Table 3.
Modelsa | Trait | |||
---|---|---|---|---|
Days | Status | |||
Reliability ± SE b | Bias ± SE c | Reliability ± SE | Bias ± SE | |
PBLUP | 0.342 ± 0.080 | 0.960 ± 0.146 | 0.201 ± 0.038 | 0.304 ± 0.042 |
GBLUP | 0.414 ± 0.065 | 0.949 ± 0.097 | 0.256 ± 0.026 | 0.276 ± 0.026 |
SNPBLUP | 0.429 ± 0.069 | 1.026 ± 0.110 | 0.256 ± 0.032 | 1.365 ± 0.096 |
PSNPBLUP | 0.368 ± 0.069 | 0.814 ± 0.097 | 0.256 ± 0.039 | 0.798 ± 0.073 |
BAYESC | 0.424 ± 0.066 | 0.961 ± 0.098 | 0.261 ± 0.026 | 0.287 ± 0.028 |
PBAYESC | 0.389 ± 0.071 | 0.916 ± 0.106 | 0.256 ± 0.031 | 0.294 ± 0.029 |
BLASSO | 0.424 ± 0.066 | 0.955 ± 0.097 | 0.262 ± 0.026 | 0.287 ± 0.026 |
PBLASSO | 0.390 ± 0.072 | 0.937 ± 0.112 | 0.256 ± 0.029 | 0.285 ± 0.033 |
aModels with pedigree: pedigree based BLUP (PBLUP), genomic BLUP (GBLUP), marker-effects BLUP with polygenic pedigree (PSNPBLUP) and Bayesian estimation methods with marker-effects and polygenic pedigree (PBAYESC and PBLASSO); Models with only marker-effects: market-effects BLUP (SNPBLUP) and Bayesian estimation methods (BAYESC and BLASSO)
bThe effective number of SNPs used was 49 684 from the 50 K SNP array