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Abstract

We present the blinded prediction results in the Second Antibody Modeling Assessment (AMA-I1)
using a fully automatic antibody structure prediction method implemented in the programs
BioLuminate and Prime. We have developed a novel knowledge based approach to model the CDR
loops, using a combination of sequence similarity, geometry matching, and the clustering of
database structures. The homology models are further optimized with a physics-based energy
function (VSGB2.0), which improves the model quality significantly. H3 loop modeling remains
the most challenging task. Our ab initio loop prediction performs well for the H3 loop in the
crystal structure context, and allows improved results when refining the H3 loops in the context of
homology models. For the 10 human and mouse derived antibodies in this assessment, the average
RMSDs for the homology model Fv and framework regions are 1.19 A and 0.74 A, respectively.
The average RMSDs for five non-H3 CDR loops range from 0.61 A to 1.05 A, and the H3 loop
average RMSD is 2.91 A using our knowledge-based loop prediction approach. The ab initio H3
loop predictions yield an average RMSD of 1.28 A when performed in the context of the crystal
structure and 2.67 A in the context of the homology modeled structure. Notably, our method for
predicting the H3 loop in the crystal structure environment ranked first among the seven
participating groups in AMA-II, and our method made the best prediction among all participants
for seven of the ten targets.
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INTRODUCTION

Computational structure prediction of antibodies is an important step in the modeling,
engineering, and design of novel antibodies with desired therapeutic properties. The variable

"Correspondence to: Kai Zhu or David Pearlman, Schrodinger Inc. Research, 120 W 45th Street, New York, NY 10036.
kai.zhu@schrodinger.com or david.pearlman@schrodinger.com.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhu et al.

Page 2

domains (Fvs) of the heavy and light chain are of special interest, as they typically impart
most or all of the specificity of an antibody for its antigen target. The Fv can be further
divided into the hypervariable regions and the framework regions (FRs). The hypervariable
regions are so called complementarity-determining-regions (CDRs), which are composed of
6 hypervariable loops on the surface of the antibody, thereafter denoted as H1, H2 and H3 of
the heavy variable domain (VL), and L1, L2, and L3 of the light variable domain (VH). Due
to the highly conserved nature of the framework regions of the VL and VH domains,
research into Fv structure prediction has largely focused on the prediction of the six CDR
loops. Analysis of antibody crystal structures led to the discovery of “canonical” classes for
the five non-H3 CDR loops in the 1980s and 1990s.1-4 Antibody structure predictions based
on this type of analysis and categorization are often qualitatively successful for loops L1-L3
and H1-H2, although predictions of H3 are more problematic. Recently, Dunbrack et al.
performed clustering of a new expanded set of crystal structures (>1300 antibody structures
in the PDB) and proposed 72 clusters for the five non-H3 loops.®> Approximately 85% of the
non-H3 sequences can be assigned to one of these conformational clusters based on gene
source and sequence. Prediction of the H3 loops remains difficult, however. In contrast to the
other CDR loops, the H3 loops are extremely diverse in the length and conformation.
Although there have been a number of attempts, no satisfying classification has been
possible for the H3 loops.5-10

The modeling of non-H3 loops has traditionally relied on the canonical classes, beginning
with those based on the first studies that derived loop classifications from only a small
number of crystal structures.:2 However, with the rapidly increasing number of the antibody
structures in the PDB, the methods that use sequence similarity and other generic criteria in
homology modeling instead of antibody rules have become popular and perform comparably
well to the canonical classes based approach.1l An advantage to these generic homology
based approaches is that new structures can be added to the dataset more easily than with the
older canonical class analyses. The large number of available structures has revealed the
limitation of sequence based analysis and its predictive power. For example, Martin and
Thornton observed that a loop might be closer in sequence to one class, but structurally
belongs to another.3 Clearly, the loop conformation is not determined by its sequence alone
—the interactions between a loop and its environment must be considered to make an
accurate prediction.

