𝑠) ,
𝐼 (𝑡) − 𝐼 (0)𝑡= 𝛽 ⟨𝑆 (𝑡) 𝑔 (𝐼 (𝑡))⟩ − (𝑑𝐼 + 𝛾) ⟨𝐼 (𝑡)⟩

+ 1𝑡 ∫𝑡
0

𝑙∑
𝑗=1

(𝑆 (𝑠) 𝑔 (𝐼 (𝑠)) 𝜎0𝑗 − 𝐼 (𝑠) 𝜎2𝑗) 𝑑𝐵𝑗 (𝑠) ,
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𝑅 (𝑡) − 𝑅 (0)𝑡= 𝑞Λ + 𝛾 ⟨𝐼 (𝑡)⟩ + 𝑝 ⟨𝑆 (𝑡)⟩ − (𝑑𝑅 + 𝜀) ⟨𝑅 (𝑡)⟩
− 1𝑡 ∫𝑡
0

𝑙∑
𝑗=1

𝑅 (𝑠) 𝜎3𝑗𝑑𝐵𝑗 (𝑠) .
(15)

Hence, we have(𝑑𝑅 + 𝜀) (𝑆 (𝑡) − 𝑆 (0)𝑡 + 𝐼 (𝑡) − 𝐼 (0)𝑡 ) + 𝜀
⋅ 𝑅 (𝑡) − 𝑅 (0)𝑡 = [(1 − 𝑞) 𝑑𝑅 + 𝜀] Λ − (𝑑𝑆 (𝑑𝑅 + 𝜀)
+ 𝑝𝑑𝑅) ⟨𝑆 (𝑡)⟩ − [𝑑𝐼 (𝑑𝑅 + 𝜀) + 𝑑𝑅𝛾] ⟨𝐼 (𝑡)⟩ − 1𝑡
⋅ ∫𝑡
0

𝑁∑
𝑗=1

[(𝑑𝑅 + 𝜀) (𝑆 (𝑠) 𝜎1𝑗 + 𝐼 (𝑠) 𝜎2𝑗)
+ 𝜀𝑅 (𝑠) 𝜎3𝑗] 𝑑𝐵𝑗 (𝑠) .

(16)

With a simple calculation from (16) we can easily obtain
formula (14) with which 𝜑(𝑡) is defined by

𝜑 (𝑡) = − 1𝑑𝑆 (𝑑𝑅 + 𝜀) + 𝑝𝑑𝑅 [[(𝑑𝑅 + 𝜀)
⋅ (𝑆 (𝑡) − 𝑆 (0)𝑡 + 𝐼 (𝑡) − 𝐼 (0)𝑡 ) + 𝜀𝑅 (𝑡) − 𝑅 (0)𝑡 + 1𝑡
⋅ ∫𝑡
0

𝑙∑
𝑗=1

[(𝑑𝑅 + 𝜀) (𝑆 (𝑠) 𝜎1𝑗 + 𝐼 (𝑠) 𝜎2𝑗) + 𝜀𝑅 (𝑠) 𝜎3𝑗] 𝑑𝐵𝑗 (𝑠)]] .
(17)

By Lemma 2, we further have lim𝑡→∞𝜑(𝑡) = 0 a.s.
Lemma 4. Assume that (H1) and (H2) hold and 𝜎1𝑗 = 𝜎2𝑗 =𝜎3𝑗 = 0 (1 ≤ 𝑗 ≤ 𝑙). Then, for any solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of
system (6) with (𝑆(0), 𝐼(0), 𝑅(0)) ∈ 𝑅3+, one has

lim sup
𝑡→∞

(𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅 (𝑡)) ≤ 𝑆, a.s., (18)

where 𝑆 = Λ/𝜇. Furthermore, the regionΓ = {(𝑆, 𝐼, 𝑅) : 𝑆 > 0, 𝐼 > 0, 𝑅 > 0, 𝑆 + 𝐼 + 𝑅 ≤ 𝑆 a.s.} (19)

is positive invariant with probability one for model (6), where𝜇 = min{𝑑𝑆, 𝑑𝐼, 𝑑𝑅}.
In fact, for 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡), from model (6) we

have 𝑑𝑁 (𝑡) = (Λ − 𝑑𝑆𝑆 (𝑡) − 𝑑𝐼𝐼 (𝑡) − 𝑑𝑅𝑅 (𝑡)) 𝑑𝑡≤ (Λ − 𝜇𝑁 (𝑡)) 𝑑𝑡, a.s. (20)

This implies that (18) holds, and set Γ is positive invariant with
probability one for model (6).

Lemma5. Assume that (H1) and (H2) hold,𝜎1𝑗 = 𝜎2𝑗 = 𝜎3𝑗 =0 (1 ≤ 𝑗 ≤ 𝑙), 𝑑𝑆 = 𝑑𝑅, and 𝑑𝐼 = 𝑑𝑆 + 𝛼 with constant𝛼 ≥ 0. Then, for any solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of model (6) with(𝑆(0), 𝐼(0), 𝑅(0)) ∈ 𝑅3+, one has
𝑆 (𝑡) = Λ [(1 − 𝑞) 𝑑𝑆 + 𝜀]𝑑𝑆 (𝑑𝑆 + 𝜀 + 𝑝) + 𝐻 (𝑡) + 𝐺 (𝑡) , a.s.

∀𝑡 ≥ 0, (21)

where

𝐻 (𝑡) = 𝑝Λ [(1 − 𝑞) 𝑑𝑆 + 𝜀]𝑑𝑆 (𝑑𝑆 + 𝜀) (𝑑𝑆 + 𝜀 + 𝑝)𝑒−(𝑑𝑆+𝜀+𝑝)𝑡
− (𝑅 (0) − 𝑞Λ𝑑𝑆 + 𝜀) 1𝑝 (1 − 𝑒−𝑝𝑡) 𝑒−(𝑑𝑆+𝜀)𝑡
+ ( Λ𝑑𝑆 − (𝑆 (0) + 𝐼 (0) + 𝑅 (0)))
⋅ 1𝑝 + 𝜀 (1 − 𝑒−(𝑝+𝜀)𝑡) 𝑒−𝑑𝑆𝑡,

(22)

𝐺 (𝑡) = −𝐼 (𝑡) − 𝛼 ∫𝑡
0

𝑒−𝑑𝑆(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠
− 𝛾 ∫𝑡
0

𝑒−(𝑑𝑆+𝜀)(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠
+ 𝑝 ∫𝑡
0

𝑒−(𝑑𝑆+𝜀+𝑝)(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠 + 𝑝𝛼 ∫𝑡
0

𝑒−(𝑑𝑆+𝜀+𝑝)(𝑡−𝑠)
⋅ ∫𝑠
0

𝑒−𝑑𝑆(𝑠−𝑢)𝐼 (𝑢) 𝑑𝑢 𝑑𝑠 + 𝑝𝛾 ∫𝑡
0

𝑒−(𝑑𝑆+𝜀+𝑝)(𝑡−𝑠)
⋅ ∫𝑠
0

𝑒−(𝑑𝑆+𝜀)(𝑠−𝑢)𝐼 (𝑢) 𝑑𝑢 𝑑𝑠.
(23)

Proof. Since𝑑𝑁 (𝑡) = (Λ − 𝑑𝑆𝑁 (𝑡) − 𝛼𝐼 (𝑡)) 𝑑𝑡, a.s., (24)

then 𝑁 (𝑡) = Λ𝑑𝑆 + (𝑁 (0) − Λ𝑑𝑆) 𝑒−𝑑𝑆𝑡
− 𝛼 ∫𝑡
0

𝑒−𝑑𝑆(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠, a.s., (25)

where 𝑁(0) = 𝑆(0) + 𝐼(0) + 𝑅(0). From the third equation of
model (6) we have

𝑅 (𝑡) = 𝑞Λ𝑑𝑆 + 𝜀 + (𝑅 (0) − 𝑞Λ𝑑𝑆 + 𝜀) 𝑒−(𝑑𝑆+𝜀)𝑡
+ 𝑝 ∫𝑡
0

𝑒−(𝑑𝑆+𝜀)(𝑡−𝑠)𝑆 (𝑠) 𝑑𝑠
+ 𝛾 ∫𝑡
0

𝑒−(𝑑𝑆+𝜀)(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠, a.s.

(26)
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Therefore,

𝑆 (𝑡) = Λ [(1 − 𝑞) 𝑑𝑆 + 𝜀]𝑑𝑆 (𝑑𝑆 + 𝜀) − 𝐼 (𝑡)
− (𝑅 (0) − 𝑞Λ𝑑𝑆 + 𝜀) 𝑒−(𝑑𝑆+𝜀)𝑡
+ (𝑁 (0) − Λ𝑑𝑆) 𝑒−𝑑𝑆𝑡
− 𝑝 ∫𝑡
0

𝑒−(𝑑𝑆+𝜀)(𝑡−𝑠)𝑆 (𝑠) 𝑑𝑠
− 𝛼 ∫𝑡
0

𝑒−𝑑𝑆(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠
− 𝛾 ∫𝑡
0

𝑒−(𝑑𝑆+𝜀)(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠.

(27)

Let 𝑦(𝑡) = ∫𝑡
0

𝑒(𝑑𝑆+𝜀)𝑠𝑆(𝑠)𝑑𝑠; then
𝑑𝑦 (𝑡) = [𝑒(𝑑𝑆+𝜀)𝑡𝑆 (𝑡)] 𝑑𝑡 = [−𝑝𝑦 (𝑡)

+ Λ [(1 − 𝑞) 𝑑𝑆 + 𝜀]𝑑𝑆 (𝑑𝑆 + 𝜀) 𝑒(𝑑𝑆+𝜀)𝑡 − 𝐼 (𝑡) 𝑒(𝑑𝑆+𝜀)𝑡
− (𝑅 (0) − 𝑞Λ𝑑𝑆 + 𝜀) + (𝑁 (0) − Λ𝑑𝑆) 𝑒(𝜀)𝑡
− 𝛼𝑒𝜀𝑡 ∫𝑡

0
𝑒𝑑𝑆𝑠𝐼 (𝑠) 𝑑𝑠 − 𝛾 ∫𝑡

0
𝑒(𝑑𝑆+𝜀)𝑠𝐼 (𝑠) 𝑑𝑠] 𝑑𝑡.

(28)

Solving 𝑦(𝑡), we obtain
𝑦 (𝑡) = 𝑒−𝑝𝑡 [ Λ [(1 − 𝑞) 𝑑𝑆 + 𝜀]𝑑𝑆 (𝑑𝑆 + 𝜀) (𝑑𝑆 + 𝜀 + 𝑝) (𝑒(𝑑𝑆+𝜀+𝑝)𝑡 − 1)

− ∫𝑡
0

𝑒(𝑑𝑆+𝜀+𝑝)𝑠𝐼 (𝑠) 𝑑𝑠
− (𝑅 (0) − 𝑞Λ𝑑𝑆 + 𝜀) 1𝑝 (𝑒𝑝𝑡 − 1)
+ (𝑁 (0) − Λ𝑑𝑆) 1𝜀 + 𝑝 (𝑒(𝜀+𝑝)𝑡 − 1)
− 𝛾 ∫𝑡
0

𝑒𝑝𝑠 ∫𝑠
0

𝑒(𝑑𝑆+𝜀)𝑢𝐼 (𝑢) 𝑑𝑢 𝑑𝑠
− 𝛼 ∫𝑡
0

𝑒(𝑑𝑆+𝜀+𝑝)𝑠 ∫𝑠
0

𝑒−𝑑𝑆(𝑠−𝑢)𝐼 (𝑢) 𝑑𝑠 𝑑𝑠] 𝑑𝑡.

