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Abstract

We present the blinded prediction results in the Second Antibody Modeling Assessment (AMA-II) 

using a fully automatic antibody structure prediction method implemented in the programs 

BioLuminate and Prime. We have developed a novel knowledge based approach to model the CDR 

loops, using a combination of sequence similarity, geometry matching, and the clustering of 

database structures. The homology models are further optimized with a physics-based energy 

function (VSGB2.0), which improves the model quality significantly. H3 loop modeling remains 

the most challenging task. Our ab initio loop prediction performs well for the H3 loop in the 

crystal structure context, and allows improved results when refining the H3 loops in the context of 

homology models. For the 10 human and mouse derived antibodies in this assessment, the average 

RMSDs for the homology model Fv and framework regions are 1.19 Å and 0.74 Å, respectively. 

The average RMSDs for five non-H3 CDR loops range from 0.61 Å to 1.05 Å, and the H3 loop 

average RMSD is 2.91 Å using our knowledge-based loop prediction approach. The ab initio H3 

loop predictions yield an average RMSD of 1.28 Å when performed in the context of the crystal 

structure and 2.67 Å in the context of the homology modeled structure. Notably, our method for 

predicting the H3 loop in the crystal structure environment ranked first among the seven 

participating groups in AMA-II, and our method made the best prediction among all participants 

for seven of the ten targets.
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INTRODUCTION

Computational structure prediction of antibodies is an important step in the modeling, 

engineering, and design of novel antibodies with desired therapeutic properties. The variable 
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domains (Fvs) of the heavy and light chain are of special interest, as they typically impart 

most or all of the specificity of an antibody for its antigen target. The Fv can be further 

divided into the hypervariable regions and the framework regions (FRs). The hypervariable 

regions are so called complementarity-determining-regions (CDRs), which are composed of 

6 hypervariable loops on the surface of the antibody, thereafter denoted as H1, H2 and H3 of 

the heavy variable domain (VL), and L1, L2, and L3 of the light variable domain (VH). Due 

to the highly conserved nature of the framework regions of the VL and VH domains, 

research into Fv structure prediction has largely focused on the prediction of the six CDR 

loops. Analysis of antibody crystal structures led to the discovery of “canonical” classes for 

the five non-H3 CDR loops in the 1980s and 1990s.1–4 Antibody structure predictions based 

on this type of analysis and categorization are often qualitatively successful for loops L1-L3 

and H1-H2, although predictions of H3 are more problematic. Recently, Dunbrack et al. 

performed clustering of a new expanded set of crystal structures (>1300 antibody structures 

in the PDB) and proposed 72 clusters for the five non-H3 loops.5 Approximately 85% of the 

non-H3 sequences can be assigned to one of these conformational clusters based on gene 

source and sequence. Prediction of the H3 loops remains difficult, however. In contrast to the 

other CDR loops, the H3 loops are extremely diverse in the length and conformation. 

Although there have been a number of attempts, no satisfying classification has been 

possible for the H3 loops.6–10

The modeling of non-H3 loops has traditionally relied on the canonical classes, beginning 

with those based on the first studies that derived loop classifications from only a small 

number of crystal structures.1,2 However, with the rapidly increasing number of the antibody 

structures in the PDB, the methods that use sequence similarity and other generic criteria in 

homology modeling instead of antibody rules have become popular and perform comparably 

well to the canonical classes based approach.11 An advantage to these generic homology 

based approaches is that new structures can be added to the dataset more easily than with the 

older canonical class analyses. The large number of available structures has revealed the 

limitation of sequence based analysis and its predictive power. For example, Martin and 

Thornton observed that a loop might be closer in sequence to one class, but structurally 

belongs to another.3 Clearly, the loop conformation is not determined by its sequence alone

—the interactions between a loop and its environment must be considered to make an 

accurate prediction.