On the other end of the spectrum of the loop modeling techniques are ab initio prediction
methods.12-18 These methods generally use a discretized rotamer library to sample the
conformational space and a scoring function or energy function to rank the candidates. One
of the advantages of ab initio methods is that they are independent of the protein structure
database and thus can be used when no suitable template is available. With progress in
sampling techniques and increased sophistication of the energy function, ab initio prediction
methods have demonstrated high accuracy in the prediction of loops generally,1%-22 and in
the prediction of loops for antibodies,?4-26 and other protein families.27:28

In this article, we describe our approach to antibody structure modeling and present our
results for the Antibody Modeling Assessment 11 (AMA-11).29:30 Antibody Modeling
Assessment is a community-wide blinded test of the state of the art antibody modeling
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methods, and is similar in form to CASP.31 The first assessment (AMA-I) was organized in
2011, in which four approaches (three software packages and a web server) were evaluated
by predicting nine then-unpublished antibody crystal structures.1t For AMA-II, six groups
and an automated Web server attempted to predict 11 then-unpublished antibody crystal
structures, and the results were used to benchmark the modeling performance. The AMA-II
assessment consisted of two stages. In the first stage, the participants were asked to predict
the full Fv structures of 11 antibodies from sequence. In the second stage, the
crystallographic coordinates of each of the antibody structures minus the coordinates of the
H3 loops were made available, and each participating group was then asked to predict the
coordinates of the H3 loops. The second stage of the assessment is new to AMA-II, and
reflects the known difficulty in predicting H3 loops.

We have developed a novel knowledge-based method to predict the CDR loops using a
combination of sequence similarity, geometry matching, and conformational clustering of
the database structures. The homology models are optimized with a physics-based energy
function (VSGBZ2.0),1% which we show significantly improves the quality and accuracy of
the models. Subsequently, we present and discuss the results using our ab inito approach for
the second stage of the assessment—H3 loop predictions in the context of the
crystallographic structure scaffolds—and compare these to the results of the same approach
when carried out in the context of homology models for the remainders of the Fv regions.

MATERIALS AND METHODS

Figure 1 depicts the flowchart of the steps in our antibody homology modeling protocol. Our
protocol starts with a template search for the framework region (FR) in our curated antibody
database, which is derived from the publically available crystal structures in the Protein Data
Bank (PDB). Instead of a heuristic search algorithm such as BLAST32 or PSI-BLAST,33 we
do a direct alignment of the query sequence to every sequence in the database using the
Smith-Waterman algorithm3* with BLO-SUM®623 for the scoring matrix. Because there are
only about 1200 antibody structures in the curated database, this direct alignment can be
done relatively quickly, usually in 1 to 3 s. We select a matching pair of light and heavy
chain templates from a single antibody template. There has been discussion in the
literature36:37 regarding the question of whether one should use the light and heavy chain
templates from a single structure, or whether selecting them from different templates
(requiring subsequent structural alignment) might be preferable. Although there is no
systematic benchmark study, there is evidence that using both chains derived from a single
antibody template offers some advantage.3” The framework region and CDRs are defined
according to the Chothia numbering. The templates are ranked by the average framework
sequence similarity of the heavy and the light chain, and the best template is chosen as the
one with the highest average similarity.

The selection of the templates for CDR loops has three steps. First, a set of loop sequences
and conformations is derived individually for each loop position (L1, L2, L3, H1, H2, and
H3). Next, each of the six resulting loop databases is dynamically filtered based on the query
sequence, loop length, and the stem residue geometry of the framework template that has
been selected. The stem residues are the adjacent residues in the N- and C- termini of the

Proteins. Author manuscript; available in PMC 2017 January 31.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhu et al.

Page 4

loop. The stem geometry is defined using the distance, angles, and torsions by the Ca. and C
atoms in N-terminal stem residue and the N and Ca. atoms in C-terminal stem residue.38
After the filtering for each of the six loops, all remaining loop candidates are clustered with
a complete linkage algorithm based on their backbone RMSDs with the stem residues being
aligned. The clusters are ranked by the cluster size, and the “representative loop” of each
cluster is defined as the one with the highest sequence similarity (as defined by
BLOSUMS62) to the query loop within that cluster. If the sequence similarity of the
representative loop in the largest cluster exceeds a sequence similarity cutoff, this loop
candidate will be chosen for the template; otherwise, the representative loop in the second
largest cluster will be checked against the sequence similarity cutoff, and so on. If none of
the representative loops in any cluster exceeds the similarity cutoff, then the representative
loop with the highest sequence similarity will be chosen. The similarity cutoff for H3 loops
and non-H3 loops are 0.3 and 0.6, respectively.