(29)

Substituting (29) into (27), we immediately obtain (21)–(23).
This completes the proof.

Remark 6. When 𝑑𝑆 ̸= 𝑑𝑅 in model (6), whether we can also
establish a similar result as in Lemma 5 still is an interesting
open problem.

Consider the following 𝑛-dimensional stochastic differ-
ential equation:

𝑑𝑥 (𝑡) = 𝑏 (𝑥) 𝑑𝑡 + 𝑚∑
𝑟=1

𝜎𝑟 (𝑥) 𝑑𝐵𝑟 (𝑡) , (30)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝜎𝑟(𝑥) = (𝜎1𝑟 (𝑥), 𝜎2𝑟 (𝑥), . . . , 𝜎𝑛𝑟 (𝑥)),
and 𝐵𝑟(𝑡) (1 ≤ 𝑟 ≤ 𝑚) are standard Brownian motions
defined on the above probability space. The diffusion matrix
is defined by 𝐴 (𝑥) = (𝑎𝑖𝑗 (𝑥))

𝑛×𝑛
,

𝑎𝑖𝑗 (𝑥) = 𝑚∑
𝑟=1

𝜎𝑖𝑟 (𝑥) 𝜎𝑗𝑟 (𝑥) . (31)

For any second-order continuously differentiable function𝑉(𝑥), we define
𝐿𝑉 (𝑥) = 𝑛∑

𝑖=1

𝜕𝑉 (𝑥)𝜕𝑥𝑖 𝑏𝑖 (𝑥) + 12 𝑛∑
𝑖,𝑗=1

𝜕2𝑉 (𝑥)𝜕𝑥𝑖𝜕𝑥𝑗 𝑎𝑖𝑗 (𝑥) . (32)

The following lemma gives a criterion for the existence of
stationary distribution in terms of Lyapunov function.

Lemma 7 (see [27]). Assume that there is a bounded open
subset𝐷 in 𝑅𝑛 with a regular (i.e., smooth) boundary such that

(i) there exist some 𝑖 = 1, 2, . . . , 𝑛 and positive constant𝜂 > 0 such that 𝑎𝑖𝑖(𝑥) ≥ 𝜂 for all 𝑥 ∈ 𝐷;
(ii) there exists a nonnegative function 𝑉(𝑥) : 𝐷𝑐 → 𝑅

such that 𝑉(𝑥) is second-order continuously differen-
tiable function and that, for some 𝜃 > 0, 𝐿𝑉(𝑥) ≤ −𝜃
for all 𝑥 ∈ 𝐷𝑐, where 𝐷𝑐 = 𝑅𝑛 \ 𝐷.

Then (30) has a unique stationary distribution 𝜋. That is, if
function 𝑓 is integrable with respect to the measure 𝜋, then for
all 𝑥0 ∈ 𝑅𝑛

𝑃 { lim
𝑡→∞

1𝑡 ∫𝑡
0

𝑓 (𝑥 (𝑢, 𝑥0)) 𝑑𝑢 = ∫
𝑅𝑛

𝑓 (𝑥0) 𝜋 (𝑑𝑥0)}= 1. (33)

To study the permanence in mean with probability one
of model (6) we need the following result on the stochastic
integrable inequality.

Lemma8 (see [13]). Assume that functions𝑌 ∈ 𝐶(𝑅+×Ω, 𝑅+)
and𝑍 ∈ 𝐶(𝑅+×Ω, 𝑅+) satisfy lim𝑡→∞(𝑍(𝑡)/𝑡) = 0 a.s. If there
is 𝑇 > 0 such that

ln𝑌 (𝑡) ≥ ]0𝑡 − ]∫𝑡
0

𝑌 (𝑠) 𝑑𝑠 + 𝑍 (𝑡) a.s., (34)

for all 𝑡 ≥ 𝑇, then
lim inf
𝑡→∞

1𝑡 ∫𝑡
0

𝑌 (𝑠) 𝑑𝑠 ≥ ]0
]

a.s. (35)



6 Computational and Mathematical Methods in Medicine

3. Extinction of Disease

For the convenience of following statements, we denote

𝑆0 = [(1 − 𝑞) 𝑑𝑅 + 𝜀] Λ𝑑𝑆 (𝑑𝑅 + 𝜀) + 𝑝𝑑𝑅 ,𝑆1 = 𝑑𝐼 (𝑑𝑅 + 𝜀) + 𝑑𝑅𝛾𝑑𝑆 (𝑑𝑅 + 𝜀) + 𝑝𝑑𝑅 .
(36)

We further define a threshold value

𝑅̃0 = 𝑓 (𝑆0) 𝑔󸀠 (0) (𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)𝑑𝐼 + 𝛾
− (𝑓 (𝑆0) 𝑔󸀠 (0))2 𝜎202 (𝑑𝐼 + 𝛾) − 𝜎222 (𝑑𝐼 + 𝛾) . (37)

Theorem 9. Assume that (H1) and (H2) hold. If one of the
following conditions holds:

(a) 𝑅̃0 < 1 and 𝜎20𝑓(𝑆0)𝑔󸀠(0) ≤ 𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗,
(b) 𝜎0 > 0 and (𝛽+∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)2/2𝜎20−(𝑑𝐼+𝛾+(1/2)𝜎22) <0,

then, for any initial value (𝑆(0), 𝐼(0), 𝑅(0)) ∈ 𝑅3+, one has
lim sup
𝑡→∞

ln 𝐼 (𝑡)𝑡 < 0 a.s. (38)

That is, disease 𝐼 is stochastically extinct exponentially with
probability one. Moreover,

lim
𝑡→∞

⟨𝑆 (𝑡)⟩ = 𝑆0,
lim
𝑡→∞

⟨𝑅 (𝑡)⟩ = Λ (𝑞𝑑𝑆 + 𝑝)𝑑𝑆 (𝑑𝑅 + 𝜀) + 𝑝𝑑𝑅 a.s.
(39)

Proof. Applying Itô’s formula to model (6) leads to

ln 𝐼 (𝑡) = ln 𝐼 (0) + ∫𝑡
0

𝑓 (𝑥 (𝑠)) 𝑑𝑠
+ 𝑙∑
𝑗=1

(𝜎0𝑗 ∫𝑡
0

𝑓 (𝑆 (𝑠)) 𝑔 (𝐼 (𝑠))𝐼 (𝑠) 𝑑𝐵𝑗 (𝑠) − 𝜎2𝑗𝐵𝑗 (𝑡)) , (40)

where 𝑥 = (𝑆, 𝐼) and
𝑓 (𝑥) = 𝑓 (𝑆) 𝑔 (𝐼)𝐼 (𝛽 + 𝑙∑

𝑗=1

𝜎0𝑗𝜎2𝑗)
− (𝑑𝐼 + 𝛾 + 𝜎222 ) − 12 (𝑓 (𝑆) 𝑔 (𝐼)𝐼 )2 𝜎20 . (41)

Assume that condition (b) holds. Since

𝑓 (𝑥 (𝑡)) ≤ (𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)22𝜎20 − (𝑑𝐼 + 𝛾 + 12𝜎22) , (42)

then from (40)

ln 𝐼 (𝑡)𝑡 ≤ ln 𝐼 (0)𝑡 + (𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)22𝜎20 − (𝑑𝐼 + 𝛾
+ 12𝜎22) + 𝑙∑

𝑗=1

(𝜎0𝑗 1𝑡 ∫𝑡
0

𝑓 (𝑆 (𝑠)) 𝑔 (𝐼 (𝑠))𝐼 (𝑠) 𝑑𝐵𝑗 (𝑠)
− 𝜎2𝑗 1𝑡 ∫𝑡

0
𝑑𝐵𝑗 (𝑠)) .

(43)

By Lemma 2, we have

lim
𝑡→∞

1𝑡 ∫𝑡
0

𝑆 (𝑠) 𝑔 (𝐼 (𝑠))𝐼 (𝑠) 𝑑𝐵𝑗 (𝑠) = 0,
lim
𝑡→∞

1𝑡 ∫𝑡
0

𝑑𝐵𝑗 (𝑠) = 0 a.s.,1 ≤ 𝑗 ≤ 𝑙.
(44)

Therefore,

lim sup
𝑡→∞

ln 𝐼 (𝑡)𝑡 ≤ (𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)22𝜎20− (𝑑𝐼 + 𝛾 + 12𝜎22) < 0. (45)

Assume that condition (a) holds. Choose constant 𝜖 > 0
such that 𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗 ≥ 𝑔󸀠(0)𝑓(𝜖)𝜎20 . We compute that𝑓 (𝑥)

= 𝑓 (𝑆) 𝑔 (𝐼)𝐼 (𝛽 + 𝑙∑
𝑗=1

𝜎0𝑗𝜎2𝑗) − (𝑑𝐼 + 𝛾 + 𝜎222 )
− 12 (𝑓 (𝑆) 𝑔 (𝐼)𝐼 )2 𝜎20

= 𝑓 (𝑆) 𝑔 (𝐼)𝐼 (𝛽 + 𝑙∑
𝑗=1

𝜎0𝑗𝜎2𝑗) − (𝑑𝐼 + 𝛾 + 𝜎222 )
+ 12𝑓2 (𝜖) 𝑔2 (𝐼)𝐼2 𝜎20
− 12 (𝑓 (𝑆) − 𝑓 (𝜖))2 𝑔2 (𝐼)𝐼2 𝜎20
− 𝑓 (𝑆) 𝑓 (𝜖) 𝑔2 (𝐼)𝐼2 𝜎20

≤ [[(𝛽 + 𝑙∑
𝑗=1

𝜎0𝑗𝜎2𝑗) 𝑔 (𝐼)𝐼 − 𝑓 (𝜖) 𝜎20 𝑔2 (𝐼)𝐼2 ]] 𝑓 (𝑆)
− (𝑑𝐼 + 𝛾 + 𝜎222 ) + 12 (𝑓 (𝜖) 𝑔󸀠 (0))2 𝜎20 .