On the other end of the spectrum of the loop modeling techniques are ab initio prediction 

methods.12–18 These methods generally use a discretized rotamer library to sample the 

conformational space and a scoring function or energy function to rank the candidates. One 

of the advantages of ab initio methods is that they are independent of the protein structure 

database and thus can be used when no suitable template is available. With progress in 

sampling techniques and increased sophistication of the energy function, ab initio prediction 

methods have demonstrated high accuracy in the prediction of loops generally,19–23 and in 

the prediction of loops for antibodies,24–26 and other protein families.27,28

In this article, we describe our approach to antibody structure modeling and present our 

results for the Antibody Modeling Assessment II (AMA-II).29,30 Antibody Modeling 

Assessment is a community-wide blinded test of the state of the art antibody modeling 
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methods, and is similar in form to CASP.31 The first assessment (AMA-I) was organized in 

2011, in which four approaches (three software packages and a web server) were evaluated 

by predicting nine then-unpublished antibody crystal structures.11 For AMA-II, six groups 

and an automated Web server attempted to predict 11 then-unpublished antibody crystal 

structures, and the results were used to benchmark the modeling performance. The AMA-II 

assessment consisted of two stages. In the first stage, the participants were asked to predict 

the full Fv structures of 11 antibodies from sequence. In the second stage, the 

crystallographic coordinates of each of the antibody structures minus the coordinates of the 

H3 loops were made available, and each participating group was then asked to predict the 

coordinates of the H3 loops. The second stage of the assessment is new to AMA-II, and 

reflects the known difficulty in predicting H3 loops.

We have developed a novel knowledge-based method to predict the CDR loops using a 

combination of sequence similarity, geometry matching, and conformational clustering of 

the database structures. The homology models are optimized with a physics-based energy 

function (VSGB2.0),19 which we show significantly improves the quality and accuracy of 

the models. Subsequently, we present and discuss the results using our ab inito approach for 

the second stage of the assessment—H3 loop predictions in the context of the 

crystallographic structure scaffolds—and compare these to the results of the same approach 

when carried out in the context of homology models for the remainders of the Fv regions.

MATERIALS AND METHODS

Figure 1 depicts the flowchart of the steps in our antibody homology modeling protocol. Our 

protocol starts with a template search for the framework region (FR) in our curated antibody 

database, which is derived from the publically available crystal structures in the Protein Data 

Bank (PDB). Instead of a heuristic search algorithm such as BLAST32 or PSI-BLAST,33 we 

do a direct alignment of the query sequence to every sequence in the database using the 

Smith-Waterman algorithm34 with BLO-SUM6235 for the scoring matrix. Because there are 

only about 1200 antibody structures in the curated database, this direct alignment can be 

done relatively quickly, usually in 1 to 3 s. We select a matching pair of light and heavy 

chain templates from a single antibody template. There has been discussion in the 

literature36,37 regarding the question of whether one should use the light and heavy chain 

templates from a single structure, or whether selecting them from different templates 

(requiring subsequent structural alignment) might be preferable. Although there is no 

systematic benchmark study, there is evidence that using both chains derived from a single 

antibody template offers some advantage.37 The framework region and CDRs are defined 

according to the Chothia numbering. The templates are ranked by the average framework 

sequence similarity of the heavy and the light chain, and the best template is chosen as the 

one with the highest average similarity.

The selection of the templates for CDR loops has three steps. First, a set of loop sequences 

and conformations is derived individually for each loop position (L1, L2, L3, H1, H2, and 

H3). Next, each of the six resulting loop databases is dynamically filtered based on the query 

sequence, loop length, and the stem residue geometry of the framework template that has 

been selected. The stem residues are the adjacent residues in the N- and C- termini of the 
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loop. The stem geometry is defined using the distance, angles, and torsions by the Cα and C 

atoms in N-terminal stem residue and the N and Cα atoms in C-terminal stem residue.38 

After the filtering for each of the six loops, all remaining loop candidates are clustered with 

a complete linkage algorithm based on their backbone RMSDs with the stem residues being 

aligned. The clusters are ranked by the cluster size, and the “representative loop” of each 

cluster is defined as the one with the highest sequence similarity (as defined by 

BLOSUM62) to the query loop within that cluster. If the sequence similarity of the 

representative loop in the largest cluster exceeds a sequence similarity cutoff, this loop 

candidate will be chosen for the template; otherwise, the representative loop in the second 

largest cluster will be checked against the sequence similarity cutoff, and so on. If none of 

the representative loops in any cluster exceeds the similarity cutoff, then the representative 

loop with the highest sequence similarity will be chosen. The similarity cutoff for H3 loops 

and non-H3 loops are 0.3 and 0.6, respectively.