Once the templates for the framework and the six CDRs are chosen, we construct the initial
homology model by first copying over the backbone coordinates and also side chains for
conserved residues in the framework region, then mutating the nonconserved residues in the
framework, and finally grafting the CDR loops onto the framework homology model. The
nonconserved residues of the framework, and all CDR loop residues, are subject to a rotamer
search to remove clashes and are then minimized with the OPLS 2005 force field3? in
vacuum. Lastly, a side-chain prediction and minimization using the implicit solvent energy
model VSGB2.0 are performed on all the non-conserved residues to further refine the
model.

In the AMA-I11, each modeler was asked to submit three models. The workflow, as described
above, was used to produce our model #1. Our model #2 was generated by using the
template loop candidate with the highest sequence similarity regardless the CDR loop
clusters (framework selection was not changed). For model #3, we used Prime ab initio loop
prediction to re-predict the H3 loops on model #1. The loop prediction follows the protocol
in our previous study,24 and the side chains within 5 A were also repacked simultaneously.

The second stage of the antibody modeling assessment was based on the well-known
observation (also reflected in the aggregate results for the first stage of this assessment) that
the H3 loop is generally the most difficult loop to correctly predict. Each participating
modeling lab was challenged to predict the H3 loop conformations for a set of unpublished
crystal structures, given the Fv crystal structure coordinates without the H3 loop. Our
prediction strategy follows the protocol in our previous study,24 which is based on the Prime
loop prediction method, but with some slight variations. Before the loop prediction job, the
protein structure was prepared with Protein Preparation Wizard*? available in Maestro 9.4,41
which assigns the polar hydrogen positions, protonation states, and amide group flips.
Because the starting structure does not have the coordinates for the H3 loop, we run the
“preparation-then-prediction” process twice, first on the provided structure without H3 loop,
and then again once a loop has been modeled in the H3 position. The loop predictions are
performed on the H3 loop plus one extra residue on each end to make the loop terminal
residues fully flexible. The rest of the model is kept fixed. Five models are submitted for
each target, ranked by Prime energy function.
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RESULTS AND DISCUSSION

The homology model accuracy

Tables I and 11 show the PDB templates for constructing our homology models (the number
1 model submission) and the RMSD values of different regions to the crystal structure. The
11 antibody targets are denoted as AM1 to AM11. All CDRs are defined according to
Chothia numbering. The structure alignment uses the Ca atoms, and the RMSD is calculated
based on the backbone atoms (N, Ca, and C). The first target is a rabbit antibody, which
does not have high similarity to any templates in the PDB, especially for the light chain. The
sequence similarity of the best template is significantly lower than other antibodies, which
results in significantly worse RMSDs. (In the AMA-II assessment, no participant was able to
produce an acceptable model for the rabbit antibody due to lack of homologous data in
existing crystallographic databases. Prediction of this structure was deemed a failure for all
participants and it was subsequently removed before the second phase of the
competition.29:30 Excluding the rabbit antibody, the average RMSDs of the Fv region and of
just the frameworks for the 10 targets are 1.19 A and 0.74 A, respectively. The five non-H3
CDR loop RMSDs range from 0.61 A to 1.05 A. Not surprisingly, the H3 loop remains to
the most challenging constituent of the structure to predict, with an RMSD of 2.91 A. In
comparison, all modeling groups in AMA-II generate similar results on the FR and non-H3
loop predictions with no appreciable differences in the average RMSDs.2° Predictions of the
H3 loops exhibit a larger spread among the different groups and our results rank in third
place by the average RMSD. Note that the RMSDs in Ref. 29 are calculated using only
backbone carbonyl atoms and the values are slightly different from here.

The CDR loop homology modeling protocols: Clustering and sequence similarity

CDR loops can have identical sequences with very different conformations. This poses an
issue for methods that rely on sequence alone to select the loop template. To overcome this
issue, our primary model (model #1) is produced using a method that combines sequence
similarity, stem geometry matching, and conformation clustering, as detailed in the Methods.
Our second submitted model uses only sequence similarity to select the CDR loop
templates. This experiment provides a blind assessment of the two methods. Figure 2
compares the backbone RMSDs of six CDR loops generated by these two methods. The
clustering method shows some advantage over the similarity method with smaller RMSDs
on all six CDR loops. The biggest improvement is for L3 with an improvement of 0.4 A in
the RMSD, followed by H2 with an improvement of 0.3 A. On average, the RMSDs are
about 0.1 to 0.2 A better with the clustering approach. It should be pointed out that this
observation is based on a relatively small data set, which is not sufficient to make a
definitive conclusion about these two methods. A large scale test should be conducted in the
future to compare these methods.