(46)
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When 𝜎20 = 0, which implies 𝜎0𝑗 = 0 (1 ≤ 𝑗 ≤ 𝑙), we have
from (46) 𝑓 (𝑥) ≤ 𝛽𝑓 (𝑆) 𝑔 (𝐼)𝐼 − (𝑑𝐼 + 𝛾 + 𝜎222 )

≤ 𝛽𝑔󸀠 (0) 𝑓 (𝑆) − (𝑑𝐼 + 𝛾 + 𝜎222 ) . (47)

Since 𝑓 (𝑆) = 𝑓 (𝑆0) + 𝑓 (𝑆) − 𝑓 (𝑆0)= 𝑓 (𝑆0) + 𝑓󸀠 (𝜉) (𝑆 − 𝑆0) , (48)

where 𝜉 ∈ (𝑆, 𝑆0), from (𝐻2), we can obtain 𝑓󸀠(𝜉)(𝑆 − 𝑆0) ≤𝑓󸀠(𝑆0)(𝑆 − 𝑆0). Hence, we have𝑓 (𝑆) ≤ 𝑓 (𝑆0) + 𝑓󸀠 (𝑆0) (𝑆 − 𝑆0) . (49)

According to (14), (40), and (49), we have

ln 𝐼 (𝑡)𝑡 ≤ ln 𝐼 (0)𝑡 + 𝛽𝑔󸀠 (0) 1𝑡 ∫𝑡
0

𝑓 (𝑆 (𝑠)) 𝑑𝑠 − (𝑑𝐼
+ 𝛾 + 𝜎222 ) + 𝑙∑

𝑗=1

(𝜎0𝑗 1𝑡 ∫𝑡
0

𝑓 (𝑆 (𝑠)) 𝑔 (𝐼 (𝑠))𝐼 (𝑠) 𝑑𝐵𝑗 (𝑠)
− 𝜎2𝑗𝐵𝑗 (𝑡)𝑡 ) = ln 𝐼 (0)𝑡 + 𝛽𝑔󸀠 (0) 𝑓 (𝑆0) − 𝛽𝑔󸀠 (0)
⋅ 𝑓󸀠 (𝑆0) 𝑆1 ⟨𝐼 (𝑡)⟩ + 𝛽𝑓󸀠 (𝑆0) 𝑔󸀠 (0) 𝜑 (𝑡) − (𝑑𝐼 + 𝛾
+ 𝜎222 ) + 𝑙∑

𝑗=1

(𝜎0𝑗 1𝑡 ∫𝑡
0

𝑓 (𝑆 (𝑠)) 𝑔 (𝐼 (𝑠))𝐼 (𝑠) 𝑑𝐵𝑗 (𝑠)
− 𝜎2𝑗 1𝑡 ∫𝑡

0
𝑑𝐵𝑗 (𝑠)) .

(50)

Hence, from (44) and Lemma 3, we finally have

lim sup
𝑡→∞

ln 𝐼 (𝑡)𝑡 ≤ 𝛽𝑓 (𝑆0) 𝑔󸀠 (0) − (𝑑𝐼 + 𝛾 + 𝜎222 ) a.s. (51)

When 𝜎20 ̸= 0, from (40) and (46) we have

ln 𝐼 (𝑡)𝑡 ≤ ln 𝐼 (0)𝑡 + 1𝑡 ∫𝑡
0

[[(𝛽 + 𝑁∑
𝑗=1

𝜎0𝑗𝜎2𝑗) 𝑔 (𝐼 (𝑠))𝐼 (𝑠)
− 𝑓 (𝜖) 𝜎20 𝑔2 (𝐼 (𝑠))𝐼 (𝑠)2 ]] 𝑓 (𝑆 (𝑠)) 𝑑𝑠
+ 𝑁∑
𝑗=1

(𝜎0𝑗 1𝑡 ∫𝑡
0

𝑓 (𝑆 (𝑠)) 𝑔 (𝐼 (𝑠))𝐼 (𝑠) 𝑑𝐵𝑗 (𝑠)
− 𝜎2𝑗𝐵𝑗 (𝑡)𝑡 ) − (𝑑𝐼 + 𝛾 + 𝜎222 ) + 12 (𝑓 (𝜖) 𝑔󸀠 (0))2
⋅ 𝜎20 .

(52)

Define a function

𝐹 (𝑢) = (𝛽 + 𝑙∑
𝑗=1

𝜎0𝑗𝜎2𝑗) 𝑢 − 𝑓 (𝜖) 𝜎20𝑢2. (53)

Clearly, 𝐹(𝑢) is a monotone increasing for 𝑢 ∈ [0, (𝛽 +∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)/2𝑓(𝜖)𝜎20] and monotone decreasing for 𝑢 ∈[(𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)/2𝑓(𝜖)𝜎20 , ∞). With condition 𝛽 +∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗 ≥ 𝑔󸀠(0)𝑓(𝜖)𝜎20 , that is, 𝑔(𝐼)/𝐼 ≤ 𝑔󸀠(0) ≤ (𝛽 +∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)/2𝑓(𝜖)𝜎20 , we have
𝐹 (𝑔 (𝐼)𝐼 ) ≤ 𝐹 (𝑔󸀠 (0))

= (𝛽 + 𝑙∑
𝑗=1

𝜎0𝑗𝜎2𝑗) 𝑔󸀠 (0)
− 𝑓 (𝜖) 𝜎20 (𝑔󸀠 (0))2 .

(54)

Hence, by (14) and (49), we have

ln 𝐼 (𝑡)𝑡 ≤ ln 𝐼 (0)𝑡 + 𝑔󸀠 (0) (𝛽 + 𝑙∑
𝑗=1

𝜎0𝑗𝜎2𝑗 − 𝑓 (𝜖)
⋅ 𝜎20𝑔󸀠 (0)) 1𝑡 ∫𝑡

0
𝑓 (𝑆 (𝑠)) 𝑑𝑠

+ 𝑙∑
𝑗=1

(𝜎0𝑗 1𝑡 ∫𝑡
0

𝑓 (𝑆 (𝑠)) 𝑔 (𝐼 (𝑠))𝐼 (𝑠) 𝑑𝐵𝑗 (𝑠)
− 𝜎2𝑗 1𝑡 ∫𝑡

0
𝑑𝐵𝑗 (𝑠)) − (𝑑𝐼 + 𝛾 + 𝜎222 ) + 12 (𝑔󸀠 (0)

⋅ 𝑓 (𝜖))2 𝜎20 ≤ ln 𝐼 (0)𝑡 + 𝑔󸀠 (0) (𝛽 + 𝑙∑
𝑗=1

𝜎0𝑗𝜎2𝑗
− 𝑓 (𝜖) 𝜎20𝑔󸀠 (0)) [𝑓 (𝑆0) + 𝑓󸀠 (𝑆0) 𝜑 (𝑡)] − (𝑑𝐼
+ 𝛾 + 𝜎222 ) + 12 (𝑔󸀠 (0) 𝑓 (𝜖))2 𝜎20
+ 𝑙∑
𝑗=1

(𝜎0𝑗 1𝑡 ∫𝑡
0

𝑆 (𝑠) 𝑔 (𝐼 (𝑠))𝐼 (𝑠) 𝑑𝐵𝑗 (𝑠)
− 𝜎2𝑗 1𝑡 ∫𝑡

0
𝑑𝐵𝑗 (𝑠)) .

(55)
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Choose 𝜖 = 𝑆0; from (44) and Lemma 3, we finally have

lim sup
𝑡→∞

ln 𝐼 (𝑡)𝑡 ≤ 𝑓 (𝑆0) 𝑔󸀠 (0) (𝛽 + 𝑙∑
𝑗=1

𝜎0𝑗𝜎2𝑗)
− (𝑑𝐼 + 𝛾 + 𝜎222 )
− 12 (𝑓 (𝑆0) 𝑔󸀠 (0))2 𝜎20 a.s.

(56)

From (45), (51), and (56), it follows that (38) holds.
Since lim𝑡→∞𝐼(𝑡) = 0 a.s., by (14) of Lemma 3 and the last

equation of (15), we further obtain

lim
𝑡→∞

⟨𝑆 (𝑡)⟩ = 𝑆0,
lim
𝑡→∞

⟨𝑅 (𝑡)⟩ = Λ (𝑞𝑑𝑆 + 𝑝)𝑑𝑆 (𝑑𝑅 + 𝜀) + 𝑝𝑑𝑅 a.s.
(57)

This completes the proof.

Remark 10. Condition (b) in Theorem 9 can be rewritten in
the following form:

𝜎20 > (𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)22 (𝑑𝐼 + 𝛾 + (1/2) 𝜎22) . (58)

It is clear that𝑓 (𝑆0) 𝑔󸀠 (0) (𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)𝑑𝐼 + 𝛾 + (1/2) 𝜎22
− (𝑓 (𝑆0) 𝑔󸀠 (0))2 (𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)24 (𝑑𝐼 + 𝛾 + (1/2) 𝜎22)2 ≤ 1. (59)

Therefore, when condition (b) holds, from (58) we also have

𝑅̃0 = 𝑓 (𝑆0) 𝑔󸀠 (0) (𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)𝑑𝐼 + 𝛾
− (𝑓 (𝑆0) 𝑔󸀠 (0))2 𝜎202 (𝑑𝐼 + 𝛾) − 𝜎222 (𝑑𝐼 + 𝛾)
< 𝑓 (𝑆0) 𝑔󸀠 (0) (𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)𝑑𝐼 + 𝛾
− (𝑓 (𝑆0) 𝑔󸀠 (0))2 (𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)24 (𝑑𝐼 + 𝛾) (𝑑𝐼 + 𝛾 + (1/2) 𝜎22)
− 𝜎222 (𝑑𝐼 + 𝛾) = [[𝑓 (𝑆0) 𝑔󸀠 (0) (𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)𝑑𝐼 + 𝛾 + (1/2) 𝜎22

− (𝑓 (𝑆0) 𝑔󸀠 (0))2 (𝛽 + ∑𝑙𝑗=1 𝜎0𝑗𝜎2𝑗)24 (𝑑𝐼 + 𝛾 + (1/2) 𝜎22)2 ]]× 𝑑𝐼 + 𝛾 + (1/2) 𝜎22𝑑𝐼 + 𝛾 − 𝜎222 (𝑑𝐼 + 𝛾) ≤ 1.
(60)

Remark 11. From Remark 10 above, we see that inTheorem 9
if condition (a) holds, then we directly have 𝑅̃0 < 1, and if
condition (b) holds, then we also have 𝑅̃0 < 1. Therefore,
an interesting open problem is whether we can establish the
extinction of disease 𝐼with probability one formodel (6) only
when 𝑅̃0 < 1.
4. Stochastic Persistence in the Mean

In this section, we discuss the stochastic persistence and
permanence in the mean with probability one for model (6)
only for the following two special cases: (1)𝜎0𝑗 = 0 (1 ≤ 𝑗 ≤ 𝑙)
and (2) 𝜎1𝑗 = 𝜎2𝑗 = 𝜎3𝑗 = 0 (1 ≤ 𝑗 ≤ 𝑙). Furthermore, we also
assume that in model (6) function 𝑓(𝑆) ≡ 𝑆.
4.1. Case 𝜎0𝑗 = 0 (1 ≤ 𝑗 ≤ 𝑙). When 𝑓(𝑆) = 𝑆 and 𝜎0𝑗 =0 (1 ≤ 𝑗 ≤ 𝑙) in model (6), we have𝑅̃0 = 𝑆0𝑔󸀠 (0) 𝛽𝑑𝐼 + 𝛾 − 𝜎222 (𝑑𝐼 + 𝛾) . (61)

Theorem 12. Assume that (H1) holds, 𝑓(𝑆) = 𝑆, and 𝜎0𝑗 =0 (1 ≤ 𝑗 ≤ 𝑙). If 𝑅̃0 > 1; then disease 𝐼 in model (6) is
stochastically persistent in the mean; that is,

lim inf
𝑡→∞

1𝑡 ∫𝑡
0

𝐼 (𝑟) 𝑑𝑟 > 0 a.s. (62)

Proof. Let (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) be any positive solution of model
(6). Lemma 2 implies that there is a constant 𝑀0 > 0 such
that 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) ≤ 𝑀0 a.s. for all ≥ 0. Define a Lyapunov
function 𝑈 (𝐼) = ∫𝐼(𝑡)

𝐼(0)

1𝑔 (𝐼)𝑑𝐼. (63)

Using Itô’s formula to model (6) leads to𝑑𝑈 (𝐼) = (𝛽𝑆 − (𝑑𝐼 + 𝛾) 𝐼𝑔 (𝐼) − 𝜎222 𝐼2𝑔2 (𝐼)𝑔󸀠 (𝐼)) 𝑑𝑡
− 𝑙∑
𝑗=1

𝜎2𝑗 𝐼𝑔 (𝐼)𝑑𝐵𝑗 (𝑡) = (𝛽𝑆
− (𝑑𝐼 + 𝛾) ( 𝐼𝑔 (𝐼) − 1𝑔󸀠 (0))
− 𝜎222 ( 𝐼2𝑔2 (𝐼)𝑔󸀠 (𝐼) − 1𝑔󸀠 (0))
− (𝑑𝐼 + 𝛾𝑔󸀠 (0) + 𝜎222𝑔󸀠 (0))) 𝑑𝑡 − 𝑙∑

𝑗=1

𝜎2𝑗 𝐼𝑔 (𝐼)𝑑𝐵𝑗 (𝑡) .