Once the templates for the framework and the six CDRs are chosen, we construct the initial 

homology model by first copying over the backbone coordinates and also side chains for 

conserved residues in the framework region, then mutating the nonconserved residues in the 

framework, and finally grafting the CDR loops onto the framework homology model. The 

nonconserved residues of the framework, and all CDR loop residues, are subject to a rotamer 

search to remove clashes and are then minimized with the OPLS 2005 force field39 in 

vacuum. Lastly, a side-chain prediction and minimization using the implicit solvent energy 

model VSGB2.0 are performed on all the non-conserved residues to further refine the 

model.

In the AMA-II, each modeler was asked to submit three models. The workflow, as described 

above, was used to produce our model #1. Our model #2 was generated by using the 

template loop candidate with the highest sequence similarity regardless the CDR loop 

clusters (framework selection was not changed). For model #3, we used Prime ab initio loop 

prediction to re-predict the H3 loops on model #1. The loop prediction follows the protocol 

in our previous study,24 and the side chains within 5 Å were also repacked simultaneously.

The second stage of the antibody modeling assessment was based on the well-known 

observation (also reflected in the aggregate results for the first stage of this assessment) that 

the H3 loop is generally the most difficult loop to correctly predict. Each participating 

modeling lab was challenged to predict the H3 loop conformations for a set of unpublished 

crystal structures, given the Fv crystal structure coordinates without the H3 loop. Our 

prediction strategy follows the protocol in our previous study,24 which is based on the Prime 

loop prediction method, but with some slight variations. Before the loop prediction job, the 

protein structure was prepared with Protein Preparation Wizard40 available in Maestro 9.4,41 

which assigns the polar hydrogen positions, protonation states, and amide group flips. 

Because the starting structure does not have the coordinates for the H3 loop, we run the 

“preparation-then-prediction” process twice, first on the provided structure without H3 loop, 

and then again once a loop has been modeled in the H3 position. The loop predictions are 

performed on the H3 loop plus one extra residue on each end to make the loop terminal 

residues fully flexible. The rest of the model is kept fixed. Five models are submitted for 

each target, ranked by Prime energy function.

Zhu et al. Page 4

Proteins. Author manuscript; available in PMC 2017 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS AND DISCUSSION

The homology model accuracy

Tables I and II show the PDB templates for constructing our homology models (the number 

1 model submission) and the RMSD values of different regions to the crystal structure. The 

11 antibody targets are denoted as AM1 to AM11. All CDRs are defined according to 

Chothia numbering. The structure alignment uses the Cα atoms, and the RMSD is calculated 

based on the backbone atoms (N, Cα, and C). The first target is a rabbit antibody, which 

does not have high similarity to any templates in the PDB, especially for the light chain. The 

sequence similarity of the best template is significantly lower than other antibodies, which 

results in significantly worse RMSDs. (In the AMA-II assessment, no participant was able to 

produce an acceptable model for the rabbit antibody due to lack of homologous data in 

existing crystallographic databases. Prediction of this structure was deemed a failure for all 

participants and it was subsequently removed before the second phase of the 

competition.29,30 Excluding the rabbit antibody, the average RMSDs of the Fv region and of 

just the frameworks for the 10 targets are 1.19 Å and 0.74 Å, respectively. The five non-H3 

CDR loop RMSDs range from 0.61 Å to 1.05 Å. Not surprisingly, the H3 loop remains to 

the most challenging constituent of the structure to predict, with an RMSD of 2.91 Å. In 

comparison, all modeling groups in AMA-II generate similar results on the FR and non-H3 

loop predictions with no appreciable differences in the average RMSDs.29 Predictions of the 

H3 loops exhibit a larger spread among the different groups and our results rank in third 

place by the average RMSD. Note that the RMSDs in Ref. 29 are calculated using only 

backbone carbonyl atoms and the values are slightly different from here.

The CDR loop homology modeling protocols: Clustering and sequence similarity

CDR loops can have identical sequences with very different conformations. This poses an 

issue for methods that rely on sequence alone to select the loop template. To overcome this 

issue, our primary model (model #1) is produced using a method that combines sequence 

similarity, stem geometry matching, and conformation clustering, as detailed in the Methods. 