H3 loop prediction

In the first stage of this assessment, our third submitted model is different from the first
model only in the H3 loop, which is based on ab initio prediction by Prime in the context of
a homology model for the remainder of the Fv. Analysis of the blinded predictions for these
loops in model #3 versus model #1 allows us to evaluate the ability this ab initio method to
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improve the predictions derived using standard homology templates. The loop prediction
methodology in Prime has been extensively validated and recently we have shown
encouraging H3 loop predictions in the context of crystal structure scaffolds, as well as
when a highly homologous scaffold is available.2* Table 111 shows the backbone RMSDs of
H3 loop homology models and Prime predictions. On average, Prime refinement improves
the backbone RMSD by 0.2 A. This improvement, although small, would have put us in the
second place among AMA-I1I participants if we had submitted the ab initio models as the #1
models. The accuracy of ab initio loop prediction in the context of homology models is
heavily influenced by the quality of the homology model itself, but this influence is largely
local instead of global (i.e. the structures near the loop in question) in a way that is hard to

quantify.

In constructing our homology models, we keep the side-chain conformations from the
template for all conserved residues. The side chains of non-conserved residues and CDR
loop residues are first optimized by a simple rotamer search to minimize the steric clashes.
Then a Prime side-chain prediction is performed to optimize the side-chain conformations.
Finally, all atoms on non-conserved residues and CDR loops are minimized with the
VSGB2.0 energy function in Prime. In Table 1V, we compare the MolProbity assessment of
the homology models before and after Prime refinement. MolProbity score and clash score
are improved significantly by the refinement. We should note that MolProbity is a
measurement of structure model quality or self-consistency of the model. It does not
necessarily correlate with the “correctness” of a model. Nevertheless, the side-chain
accuracy after Prime refinement is also improved and for some models the improvements are
substantial. The backbone accuracy does not change significantly (RMSD data not shown),
which can also be seen from the relatively minor change in Ramachandran favored backbone
torsions.

H3 loop prediction in the context of the crystal structure scaffold

In the second stage of the assessment, all modelers were given the 10 crystal structures (the
first rabbit antibody was excluded) with the H3 loops removed and asked to predict the
conformations of the missing H3 loops. The purpose of this phase of the assessment is to
determine how much the prediction depends on the scaffolds and how much improvement
can be made if the perfect scaffolds are available. Figure 3 shows graphical illustrations of
our predicted H3 loop (the first model among five submitted models) and the comparison
with the crystal structure. Table V provides the backbone RMSD and side-chain y1 angle
accuracy of all five submitted models for each antibody, as well as our #1 model
performance relative to that of other AMA-II participants. The average backbone RMSD of
the first models is 1.28 A. The five models are ranked by their Prime energy, and the model
backbone accuracy is generally consistent with their ranking. Notably, our predictions rank
the best among all AMA-I1I participants for 7 of the 10 targets in this category, and are
within a fraction of an A to the best model for two more of targets. In only one case (target
5) is our method significantly worse than the best approach by another group. Interestingly,
in this case, one of our alternative models (#4 model) would have placed this prediction as
the best among all groups.
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Considering the high accuracy of loop backbone predictions, it is interesting to examine how
well the side chains are predicted. From Table V, however, we do not see strong correlations
of side chain prediction accuracy and the backbone RMSDs. For example, the side chain
accuracy of model 1 averaged over the six H3 loops where the backbone RMSD is less than
1.0 A is 63%; for the three H3 loops where the backbone RMSD is greater than 2.0 A, the
average side chain accuracy is 57%. The side-chain prediction accuracy for very accurate
loop backbone predictions is not much better than that for the incorrectly predicted loops. A
possible explanation for this is that the side-chain conformations are highly opportunistic—
they can take distinctively different states depending on slight variation of the backbone
positions. For buried side chains, the flexibility may be very limited, but surface residues can
have much freedom to take different conformations without much energy costs. Figure 4
shows the side-chain predictions of AM7 and AM9. Both predictions have excellent
backbone RMSDs (0.45 A and 0.54 A, respectively), but side-chain predictions are very
different: 43% versus 75%. The buried side chains are always predicted correctly according
to the crystal structure, but the surface residues may not necessarily assume the crystal
structure conformations, although the loop backbones are predicted very accurately. This
suggests that the observed difference in the side chain fine detail may not reflect a weakness
of the prediction algorithm as much as the ability of these residues to adjust based on their
environment.