(64)
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From (𝐻1), which implies that 𝑔󸀠(𝐼) ≤ 𝑔(𝐼)/𝐼 ≤ 𝑔󸀠(0), we
have

𝐼2𝑔2 (𝐼)𝑔󸀠 (𝐼) − 1𝑔󸀠 (0)
= 𝐼2𝑔2 (𝐼) (𝑔󸀠 (𝐼) − 𝑔󸀠 (0))

+ 𝑔󸀠 (0) ( 𝐼2𝑔2 (𝐼) − 1(𝑔󸀠 (0))2)
≤ 𝑔󸀠 (0) ( 𝐼𝑔 (𝐼) + 1𝑔󸀠 (0)) ( 𝐼𝑔 (𝐼) − 1𝑔󸀠 (0))
≤ (𝑀𝑔󸀠 (0) + 1) ( 𝐼𝑔 (𝐼) − 1𝑔󸀠 (0)) ,

(65)

where 𝑀 = sup0≤𝐼≤𝑀0{𝐼/𝑔(𝐼)}. Since lim𝐼→0+(𝐼/𝑔(𝐼)) =1/𝑔󸀠(0), then 0 < 𝑀 < ∞. Substituting (65) into (64) and
then integrating from 0 to 𝑡 ≥ 0, we get

𝑈 (𝐼)𝑡 ≥ 1𝑡 ∫𝑡
0

[𝛽𝑆 (𝑟) − (𝑑𝐼 + 𝛾 + 𝜎222 (𝑀𝑔󸀠 (0) + 1))
⋅ ( 𝐼 (𝑟)𝑔 (𝐼 (𝑟)) − 1𝑔󸀠 (0)) − (𝑑𝐼 + 𝛾𝑔󸀠 (0) + 𝜎222𝑔󸀠 (0))] 𝑑𝑟
− 𝑙∑
𝑗=1

1𝑡 𝑀𝑗 (𝑡) ,
(66)

where 𝑀𝑗(𝑡) = ∫𝑡
0

𝜎2𝑗(𝐼(𝑟)/𝑔(𝐼(𝑟)))𝑑𝐵𝑗(𝑟). From Lemma 2,
we have

lim
𝑡→∞

1𝑡 𝑀𝑗 (𝑡) = 0 a.s., 1 ≤ 𝑗 ≤ 𝑙. (67)

Define a function 𝐺(𝐼) as follows. When 𝐼 > 0, 𝐺(𝐼) =𝐼/𝑔(𝐼), and when 𝐼 = 0, 𝐺(0) = lim𝐼→0(𝐼/𝑔(𝐼)) = 1/𝑔󸀠(0).
Then𝐺(𝐼) is continuous for 𝐼 ≥ 0 and differentiable for 𝐼 > 0.
Applying Lagrange’s mean value theorem to 𝐺(𝐼) − 𝐺(0), we
have from (66)

𝑈 (𝐼)𝑡 ≥ 1𝑡 ∫𝑡
0

[𝛽𝑆 (𝑟) − (𝑑𝐼 + 𝛾 + 𝜎222 (𝑀𝑔󸀠 (0) + 1))

⋅ sup
0≤𝐼≤𝑀0

{𝐺󸀠 (𝐼)} 𝐼 (𝑟) − (𝑑𝐼 + 𝛾𝑔󸀠 (0) + 𝜎222𝑔󸀠 (0))] 𝑑𝑟
− 𝑙∑
𝑗=1

1𝑡 𝑀𝑗 (𝑡) ,
(68)

Substituting (14) into (68), it follows that𝑈 (𝐼)𝑡 ≥ 𝛽𝑆0 − [𝛽𝑆1
+ (𝑑𝐼 + 𝛾 + 𝜎222 (𝑀𝑔󸀠 (0) + 1)) sup

0≤𝐼≤𝑀0

{𝐺󸀠 (𝐼)}]
⋅ ⟨𝐼 (𝑡)⟩ − (𝑑𝐼 + 𝛾𝑔󸀠 (0) + 𝜎222𝑔󸀠 (0)) − 𝑙∑

𝑗=1

1𝑡 𝑀𝑗 (𝑡)
+ 𝛽𝜑 (𝑡) .

(69)

Since 𝑈 (𝐼)𝑡 = 1𝑡 ∫𝐼(𝑡)
𝐼(0)

𝐼𝑔 (𝐼) 1𝐼 𝑑𝐼 ≤ 1𝑡 ∫𝐼(𝑡)
𝐼(0)

𝑀1𝐼 𝑑𝐼
= 𝑀 ln 𝐼 (𝑡) − ln 𝐼 (0)𝑡 , (70)

we have

ln 𝐼 (𝑡)𝑡 ≥ 1𝑀 {𝛽𝑆0 − 𝑑𝐼 + 𝛾𝑔󸀠 (0) − 𝜎222𝑔󸀠 (0)} − 1𝑀 [𝛽𝑆1
+ (𝑑𝐼 + 𝛾 + 𝜎222 (𝑀𝑔󸀠 (0) + 1)) sup

0≤𝐼≤𝑀0

{𝐺󸀠 (𝐼)}]
⋅ ⟨𝐼 (𝑡)⟩ + Φ (𝑡) ,

(71)

where

Φ (𝑡) = − 1𝑀 𝑙∑
𝑗=1

1𝑡 𝑀𝑗 (𝑡) + 𝛽𝜑 (𝑡)𝑀 + 1𝑡 ln 𝐼 (0) . (72)

From (67) and Lemma 3 we have lim𝑡→∞Φ(𝑡) = 0. Finally, by
Lemma 8, we obtain

lim inf
𝑡→∞

1𝑡 ∫𝑡
0

𝐼 (𝑟) 𝑑𝑟 ≥ 𝐼∗, (73)

where

𝐼∗ = (𝑑𝐼 + 𝛾) (𝑅̃0 − 1)(𝛽𝑆1 + (𝑑𝐼 + 𝛾 + (1/2) 𝜎22 (𝑀𝑔󸀠 (0) + 1)) sup0≤𝐼≤𝑀0 {𝐺󸀠 (𝐼)}) 𝑔󸀠 (0) . (74)

This completes the proof.
Remark 13. In the proof of Theorem 12, we easily see that
three constants 𝑀0, 𝑀 = sup0≤𝐼≤𝑀0{𝐼/𝑔(𝐼)}, and 𝐼∗ given
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in (74) are dependent on every solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of
model (6). This shows that in Theorem 12 we only obtain the
stochastic persistence in the mean of the disease.

4.2. Case 𝜎1𝑗 = 𝜎2𝑗 = 𝜎3𝑗 = 0 (1 ≤ 𝑗 ≤ 𝑙). When 𝑓(𝑆) = 𝑆
and 𝜎1𝑗 = 𝜎2𝑗 = 𝜎3𝑗 = 0 (1 ≤ 𝑗 ≤ 𝑙) in model (6), we have

𝑅̃0 = 𝛽𝑆0𝑔󸀠 (0)𝑑𝐼 + 𝛾 − 𝑆20 (𝑔󸀠 (0))2 𝜎202 (𝑑𝐼 + 𝛾) . (75)

In order to obtain the stochastic permanence in the mean
with probability one for model (6), we need to introduce a
new threshold value

𝑅0 = 𝛽𝑆0𝑔󸀠 (0)𝑑𝐼 + 𝛾 − 𝑆2 (𝑔󸀠 (0))2 𝜎202 (𝑑𝐼 + 𝛾) . (76)

Obviously, we have 𝑅0 ≤ 𝑅̃0.
Theorem 14. Assume that (H1) holds, 𝑓(𝑆) = 𝑆, and 𝜎1𝑗 =𝜎2𝑗 = 𝜎3𝑗 = 0 (1 ≤ 𝑗 ≤ 𝑙). If 𝑅0 > 1, then disease 𝐼 in model
(6) is stochastically permanent in the mean, that is,

lim inf
𝑡→∞

1𝑡 ∫𝑡
0

𝐼 (𝑟) 𝑑𝑟
≥ (𝑑𝐼 + 𝛾) (𝑅0 − 1)(𝛽𝑆1 + (𝑑𝐼 + 𝛾)max0≤𝐼≤𝑆 𝐺󸀠 (𝐼)) 𝑔󸀠 (0) a.s., (77)

where function 𝐺(𝐼) is defined in Theorem 12 above.

Proof. Let 𝑈(𝐼) = ∫𝐼(𝑡)
𝐼(0)

(1/𝑔(𝐼))𝑑𝐼; using Itô’s formula to
model (6) and (18) leads to

𝑑𝑈 (𝐼) = (𝛽𝑆 − (𝑑𝐼 + 𝛾) 𝐼𝑔 (𝐼) − 𝜎202 𝑆2𝑔󸀠 (𝐼)) 𝑑𝑡
− 𝑙∑
𝑗=1

𝑆𝜎0𝑗𝑑𝐵𝑗 (𝑡) ≥ (𝛽𝑆
− (𝑑𝐼 + 𝛾) ( 𝐼𝑔 (𝐼) − 1𝑔󸀠 (0))
− (𝜎20𝑆2𝑔󸀠 (0)2 + 𝑑𝐼 + 𝛾𝑔󸀠 (0) )) 𝑑𝑡 − 𝑙∑

𝑗=1

𝑆𝜎0𝑗𝑑𝐵𝑗 (𝑡) .
(78)

Similarly to above proof of Theorem 12, we have𝑈 (𝐼)𝑡 ≥ 1𝑡 ∫𝑡
0

(𝛽𝑆 (𝑟) − (𝑑𝐼 + 𝛾) max
0≤𝐼≤𝑆

𝐺󸀠 (𝐼) 𝐼 (𝑟)
− (𝜎20𝑆2𝑔󸀠 (0)2 + 𝑑𝐼 + 𝛾𝑔󸀠 (0) )) 𝑑𝑟
− 𝑙∑
𝑗=1

∫𝑡
0

𝑆 (𝑟) 𝜎0𝑗𝑑𝐵𝑗 (𝑟) .
(79)