Our second submitted model uses only sequence similarity to select the CDR loop 

templates. This experiment provides a blind assessment of the two methods. Figure 2 

compares the backbone RMSDs of six CDR loops generated by these two methods. The 

clustering method shows some advantage over the similarity method with smaller RMSDs 

on all six CDR loops. The biggest improvement is for L3 with an improvement of 0.4 Å in 

the RMSD, followed by H2 with an improvement of 0.3 Å. On average, the RMSDs are 

about 0.1 to 0.2 Å better with the clustering approach. It should be pointed out that this 

observation is based on a relatively small data set, which is not sufficient to make a 

definitive conclusion about these two methods. A large scale test should be conducted in the 

future to compare these methods.

H3 loop prediction

In the first stage of this assessment, our third submitted model is different from the first 

model only in the H3 loop, which is based on ab initio prediction by Prime in the context of 

a homology model for the remainder of the Fv. Analysis of the blinded predictions for these 

loops in model #3 versus model #1 allows us to evaluate the ability this ab initio method to 
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improve the predictions derived using standard homology templates. The loop prediction 

methodology in Prime has been extensively validated and recently we have shown 

encouraging H3 loop predictions in the context of crystal structure scaffolds, as well as 

when a highly homologous scaffold is available.24 Table III shows the backbone RMSDs of 

H3 loop homology models and Prime predictions. On average, Prime refinement improves 

the backbone RMSD by 0.2 Å. This improvement, although small, would have put us in the 

second place among AMA-II participants if we had submitted the ab initio models as the #1 

models. The accuracy of ab initio loop prediction in the context of homology models is 

heavily influenced by the quality of the homology model itself, but this influence is largely 

local instead of global (i.e. the structures near the loop in question) in a way that is hard to 

quantify.

MolProbity

In constructing our homology models, we keep the side-chain conformations from the 

template for all conserved residues. The side chains of non-conserved residues and CDR 

loop residues are first optimized by a simple rotamer search to minimize the steric clashes. 

Then a Prime side-chain prediction is performed to optimize the side-chain conformations. 

Finally, all atoms on non-conserved residues and CDR loops are minimized with the 

VSGB2.0 energy function in Prime. In Table IV, we compare the MolProbity assessment of 

the homology models before and after Prime refinement. MolProbity score and clash score 

are improved significantly by the refinement. We should note that MolProbity is a 

measurement of structure model quality or self-consistency of the model. It does not 

necessarily correlate with the “correctness” of a model. Nevertheless, the side-chain 

accuracy after Prime refinement is also improved and for some models the improvements are 

substantial. The backbone accuracy does not change significantly (RMSD data not shown), 

which can also be seen from the relatively minor change in Ramachandran favored backbone 

torsions.

H3 loop prediction in the context of the crystal structure scaffold

In the second stage of the assessment, all modelers were given the 10 crystal structures (the 

first rabbit antibody was excluded) with the H3 loops removed and asked to predict the 

conformations of the missing H3 loops. The purpose of this phase of the assessment is to 

determine how much the prediction depends on the scaffolds and how much improvement 

can be made if the perfect scaffolds are available. Figure 3 shows graphical illustrations of 

our predicted H3 loop (the first model among five submitted models) and the comparison 

with the crystal structure. Table V provides the backbone RMSD and side-chain χ1 angle 

accuracy of all five submitted models for each antibody, as well as our #1 model 

performance relative to that of other AMA-II participants. The average backbone RMSD of 

the first models is 1.28 Å. The five models are ranked by their Prime energy, and the model 

backbone accuracy is generally consistent with their ranking. Notably, our predictions rank 

the best among all AMA-II participants for 7 of the 10 targets in this category, and are 

within a fraction of an Å to the best model for two more of targets. In only one case (target 

5) is our method significantly worse than the best approach by another group. Interestingly, 

in this case, one of our alternative models (#4 model) would have placed this prediction as 

the best among all groups.
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Considering the high accuracy of loop backbone predictions, it is interesting to examine how 

well the side chains are predicted. From Table V, however, we do not see strong correlations 

of side chain prediction accuracy and the backbone RMSDs. For example, the side chain 

accuracy of model 1 averaged over the six H3 loops where the backbone RMSD is less than 

1.0 Å is 63%; for the three H3 loops where the backbone RMSD is greater than 2.0 Å, the 

average side chain accuracy is 57%. The side-chain prediction accuracy for very accurate 

loop backbone predictions is not much better than that for the incorrectly predicted loops. A 

possible explanation for this is that the side-chain conformations are highly opportunistic—

they can take distinctively different states depending on slight variation of the backbone 

positions. For buried side chains, the flexibility may be very limited, but surface residues can 

have much freedom to take different conformations without much energy costs. Figure 4 

shows the side-chain predictions of AM7 and AM9. Both predictions have excellent 

backbone RMSDs (0.45 Å and 0.54 Å, respectively), but side-chain predictions are very 

different: 43% versus 75%. The buried side chains are always predicted correctly according 

to the crystal structure, but the surface residues may not necessarily assume the crystal 

structure conformations, although the loop backbones are predicted very accurately. This 

suggests that the observed difference in the side chain fine detail may not reflect a weakness 

of the prediction algorithm as much as the ability of these residues to adjust based on their 

environment.