Knowledge-based and energy-based methods on H3 loop prediction

Table VI shows a direct comparison of H3 loop predictions made using both homology
modeling and the Prime ab initio method. As more antibody structures become available, the
chances of finding a good template for H3 loop in the database will continue to improve.
However, there is still much room for improvement for homology modeling, as
demonstrated by the fact that homology model predictions are often significantly worse than
the best available template (columns 3 and 4). The ab initio prediction method in Prime does
not depend on the structure database, and its accuracy on crystal structure scaffolds is in
most cases as good as the best template in the database. In fact, in several cases the ab initio
H3 prediction is significantly better than any template in the PDB. On the other hand, Prime
performance is sensitive to the loop environment. The relative advantages to homology
modeling decreases as we move from a “perfect” crystal structure to an inaccurate homology
model for the remainder of the structure. One of the reasons is that the Prime energy
function is sensitive to structural errors in the “fixed” regions, such as shifted backbone
positions, misplaced side-chain rotamers, and incorrect protonation states. A direct Prime
energy evaluation of the knowledge based homology model with minimization usually does
not yield favorable energy. Furthermore, the sampling problem is more challenging for
homology models, as a small change in the nearby environment can greatly influence the
generation of a structural candidate ensemble.

CONCLUSIONS

AMA-I11 has offered an opportunity for blinded testing of our approach to antibody
homology modeling and refinement, as implemented in the programs BioL.uminate and
Prime within Schrodinger Suite. Our homology modeling features a novel knowledge based
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approach to modeling the CDR loops, using a combination of sequence similarity, geometry
matching, and the clustering of database structures. This method does not rely on the
antibody canonical classes or other specific rules, and performs on par with the state of the
art antibody modeling methods. Our homology models benefit significantly from the energy-
based refinement, as demonstrated by the side-chain placement and H3 loop prediction. The
ab initio loop prediction method in Prime performs very well when applied to repredicting
the H3 loops in the context of crystal structures. Its accuracy on homology models degrades,
but the method still performs better than the best database approach presented here. The
refinement of homology models, in terms of reducing backbone RMSDs, still remains a very
challenging problem. Its success depends heavily on the starting homology models and it
should be used with caution. One particular situation where we have shown Prime works
well?4 is when the template and target structure are highly homologous and the structural
differences are relatively isolated (e.g. two antibodies with only differences in H3 loops and
with minor changes in other CDR loops). This is a relatively common real-world scenario in
antibody optimization, for which we expect our methods will be useful.
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Figure 1.
The antibody homology modeling flowchart.
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Figure 2.
The backbone RMSDs of six CDR loop predictions using loop clustering and sequence

similarity. “Non-H3” is the average of five CDR loops excluding H3.
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Figure 3.
Graphical illustrations of the predicted H3 loop structures (model 1, stage 2) and

corresponding crystal structures. The crystal structures and the predictions are colored
turquoise and blue, respectively. From left to right: top: AM2-AMG6; bottom: AM7-AM11.
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Figure 4.
H3 loop Side chain prediction accuracies of AM7 (left) and AM9 (right). The H3 loops are

shown on the surface of the rest of the protein. The turquoise is the crystal structure and the
blue is the prediction. The backbone RMSD and side chain accuracy for AM7 are 0.45 A
and 43%, respectively. The correct side predictions are H99, H100 and H104, and the
incorrect predictions are H102, H103, H105, and H106. The backbone RMSD and side
chain accuracy for AM9 are 0.54 A and 75%, respectively. The correct side predictions are
H99, H102, H103, H105, H106, and H107; the incorrect predictions are H100 and H108.
Some of the side chains are omitted for clarity.
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