Substituting (14) into (79) yields𝑈 (𝐼)𝑡 ≥ 𝛽𝑆0
− [𝛽𝑆1 + (𝑑𝐼 + 𝛾) max

0≤𝐼≤𝑆
𝐺󸀠 (𝐼)] 1𝑡 ∫𝑡

0
𝐼 (𝑟) 𝑑𝑟

− (𝜎20𝑆2𝑔󸀠 (0)2 + 𝑑𝐼 + 𝛾𝑔󸀠 (0) )
− 𝑙∑
𝑗=1

1𝑡 ∫𝑡
0

𝑆 (𝑟) 𝜎0𝑗𝑑𝐵𝑗 (𝑟) + 𝛽𝜑 (𝑡) .
(80)

Since by (18)

𝑈 (𝐼)𝑡 ≤ 1𝑡 ∫𝐼(𝑡)
𝐼(0)

𝑆𝑔 (𝑆) 1𝐼 𝑑𝐼 ≤ 𝑆 (ln 𝑆 − ln 𝐼 (0))𝑔 (𝑆) 𝑡 , (81)

(80) can be rewritten as1𝑡 ∫𝑡
0

𝐼 (𝑟) 𝑑𝑟
≥ (𝑑𝐼 + 𝛾) (𝑅0 − 1) + 𝑔󸀠 (0) Φ (𝑡)(𝛽𝑆1 + (𝑑𝐼 + 𝛾)max0≤𝐼≤𝑆 𝐺󸀠 (𝐼)) 𝑔󸀠 (0) , (82)

where

Φ (𝑡) = − 𝑙∑
𝑗=1

1𝑡 ∫𝑡
0

𝑆 (𝑟) 𝜎0𝑗𝑑𝐵𝑗 (𝑟) + 𝛽𝜑 (𝑡)
− 𝑆 (ln 𝑆 − ln 𝐼 (0))𝑔 (𝑆) 𝑡 . (83)

By Lemmas 2 and 3, it follows that lim𝑡→∞Φ(𝑡) = 0.
Therefore, taking 𝑡 → ∞ in (82) it follows that (77) holds.
This completes the proof.

Using Lemma 5, we can establish the following result
which shows that 𝑅̃0 can be a threshold value for the
stochastic permanence of disease 𝐼 in the mean for a more
special case of model (6): 𝑑𝑆 = 𝑑𝑅 and 𝑑𝐼 = 𝑑𝑆 + 𝛼 with
constant 𝛼 ≥ 0.
Theorem 15. Assume that (H1) holds, 𝑓(𝑆) = 𝑆, 𝜎1𝑗 = 𝜎2𝑗 =𝜎3𝑗 = 0 (1 ≤ 𝑗 ≤ 𝑙), 𝑑𝑆 = 𝑑𝑅, and 𝑑𝐼 = 𝑑𝑆 + 𝛼 with constant𝛼 ≥ 0. If 𝑅̃0 > 1; then disease 𝐼 in model (6) is stochastically
permanent in the mean; that is,

lim inf
𝑡→∞

1𝑡 ∫𝑡
0

𝐼 (𝑟) 𝑑𝑟
≥ (𝑑𝑆 + 𝛼 + 𝛾) (𝑅̃0 − 1)(𝛽𝑆1 + (𝑑𝐼 + 𝛾)max0≤𝐼≤𝑆 𝐺󸀠 (𝐼) + 𝑀0) 𝑔󸀠 (0) a.s., (84)
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where function 𝐺(𝐼) is defined in above Theorem 12 and

𝑀0 = 6 [1 + 𝛼2𝑑2𝑆 + 𝛾2(𝑑𝑆 + 𝜀)2 + 𝑝2(𝑑𝑆 + 𝜀 + 𝑝)2
+ (𝑝𝛼)2𝑑2𝑆 (𝑑𝑆 + 𝜀 + 𝑝)2 + (𝑝𝛾)2(𝑑𝑆 + 𝜀)2 (𝑑𝑆 + 𝜀 + 𝑝)2] Λ𝑑𝑆 .

(85)

Proof. Firstly, when 𝑑𝑆 = 𝑑𝑅 and 𝑑𝐼 = 𝑑𝑆 + 𝛼, then threshold
value 𝑅̃0 becomes

𝑅̃0 = 𝛽𝑆0𝑔󸀠 (0)𝑑𝑆 + 𝛼 + 𝛾 − 𝑆20 (𝑔󸀠 (0))2 𝜎202 (𝑑𝑆 + 𝛼 + 𝛾) , (86)

where 𝑆0 = Λ[(1 − 𝑞)𝑑𝑆 + 𝜀]/𝑑𝑆(𝑑𝑆 + 𝜀 + 𝑝).
Let 𝑈(𝐼) = ∫𝐼(𝑡)

𝐼(0)
(1/𝑔(𝐼))𝑑𝐼; similarly to above proof of

Theorem 12, we have

𝑑𝑈 (𝐼) ≥ (𝛽𝑆 − (𝑑𝑆 + 𝛼 + 𝛾) max
0≤𝐼≤𝑆

𝐺󸀠 (𝐼) 𝐼
− 12𝜎20𝑆2𝑔󸀠 (0) − 𝑑𝑆 + 𝛼 + 𝛾𝑔󸀠 (0) ) 𝑑𝑡
− 𝑙∑
𝑗=1

𝑆𝜎0𝑗𝑑𝐵𝑗 (𝑡) .
(87)

Since 𝑆2 = 𝑆20 + 2𝑆0(𝑆 − 𝑆0) + (𝑆 − 𝑆0)2, we further have𝑈 (𝐼)𝑡 ≥ 𝛽 ⟨𝑆 (𝑡)⟩ − (𝑑𝑆 + 𝛼 + 𝛾) max
0≤𝐼≤𝑆

𝐺󸀠 (𝐼) ⟨𝐼 (𝑡)⟩
− 12𝜎20𝑆20𝑔󸀠 (0) − 𝜎20𝑆0𝑔󸀠 (0) ⟨𝑆 (𝑡) − 𝑆0⟩
− 𝑑𝑆 + 𝛼 + 𝛾𝑔󸀠 (0) − 12𝜎20𝑔󸀠 (0) ⟨(𝑆 (𝑡) − 𝑆0)2⟩
− 𝑙∑
𝑗=1

1𝑡 ∫𝑡
0

𝑆𝜎0𝑗𝑑𝐵𝑗 (𝑠) .
(88)

Substituting (14) and (21) of Lemma 5 into (88), using
inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2), it follows that𝑈 (𝐼)𝑡 ≥ 𝑑𝑆 + 𝛼 + 𝛾𝑔󸀠 (0) (𝑅̃0 − 1)

− [𝛽𝑆1 + (𝑑𝑆 + 𝛼 + 𝛾) max
0≤𝐼≤𝑆

𝐺󸀠 (𝐼)] ⟨𝐼 (𝑡)⟩
+ (𝛽 − 𝜎20𝑆0𝑔󸀠 (0)) 𝜑 (𝑡)− 𝜎20𝑔󸀠 (0) (⟨𝐻2 (𝑡)⟩ + ⟨𝐺2 (𝑡)⟩)
− 𝑙∑
𝑗=1

1𝑡 ∫𝑡
0

𝑆𝜎0𝑗𝑑𝐵𝑗 (𝑠) .
(89)

From expression (22) of 𝐻(𝑡), we easily have
lim𝑡→∞⟨𝐻2(𝑡)⟩ = 0. By (18), without loss of generality,
we can assume that 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) ≤ Λ/𝑑𝑆 a.s. for all 𝑡 ≥ 0.
Hence,

𝐺2 (𝑡) ≤ 6 [𝐼2 (𝑡) + 𝛼2 (∫𝑡
0

𝑒−𝑑𝑆(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠)2
+ 𝛾2 (∫𝑡

0
𝑒−(𝑑𝑆+𝜀)(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠)2

+ 𝑝2 (∫𝑡
0

𝑒−(𝑑𝑆+𝜀+𝑝)(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠)2 + (𝑝𝛼)2
⋅ (∫𝑡
0

𝑒−(𝑑𝑆+𝜀+𝑝)(𝑡−𝑠) ∫𝑠
0

𝑒−𝑑𝑆(𝑠−𝑢)𝐼 (𝑢) 𝑑𝑢 𝑑𝑠)2
+ (𝑝𝛾)2 (∫𝑡

0
𝑒−(𝑑𝑆+𝜀+𝑝)(𝑡−𝑠)

⋅ ∫𝑠
0

𝑒−(𝑑𝑆+𝜀) (𝑠 − 𝑢) 𝐼 (𝑢) 𝑑𝑢 𝑑𝑠)2] ≤ 6 [ Λ𝑑𝑆 𝐼 (𝑡)
+ 𝛼2Λ𝑑2𝑆 ∫𝑡

0
𝑒−𝑑𝑆(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠 + 𝛾2Λ𝑑𝑆 (𝑑𝑆 + 𝜀)

⋅ ∫𝑡
0

𝑒−(𝑑𝑆+𝜀)(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠 + 𝑝2Λ𝑑𝑆 (𝑑𝑆 + 𝜀 + 𝑝)
⋅ ∫𝑡
0

𝑒−(𝑑𝑆+𝜀+𝑝)(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠 + (𝑝𝛼)2 𝜆𝑑2𝑆 (𝑑𝑆 + 𝜀 + 𝑝)
⋅ ∫𝑡
0

𝑒−(𝑑𝑆+𝜀+𝑝)(𝑡−𝑠) ∫𝑠
0

𝑒−𝑑𝑆(𝑠−𝑢)𝐼 (𝑢) 𝑑𝑢 𝑑𝑠
+ (𝑝𝛾)2 Λ𝑑𝑆 (𝑑𝑆 + 𝜀) (𝑑𝑆 + 𝜀 + 𝑝) ∫𝑡

0
𝑒−(𝑑𝑆+𝜀+𝑝)(𝑡−𝑠)

⋅ ∫𝑠
0

𝑒−(𝑑𝑆+𝜀) (𝑠 − 𝑢) 𝐼 (𝑢) 𝑑𝑢 𝑑𝑠] .

(90)

By computing, we obtain

1𝑡 ∫𝑡
0

∫𝑠
0

𝑒−𝑑𝑆(𝑠−𝑢)𝐼 (𝑢) 𝑑𝑢 𝑑𝑠 ≤ 1𝑑𝑆 ⟨𝐼 (𝑡)⟩ ,
1𝑡 ∫𝑡
0

∫𝑠
0

𝑒−(𝑑𝑆+𝜀)(𝑠−𝑢)𝐼 (𝑢) 𝑑𝑢 𝑑𝑠 ≤ 1𝑑𝑆 + 𝜀 ⟨𝐼 (𝑡)⟩ ,
1𝑡 ∫𝑡
0

∫𝑠
0

𝑒−(𝑑𝑆+𝜀+𝑝)(𝑠−𝑢)𝐼 (𝑢) 𝑑𝑢 𝑑𝑠 ≤ 1𝑑𝑆 + 𝜀 + 𝑝 ⟨𝐼 (𝑡)⟩ ,
1𝑡 ∫𝑡
0

∫𝑠
0

𝑒−(𝑑𝑆+𝜀+𝑝)(𝑠−𝑢) ∫𝑢
0

𝑒−𝑑𝑆(𝑢−V)𝐼 (V) 𝑑V 𝑑𝑢 𝑑𝑠
≤ 1𝑑𝑆 (𝑑𝑆 + 𝜀 + 𝑝) ⟨𝐼 (𝑡)⟩ ,
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1𝑡 ∫𝑡
0

∫𝑠
0

𝑒−(𝑑𝑆+𝜀+𝑝)(𝑠−𝑢) ∫𝑢
0

𝑒−(𝑑𝑆+𝜀)(𝑢−V)𝐼 (V) 𝑑V 𝑑𝑢 𝑑𝑠
≤ 1(𝑑𝑆 + 𝜀) (𝑑𝑆 + 𝜀 + 𝑝) ⟨𝐼 (𝑡)⟩ .