Knowledge-based and energy-based methods on H3 loop prediction

Table VI shows a direct comparison of H3 loop predictions made using both homology 

modeling and the Prime ab initio method. As more antibody structures become available, the 

chances of finding a good template for H3 loop in the database will continue to improve. 

However, there is still much room for improvement for homology modeling, as 

demonstrated by the fact that homology model predictions are often significantly worse than 

the best available template (columns 3 and 4). The ab initio prediction method in Prime does 

not depend on the structure database, and its accuracy on crystal structure scaffolds is in 

most cases as good as the best template in the database. In fact, in several cases the ab initio 

H3 prediction is significantly better than any template in the PDB. On the other hand, Prime 

performance is sensitive to the loop environment. The relative advantages to homology 

modeling decreases as we move from a “perfect” crystal structure to an inaccurate homology 

model for the remainder of the structure. One of the reasons is that the Prime energy 

function is sensitive to structural errors in the “fixed” regions, such as shifted backbone 

positions, misplaced side-chain rotamers, and incorrect protonation states. A direct Prime 

energy evaluation of the knowledge based homology model with minimization usually does 

not yield favorable energy. Furthermore, the sampling problem is more challenging for 

homology models, as a small change in the nearby environment can greatly influence the 

generation of a structural candidate ensemble.

CONCLUSIONS

AMA-II has offered an opportunity for blinded testing of our approach to antibody 

homology modeling and refinement, as implemented in the programs BioLuminate and 

Prime within Schrodinger Suite. Our homology modeling features a novel knowledge based 
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approach to modeling the CDR loops, using a combination of sequence similarity, geometry 

matching, and the clustering of database structures. This method does not rely on the 

antibody canonical classes or other specific rules, and performs on par with the state of the 

art antibody modeling methods. Our homology models benefit significantly from the energy-

based refinement, as demonstrated by the side-chain placement and H3 loop prediction. The 

ab initio loop prediction method in Prime performs very well when applied to repredicting 

the H3 loops in the context of crystal structures. Its accuracy on homology models degrades, 

but the method still performs better than the best database approach presented here. The 

refinement of homology models, in terms of reducing backbone RMSDs, still remains a very 

challenging problem. Its success depends heavily on the starting homology models and it 

should be used with caution. One particular situation where we have shown Prime works 

well24 is when the template and target structure are highly homologous and the structural 

differences are relatively isolated (e.g. two antibodies with only differences in H3 loops and 

with minor changes in other CDR loops). This is a relatively common real-world scenario in 

antibody optimization, for which we expect our methods will be useful.
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Figure 1. 
The antibody homology modeling flowchart.
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Figure 2. 
The backbone RMSDs of six CDR loop predictions using loop clustering and sequence 

similarity. “Non-H3” is the average of five CDR loops excluding H3.
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Figure 3. 
Graphical illustrations of the predicted H3 loop structures (model 1, stage 2) and 

corresponding crystal structures. The crystal structures and the predictions are colored 

turquoise and blue, respectively. From left to right: top: AM2-AM6; bottom: AM7-AM11.
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Figure 4. 
H3 loop Side chain prediction accuracies of AM7 (left) and AM9 (right). The H3 loops are 

shown on the surface of the rest of the protein. The turquoise is the crystal structure and the 

blue is the prediction. The backbone RMSD and side chain accuracy for AM7 are 0.45 Å 

and 43%, respectively. The correct side predictions are H99, H100 and H104, and the 

incorrect predictions are H102, H103, H105, and H106. The backbone RMSD and side 

chain accuracy for AM9 are 0.54 Å and 75%, respectively. The correct side predictions are 

H99, H102, H103, H105, H106, and H107; the incorrect predictions are H100 and H108. 

Some of the side chains are omitted for clarity.
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