(91)

Therefore, we finally have⟨𝐺2 (𝑡)⟩ ≤ 𝑀0 ⟨𝐼 (𝑡)⟩ . (92)

From (81), (89), and (92) we further obtain1𝑡 ∫𝑡
0

𝐼 (𝑟) 𝑑𝑟
≥ (𝑑𝑆 + 𝛼 + 𝛾) (𝑅̃0 − 1) + 𝑔󸀠 (0) Φ (𝑡)(𝛽𝑆1 + (𝑑𝐼 + 𝛾)max0≤𝐼≤𝑆 𝐺󸀠 (𝐼) + 𝑀0) 𝑔󸀠 (0) , (93)

where

Φ (𝑡) = − 𝑙∑
𝑗=1

1𝑡 ∫𝑡
0

𝑆 (𝑟) 𝜎0𝑗𝑑𝐵𝑗 (𝑟)
+ (𝛽 − 𝜎20𝑆0𝑔󸀠 (0)) 𝜑 (𝑡) − 𝜎20𝑔󸀠 (0) ⟨𝐻2 (𝑡)⟩
− 𝑆 (ln 𝑆 − ln 𝐼 (0))𝑔 (𝑆) 𝑡 .

(94)

By Lemmas 2 and 3, it follows that lim𝑡→∞Φ(𝑡) = 0.
Therefore, taking 𝑡 → ∞ in (93) it follows that (84) holds.
This completes the proof.

5. Stationary Distribution

In this section,we discuss the stationary distribution ofmodel
(6) by using Lyapunov function method.We firstly define the
diffusion matrix 𝐴(𝑥) = ℎ(𝑥)ℎ𝑇(𝑥), where 𝑥 = (𝑆, 𝐼, 𝑅),

ℎ (𝑥) = (ℎ11 (𝑥) ℎ12 (𝑥) ⋅ ⋅ ⋅ ℎ1𝑙 (𝑥)ℎ21 (𝑥) ℎ22 (𝑥) ⋅ ⋅ ⋅ ℎ2𝑙 (𝑥)ℎ31 (𝑥) ℎ32 (𝑥) ⋅ ⋅ ⋅ ℎ3𝑙 (𝑥)) ,
ℎ1𝑗 (𝑥) = −𝑓 (𝑆) 𝑔 (𝐼) 𝜎0𝑗 − 𝑓 (𝑆) 𝜎1𝑗,ℎ2𝑗 (𝑥) = 𝑓 (𝑆) 𝑔 (𝐼) 𝜎0𝑗 − 𝐼𝜎2𝑗,ℎ3𝑗 (𝑥) = −𝑅𝜎3𝑗.

(95)

Furthermore, we denote by 𝑎𝑖𝑖(𝑥) (𝑖 = 1, 2, 3) the diagonal
elements of matrix 𝐴(𝑥). We have 𝑎𝑖𝑖(𝑥) = ∑𝑙𝑗=1 ℎ2𝑖𝑗(𝑥).
Theorem 16. Assume that (H1) holds, 𝑓(𝑆) = 𝑆, and there is
a constant 𝜌 > 0 such that 𝑎𝑖𝑖(𝑥) > 𝜌, for any 𝑥 ∈ 𝑅3+ and𝑖 = 1, 2, 3, 𝛾 > 𝑝, 𝑑𝐼 > 𝑑𝑆, and 𝛾(𝑑𝑆 + 𝑑𝑅) > 𝑝(𝑑𝐼 + 𝑑𝑅). If𝑅0 > 1 and

[(𝑑𝑆 + 𝑝) [𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)](𝛾 − 𝑝) 𝜀 + 𝑑𝑆 − 𝐶1] 𝑆∗2 ∧ [(𝑑𝐼 + 𝛾) [𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)](𝛾 − 𝑝) 𝜀 + 𝑑𝐼 − 𝐶2] 𝐼∗2
∧ [(𝑑𝐼 − 𝑑𝑆) (𝑑𝑅 + 𝜀)𝛾 − 𝑝 + 𝑑𝑅 − 𝐶3] 𝑅∗2 > [(𝑑𝑆 + 𝑑𝐼) (𝛾 − 𝑝) 𝜀 + (𝑑𝑆 + 𝑝 + 𝑑𝐼 + 𝛾) (𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅))] 𝐼∗𝜎22𝜀𝛽𝑔 (𝐼∗) (𝛾 − 𝑝)+ 𝐶1𝑆∗2 + 𝐶2𝐼∗2 + 𝐶3𝑅∗2,

(96)

where

𝐶1 = 2 [(𝑑𝑆 + 𝑑𝐼) (𝛾 − 𝑝) 𝜀 + (𝑑𝑆 + 𝑝 + 𝑑𝐼 + 𝛾) (𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅))] 𝐼∗ (𝑔󸀠 (0))2 𝜎20𝜀𝛽𝑔 (𝐼∗) (𝛾 − 𝑝)
+ 2 [𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)] 𝜎21(𝛾 − 𝑝) 𝜀 + 𝜎2,

𝐶2 = 2 [𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)] 𝜎22(𝛾 − 𝑝) 𝜀 + 𝜎2,
𝐶3 = (𝑑𝐼 − 𝑑𝑆) 𝜎23𝛾 − 𝑝 + 𝜎2

(97)

and (𝑆∗, 𝐼∗, 𝑅∗) is the unique endemic equilibrium of model
(2), then model (6) has a unique stationary distribution.

Proof. We here use the Lyapunov function method to prove
this theorem. The proof given here is similar to Theorem 5.1
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in [11]. But, due to nonlinear function 𝑔(𝐼), the Lyapunov
function structured in the following is different from that
given in [11].

By Lemma 7, it suffices to find a nonnegative Lyapunov
function𝑉(𝑥) and compact set𝐾 ⊂ 𝑅3+ such that 𝐿𝑉(𝑥) ≤ −𝐶
for some 𝐶 > 0 and 𝑥 ∈ 𝑅3+/𝐾.

Denote 𝑥 = (𝑆, 𝐼, 𝑅) ∈ 𝑅3+. Define the function𝑉1 (𝑥) = 12 (𝑅 − 𝑅∗)2 . (98)

Calculating 𝐿𝑉1(𝑥), we have𝐿𝑉1 (𝑥) = (𝑅 − 𝑅∗)⋅ (𝑝 (𝑆 − 𝑆∗) + 𝛾 (𝐼 − 𝐼∗) − (𝑑𝑅 + 𝜀) (𝑅 − 𝑅∗))+ 12𝜎23𝑅2 ≤ − (𝑑𝑅 + 𝜀 − 𝜎23) (𝑅 − 𝑅∗)2+ 𝑝 (𝑆 − 𝑆∗) (𝑅 − 𝑅∗) + 𝛾 (𝐼 − 𝐼∗) (𝑅 − 𝑅∗)+ 𝜎23𝑅∗2.
(99)

Define the function𝑉2 (𝑥) = 𝐼 − 𝐼∗ − 𝐼∗ ln 𝐼𝐼∗ . (100)

Calculating 𝐿𝑉2(𝑥), we have
𝐿𝑉2 (𝑥) = (1 − 𝐼∗𝐼 ) (𝛽𝑆𝑔 (𝐼) − (𝑑𝐼 + 𝛾) 𝐼) + 𝐼∗2

⋅ 𝑙∑
𝑗=1

(𝑆𝑔 (𝐼)𝐼 𝜎0𝑗 − 𝜎2𝑗)2 = (𝐼 − 𝐼∗)
⋅ (𝛽𝑆 (𝑔 (𝐼)𝐼 − 𝑔 (𝐼∗)𝐼∗ ) + 𝛽𝑔 (𝐼∗)𝐼∗ (𝑆 − 𝑆∗))
+ 12𝐼∗𝜎22 + 12𝐼∗𝜎20𝑆2𝑔2 (𝐼)𝐼2 − 𝑙∑

𝑗=1

𝐼∗𝑆𝑔 (𝐼)𝐼 𝜎0𝑗𝜎2𝑗
≤ 𝛽𝑔 (𝐼∗)𝐼∗ (𝑆 − 𝑆∗) (𝐼 − 𝐼∗) + 12𝐼∗𝜎22 + 12
⋅ 𝐼∗𝜎20 (𝑔󸀠 (0))2 𝑆2 − 𝑙∑

𝑗=1

𝐼∗𝑆𝑔 (𝐼)𝐼 𝜎0𝑗𝜎2𝑗 ≤ 𝛽
⋅ 𝑔 (𝐼∗)𝐼∗ (𝑆 − 𝑆∗) (𝐼 − 𝐼∗) + 2𝐼∗𝜎20 (𝑔󸀠 (0))2
⋅ (𝑆 − 𝑆∗)2 + 2𝐼∗𝜎20 (𝑔󸀠 (0))2 𝑆∗2 + 𝐼∗𝜎22 .

(101)

Define the function

𝑉3 (𝑥) = 12 (𝑆 + 𝐼 − 𝑆∗ − 𝐼∗)2 . (102)

Calculating 𝐿𝑉3(𝑥), we get𝐿𝑉3 (𝑥) = (𝑆 + 𝐼 − 𝑆∗ − 𝐼∗) (− (𝑑𝑆 + 𝑝) (𝑆 − 𝑆∗)+ 𝜀 (𝑅 − 𝑅∗) − (𝑑𝐼 + 𝛾) (𝐼 − 𝐼∗)) + 12𝜎21𝑆2 + 12
⋅ 𝜎22𝐼2 + 𝑙∑

𝑗=1

𝑆𝐼𝜎1𝑗𝜎2𝑗 ≤ − ((𝑑𝑆 + 𝑝) − 2𝜎21) (𝑆
− 𝑆∗)2 − (𝑑𝐼 + 𝛾 − 2𝜎22) (𝐼 − 𝐼∗)2 + 𝜀 (𝑆 − 𝑆∗) (𝑅− 𝑅∗) − (𝑑𝑆 + 𝑝 + 𝑑𝐼 + 𝛾) (𝑆 − 𝑆∗) (𝐼 − 𝐼∗) + 𝜀 (𝐼− 𝐼∗) (𝑅 − 𝑅∗) + 2𝜎21𝑆∗2 + 2𝜎22𝐼∗2.

(103)

Define the function

𝑉4 (𝑥) = 12 (𝑆 + 𝐼 + 𝑅 − 𝑆∗ − 𝐼∗ − 𝑅∗)2 . (104)

Calculating 𝐿𝑉4(𝑥), we get𝐿𝑉4 (𝑥) = (𝑆 + 𝐼 + 𝑅 − 𝑆∗ − 𝐼∗ − 𝑅∗)⋅ (Λ − 𝑑𝑆𝑆 − 𝑑𝐼𝐼 − 𝑑𝑅𝑅) + 12
⋅ 𝑙∑
𝑗=1

(𝑆𝜎1𝑗 + 𝐼𝜎2𝑗 + 𝑅𝜎3𝑗)2 ≤ −𝑑𝑆 (𝑆 − 𝑆∗)2
− 𝑑𝐼 (𝐼 − 𝐼∗)2 − 𝑑𝑅 (𝑅 − 𝑅∗)2 − (𝑑𝑆 + 𝑑𝐼)⋅ (𝑆 − 𝑆∗) (𝐼 − 𝐼∗) − (𝑑𝑆 + 𝑑𝑅) (𝑆 − 𝑆∗) (𝑅 − 𝑅∗)− (𝑑𝐼 + 𝑑𝑅) (𝐼 − 𝐼∗) (𝑅 − 𝑅∗) + 12 (𝜎21 + 𝜎22 + 𝜎23)⋅ (𝑆2 + 𝐼2 + 𝑅2) ≤ − (𝑑𝑆 − 𝜎2) (𝑆 − 𝑆∗)2− (𝑑𝐼 − 𝜎2) (𝐼 − 𝐼∗)2 − (𝑑𝑅 − 𝜎2) (𝑅 − 𝑅∗)2− (𝑑𝑆 + 𝑑𝐼) (𝑆 − 𝑆∗) (𝐼 − 𝐼∗) − (𝑑𝑆 + 𝑑𝑅) (𝑆 − 𝑆∗)⋅ (𝑅 − 𝑅∗) − (𝑑𝐼 + 𝑑𝑅) (𝐼 − 𝐼∗) (𝑅 − 𝑅∗)+ 𝜎2 (𝑆∗2 + 𝐼∗2 + 𝑅∗2) .

(105)

Define the Lyapunov function for model (6) as follows:

𝑉 (𝑥) = [(𝑑𝑆 + 𝑑𝐼) (𝛾 − 𝑝) 𝜀 + (𝑑𝑆 + 𝑝 + 𝑑𝐼 + 𝛾) (𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅))] 𝐼∗𝜀𝛽𝑔 (𝐼∗) (𝛾 − 𝑝) 𝑉2 (𝑥) + 𝑑𝐼 − 𝑑𝑆𝛾 − 𝑝 𝑉1 (𝑥)
+ 𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)(𝛾 − 𝑝) 𝜀 𝑉3 (𝑥) + 𝑉4 (𝑥) . (106)
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Then from (99), (101), (103), and (105) we have

𝐿𝑉 (𝑥) ≤ − [(𝑑𝑆 + 𝑝) [𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)](𝛾 − 𝑝) 𝜀 + 𝑑𝑆 − 𝐶1] (𝑆 − 𝑆∗)2
− [(𝑑𝐼 + 𝛾) [𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)](𝛾 − 𝑝) 𝜀 + 𝑑𝐼 − 𝐶2] (𝐼 − 𝐼∗)2 − [(𝑑𝐼 − 𝑑𝑆) (𝑑𝑅 + 𝜀)𝛾 − 𝑝 + 𝑑𝑅 − 𝐶3] (𝑅 − 𝑅∗)2
+ 𝐶1𝑆∗2 + 𝐶2𝐼∗2 + 𝐶3𝑅∗2 + [(𝑑𝑆 + 𝑑𝐼) (𝛾 − 𝑝) 𝜀 + (𝑑𝑆 + 𝑝 + 𝑑𝐼 + 𝛾) (𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅))] 𝐼∗𝜎22𝜀𝛽𝑔 (𝐼∗) (𝛾 − 𝑝) .

(107)

If condition (96) holds, then the surface

[(𝑑𝑆 + 𝑝) [𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)](𝛾 − 𝑝) 𝜀 + 𝑑𝑆 − 𝐶1] (𝑆 − 𝑆∗)2
+ [(𝑑𝐼 + 𝛾) [𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)](𝛾 − 𝑝) 𝜀 + 𝑑𝐼 − 𝐶2] (𝐼 − 𝐼∗)2 + [(𝑑𝐼 − 𝑑𝑆) (𝑑𝑅 + 𝜀)𝛾 − 𝑝 + 𝑑𝑅 − 𝐶3] (𝑅 − 𝑅∗)2
= [(𝑑𝑆 + 𝑑𝐼) (𝛾 − 𝑝) 𝜀 + (𝑑𝑆 + 𝑝 + 𝑑𝐼 + 𝛾) (𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅))] 𝐼∗𝜎22𝜀𝛽𝑔 (𝐼∗) (𝛾 − 𝑝) + 𝐶1𝑆∗2 + 𝐶2𝐼∗2 + 𝐶3𝑅∗2

(108)

lies in the interior of𝑅3+. Hence, we can easily obtain that there
exists a constant 𝐶 > 0 and a compact set 𝐾 of 𝑅3+ such that,
for any 𝑥 ∈ 𝑅3+/𝐾, 𝐿𝑉 (𝑥) ≤ −𝐶. (109)

Therefore, model (6) has a unique stationary distribution.
This completes the proof.

Remark 17. In fact, the variances of errors usually should be
small enough to justify their validity of real data; otherwise,
the data may not be considered as a good one. It is clear that
when 𝜎𝑖𝑗 are very small, condition (96) is always satisfied.

6. Numerical Examples

To verify the theoretical results in this paper, we next give
numerical simulations of model (6).

Throughout the following numerical simulations, we
choose 𝑙 = 2 and 𝑔(𝐼) = 𝐼/(1 + 𝜔𝐼2), where 𝜔 is a positive
constant. It is easy to verify that assumption (𝐻1) holds.
By Milstein’s higher-order method [29, 30], we drive the
corresponding discretization equations of model (6):𝑆𝑖+1 = 𝑆𝑖

+ ((1 − 𝑞) Λ − 𝛽𝑓 (𝑆𝑖) 𝐼𝑖1 + 𝜔𝐼2𝑖 − (𝑑𝑆𝑖 + 𝑃) 𝑆𝑖 + 𝜀𝑅𝑖) Δ𝑡

− 𝑓 (𝑆𝑖) 𝐼𝑖1 + 𝜔𝐼2𝑖 𝑙∑𝑗=1(𝜎0𝑗𝜉𝑗𝑖√Δ𝑡 + 12𝜎20𝑗 (𝜉2𝑗𝑖 − 1) Δ𝑡)
− 𝑆𝑖 𝑙∑
𝑗=1

(𝜎1𝑗𝜉𝑗𝑖√Δ𝑡 + 12𝜎21𝑗 (𝜉2𝑗𝑖 − 1) Δ𝑡) ,
𝐼𝑖+1 = 𝐼𝑖 + (𝛽𝑓 (𝑆𝑖) 𝐼𝑖1 + 𝜔𝐼2𝑖 − (𝑑𝐼 + 𝛾) 𝐼𝑖) Δ𝑡 + 𝑓 (𝑆𝑖) 𝐼𝑖1 + 𝜔𝐼2𝑖

⋅ 𝑙∑
𝑗=1

(𝜎0𝑗𝜉𝑗𝑖√Δ𝑡 + 12𝜎20𝑗 (𝜉2𝑗𝑖 − 1) Δ𝑡)
− 𝐼𝑖 𝑙∑
𝑗=1

(𝜎2𝑗𝜉𝑗𝑖√Δ𝑡 + 12𝜎22𝑗 (𝜉2𝑗𝑖 − 1) Δ𝑡) ,
𝑅𝑖+1 = 𝑅𝑖 + (𝑞Λ + 𝑝𝑆𝑖 + 𝛾𝐼𝑖 − (𝑑𝑅 + 𝜀) 𝑅𝑖) Δ𝑡

− 𝑅𝑖 𝑙∑
𝑗=1

(𝜎3𝑗𝜉𝑗𝑖√Δ𝑡 + 12𝜎23𝑗 (𝜉2𝑗𝑖 − 1) Δ𝑡) .
(110)

Here, 𝜉𝑗𝑖 (𝑖 = 1, 2, . . . , 𝑗 = 1, . . . , 𝑙) are 𝑁(0, 1)-distributed
independent Gaussian random variables and Δ𝑡 > 0 is time
increment.

Example 1. In model (6), we take 𝑓(𝑆) = 𝑆/(1 + 0.2𝑆), Λ =1.85, 𝑞 = 0.52, 𝛽 = 0.52, 𝑝 = 0.24, 𝜀 = 0.2, 𝛾 = 0.3,
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Figure 1: The path of 𝐼(𝑡) for the stochastic model (6) with parameters in Example 1, compared to the corresponding deterministic model.
(a) is trajectories of the solution 𝐼(𝑡) with the initial value 𝐼(0) = 0.05 and (b) with the initial value 𝐼(0) = 0.5. The disease of model (6) is
extinct with probability one.
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Figure 2:The paths of 𝐼(𝑡) and (1/𝑡) ∫𝑡
0

𝐼(𝑠)𝑑𝑠 for the stochastic model (6) with parameters in Example 3, (a) with the initial value 𝐼(0) = 0.05
and (b) with the initial value 𝐼(0) = 0.5.
𝜔 = 2, 𝑑𝑆 = 0.4, 𝑑𝐼 = 0.21, 𝑑𝑅 = 0.3, 𝜎01 = 0.15, 𝜎02 = 0.99,𝜎11 = 0.23, 𝜎12 = 0.17, 𝜎21 = 0.14, 𝜎22 = 0.72, 𝜎31 = 0.47,
and 𝜎32 = 0.93. By computing, we obtain 𝑅̃0 = 0.8939 <1, 𝜎20𝑓(𝑆0)𝑔󸀠(0) − (𝛽 + ∑2𝑗=1 𝜎0𝑗𝜎2𝑗) = 0.3442 > 0, and(𝛽 + ∑2𝑗=1 𝜎0𝑗𝜎2𝑗)2/2𝜎20 − (𝑑𝐼 + 𝛾 + (1/2)𝜎22) = 0.005 > 0. This
shows that conditions (a) and (b) of Theorem 9 do not hold.
The numerical simulations (see Figure 1) suggest that disease𝐼(𝑡) of model (6) is still stochastically extinct with probability
one.Therefore, as an improvement ofTheorem 9, we have the
following interesting conjecture.

Conjecture 2. Assume (𝐻1) holds. The disease 𝐼(𝑡) in model
(6) is stochastically extinct with probability one only when 𝑅̃0 <1 holds.

Example 3. In model (6), we take 𝑓(𝑆) = 𝑆/(1 + 1.5𝑆), Λ = 3,𝑞 = 0.2, 𝛽 = 2.1, 𝑝 = 0.3, 𝜀 = 0.8, 𝛾 = 0.1, 𝜔 = 2,𝑑𝑆 = 0.5, 𝑑𝐼 = 0.8, 𝑑𝑅 = 0.4, 𝜎01 = 0.8, 𝜎02 = 1.2, 𝜎11 = 0.3,𝜎12 = 0.75, 𝜎21 = 0.45, 𝜎22 = 0.8, 𝜎31 = 0.8, and 𝜎32 = 0.3. By
computing, we obtain 𝑅̃0 = 1.3554 > 1. From the numerical
simulations given in Figure 2, it is shown that disease 𝐼(𝑡) of
model (6) is not only stochastically persistent in themean but
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Figure 3:The paths of 𝐼(𝑡) and (1/𝑡) ∫𝑡
0

𝐼(𝑠)𝑑𝑠 for the stochastic model (6) with parameters in Example 5, (a) with the initial value 𝐼(0) = 0.05
and (b) with the initial value 𝐼(0) = 0.5.
also stochastically persistent with probability one. Therefore,
as an improvement of Theorem 12, we have the following
interesting conjecture.

Conjecture 4. Assume (𝐻1) holds. The disease 𝐼(𝑡) in model
(6) is stochastically persistent in the mean only when 𝑅̃0 > 1.
Example 5. Inmodel (6), we take𝑓(𝑆) = 𝑆/(1+0.1𝑆),Λ = 1.2,𝑞 = 0.5, 𝛽 = 1.5, 𝑝 = 0.9, 𝜀 = 1.1, 𝛾 = 0.9, 𝜔 = 2, 𝑑𝑆 = 0.6,𝑑𝐼 = 0.35, 𝑑𝑅 = 0.4, 𝜎01 = 0.4, 𝜎02 = 0.2, 𝜎11 = 0.1,𝜎12 = 0.45, 𝜎21 = 0.2, 𝜎22 = 0.1, 𝜎31 = 0.2, and 𝜎32 = 0.3.
By computing, we obtain 𝑅0 = 0.8687 < 1 and 𝑅̃0 = 1.2931 >1. The numerical simulations given in Figure 3 show that
disease 𝐼(𝑡) of model (6) is still stochastically permanent in
themean.Therefore, combiningTheorem 12 andTheorem 14,
we can obtain the following interesting conjecture about the
stochastic permanence in the mean of disease 𝐼(𝑡).

Conjecture 6. Assume (𝐻1) holds. The disease 𝐼(𝑡) in model
(6) is stochastically permanent in the mean only when𝑅̃0 > 1.
Example 7. In model (6), we take 𝑓(𝑆) = 𝑆, Λ = 0.67,𝑞 = 0.02, 𝛽 = 1.7, 𝑝 = 0.05, 𝜀 = 3, 𝛾 = 0.99, 𝜔 = 4,𝑑𝑆 = 0.29, 𝑑𝐼 = 0.53, 𝑑𝑅 = 0.39, 𝜎01 = 0.025, 𝜎02 = 0.02,𝜎11 = 0.0121, 𝜎12 = 0.01, 𝜎21 = 0, 𝜎22 = 0, 𝜎31 = 0.02,
and 𝜎32 = 0.01. By computing, we obtain that the basic
reproduction number for deterministic model (2) is 𝑅0 =2.5279 > 1 and the unique endemic equilibrium of model
(2) is (𝑆∗, 𝐼∗, 𝑅∗) = (1.4230, 0.3845, 0.1372). Furthermore, we
can verify that there is a constant𝜌 > 0 such that 𝑎𝑖𝑖(𝑥) > 𝜌 for
any 𝑥 ∈ 𝑅3+ (𝑖 = 1, 2, 3), 𝑑𝐼 − 𝑑𝑆 = 0.24 > 0, 𝛾 − 𝑝 = 0.94 > 0,𝛾(𝑑𝑆 + 𝑑𝑅) − 𝑝(𝑑𝐼 + 𝑑𝑅) = 0.6272 > 0, and

[(𝑑𝑆 + 𝑝) [𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)](𝛾 − 𝑝) 𝜀 + 𝑑𝑆 − 𝐶1] 𝑆∗2 ∧ [(𝑑𝐼 + 𝛾) [𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)](𝛾 − 𝑝) 𝜀 + 𝑑𝐼 − 𝐶2] 𝐼∗2
∧ [(𝑑𝐼 − 𝑑𝑆) (𝑑𝑅 + 𝜀)𝛾 − 𝑝 + 𝑑𝑅 − 𝐶3] 𝑅∗2 − [(𝑑𝑆 + 𝑑𝐼) (𝛾 − 𝑝) 𝜀 + (𝑑𝑆 + 𝑝 + 𝑑𝐼 + 𝛾) (𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅))] 𝐼∗𝜎22𝜀𝛽𝑔 (𝐼∗) (𝛾 − 𝑝)
+ 𝐶1𝑆∗2 + 𝐶2𝐼∗2 + 𝐶3𝑅∗2 = 0.0147 > 0.

(111)

That is, all conditions in Theorem 16 are satisfied. The
stationary distributions about the susceptible, infected, and
removed individuals obtained through the numerical simu-
lations are reported in Figure 4, which shows that after some
initial transients the population densities fluctuate around the
deterministic steady-state values 𝑆∗ = 1.4230, 𝐼∗ = 0.3845,
and 𝑅∗ = 0.1372.

Example 8. Inmodel (6), we take𝑓(𝑆) = 𝑆/(1+0.4𝑆),Λ = 2.5,𝑞 = 0.5, 𝛽 = 1.4, 𝑝 = 0.7, 𝜀 = 0.9, 𝛾 = 0.51, 𝜔 = 1.89,𝑑𝑆 = 0.7, 𝑑𝐼 = 0.45, 𝑑𝑅 = 0.58, 𝜎01 = 0.4, 𝜎02 = 0.2,𝜎11 = 0.21, 𝜎12 = 0.1, 𝜎21 = 0.1, 𝜎22 = 0.24, 𝜎31 =0.2, and 𝜎32 = 0.1. By computing, we obtain that the basic
reproduction number for deterministic model (2) is 𝑅0 =1.6484 > 1 and the unique endemic equilibrium of model
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Figure 4: The solution of stochastic model (6) and its histogram with parameters in Example 7.

(2) is (𝑆∗, 𝐼∗, 𝑅∗) = (1.7242, 0.5082, 1.8352). Furthermore,
we can verify that there is not a constant 𝜌 > 0 such that

𝑎𝑖𝑖(𝑥) > 𝜌 for any 𝑥 ∈ 𝑅3+ and 𝑖 = 1, 2, 3, 𝑑𝐼 − 𝑑𝑆 = −0.25 < 0,𝛾 − 𝑝 = −0.19 < 0, 𝛾(𝑑𝑆 + 𝑑𝑅) − 𝑝(𝑑𝐼 + 𝑑𝑅) = −0.0682 < 0 and
[(𝑑𝑆 + 𝑝) [𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)](𝛾 − 𝑝) 𝜀 + 𝑑𝑆 − 𝐶1] 𝑆∗2 ∧ [(𝑑𝐼 + 𝛾) [𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅)](𝛾 − 𝑝) 𝜀 + 𝑑𝐼 − 𝐶2] 𝐼∗2

∧ [(𝑑𝐼 − 𝑑𝑆) (𝑑𝑅 + 𝜀)𝛾 − 𝑝 + 𝑑𝑅 − 𝐶3] 𝑅∗2 − [(𝑑𝑆 + 𝑑𝐼) (𝛾 − 𝑝) 𝜀 + (𝑑𝑆 + 𝑝 + 𝑑𝐼 + 𝛾) (𝛾 (𝑑𝑆 + 𝑑𝑅) − 𝑝 (𝑑𝐼 + 𝑑𝑅))] 𝐼∗𝜎22𝜀𝛽𝑔 (𝐼∗) (𝛾 − 𝑝)+ 𝐶1𝑆∗2 + 𝐶2𝐼∗2 + 𝐶3𝑅∗2 = −5.5051 < 0.
(112)



18 Computational and Mathematical Methods in Medicine

0 500 1000 1500 2000
−3
−2
−1

0
1
2
3
4
5
6
7
8

Time T

S(t)

0 1 2 3 4 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

S(t)

 Relative frequency density

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

1.5

2

Time T

I(t)

−0.5 0 0.5 1 1.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

I(t)

 Relative frequency density

0 500 1000 1500 2000
−3

−2

−1

0

1

2

3

4

5

6

Time T

R(t)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

R(t)

 Relative frequency density

Figure 5: The solution of stochastic model (6) and its histogram with parameters in Example 8.

That is, the conditions in Theorem 16 are not satisfied.
However, we obtain that threshold value 𝑅̃0 = 2.7192 >1. The numerical simulations given in Figure 5 show the
stationary distributions about the susceptible, infected, and
removed individuals. Therefore, we can obtain the following
interesting conjecture about the stationary distribution for
model (6), as described in the conclusion part.

Conjecture 9. Assume (𝐻1) holds. Model (6) has a unique
stationary distribution only when 𝑅̃0 > 1.

7. Conclusion

In this paper, as an extension of the results given in [11,
25], we investigated the dynamical behaviors for a stochastic
SIRS epidemic model (6) with nonlinear incidence and
vaccination. Inmodel (6), the disease transmission coefficient𝛽 and the removal rates 𝑑𝑆, 𝑑𝐼, and 𝑑𝑅 are affected by noise.
Some new basic properties of model (6) are found in Lemmas
2, 3, and 5. Applying these lemmas, we established a series
of new threshold value criteria on the stochastic extinction,
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persistence in the mean, and permanence in the mean of
the disease with probability one. Furthermore, by using the
Lyapunov function method, a sufficient condition on the
existence of unique stationary distribution for model (6) is
also obtained.

The stochastic persistence and permanence in the mean
of the disease for model (6) are established in this paper only
for the special cases: 𝑓(𝑆) ≡ 𝑆 and (1) 𝜎0𝑗 = 0 (1 ≤ 𝑗 ≤ 𝑙)
or (2) 𝜎1𝑗 = 𝜎2𝑗 = 𝜎3𝑗 = 0 (1 ≤ 𝑗 ≤ 𝑙). However, for the
general model (6), particularly, 𝑓(𝑆) ̸= 𝑆 and (𝜎1𝑗, 𝜎2𝑗, 𝜎3𝑗) ̸=(0, 0, 0) (1 ≤ 𝑗 ≤ 𝑙), whether we also can establish similar
results still is an interesting open problem.

In fact, under the above case, from the proofs ofTheorems
12 and 14, we can see that an important question is to deal with
terms 𝛽𝑓(𝑆(𝑡)) and 𝑓2(𝑆(𝑡))𝑔󸀠(𝐼(𝑡)). If we may get𝛽𝑓 (𝑆 (𝑡)) ≥ 𝛽𝑓 (𝑆0) + V1 (𝑆 (𝑡) − 𝑆0) a.s.,𝑓2 (𝑆 (𝑡)) 𝑔󸀠 (𝐼 (𝑡)) ≤ 𝑓2 (𝑆0) 𝑔󸀠 (0)+ V2 (𝑆 (𝑡) − 𝑆0) a.s., (113)

where V1 and V2 are two positive constants; then the following
perfect result may be established.

Assume that (𝐻1) holds. If 𝑅̃0 > 1, then disease 𝐼 inmodel
(6) is stochastically persistent in the mean; that is,

lim inf
𝑡→∞

1𝑡 ∫𝑡
0

𝐼 (𝑟) 𝑑𝑟 > 0 a.s. (114)

Another important open problem is about the existence
of stationary distribution of model (6), that is, whether we
can establish a similar result as inTheorem 16 when 𝑓(𝑆) is a
nonlinear function. The best perfect result on the stationary
distribution is to prove that model (6) possesses a unique
stationary distribution only when threshold value 𝑅̃0 > 1. But
this is a very difficult open problem.

However, the numerical examples given in Section 6
propose some affirmative answer for above open problems.
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