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The gut microbiota influences the development and 
progression of metabolic diseases such as obesity, diabetes, 
and atherosclerosis (1). The influence of the gut microbi-
ota on metabolic diseases may in part be mediated by modi-
fication of bile acids (BAs), which are now recognized to 
have a central role as signaling molecules through activa-
tion of receptors involved in metabolic pathways such as 
the nuclear farnesoid X receptor (FXR) and G-protein-
coupled receptor TGR5 (2–4). FXR is a powerful regulator 
of lipid and glucose metabolism and is activated by the pri-
mary BAs chenodeoxycholic acid (CDCA) and cholic acid 
(CA), the secondary BA deoxycholic acid (DCA), and to a 
lesser extent by the secondary BA lithocholic acid (LCA) 
(5, 6). The conjugated forms of these BAs, amidated with 
glycine (G) or taurine (T), can also activate FXR (5, 6). BA 
composition differs between humans and mice; in addition 
to the BAs found in humans, mice have the primary BAs 
- and -muricholic acid (/MCA), which in their T-con-
jugated forms function as FXR antagonists (7, 8). The gut 
microbiota deconjugates and subsequently metabolizes 
primary BAs to secondary BAs in the gut and will thereby 
modify the extent of FXR activation (9).

BA synthesis is regulated by FXR mainly via two down-
stream targets, fibroblast growth factor 19 (FGF19; in mice, 
FGF15) in ileum and small heterodimer partner (SHP) in 
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The amplified DNA was sequenced at Genomic Core Facility at 
University of Gothenburg, and the sequencing data were analyzed 
using the software package Quantitative Insights into Microbial 
Ecology (QIIME), version 1.8.0. Linear discriminant analysis ef-
fect size (LEfSe) algorithm (13) was used to identify taxa that dis-
criminated cecal microbiota profiles according to the colonization 
origin (see supplemental data).

BA analysis
BAs in liver, gallbladder, cecum, and serum from portal and 

caval veins were analyzed using ultra-performance LC/MS/MS 
and quantified using a combination of unlabeled standards and 
deuterium-labeled internal standards [see supplemental data and 
Ref. (14)]. The whole gallbladder, 50 mg of liver and cecum, 
and 50 µl serum were used for the analyses.

In vitro assay of BA metabolism by a human microbiota
Suspensions with fecal samples from the first human donor 

were incubated with TCA or CA to test the capacity of a human 
microbiota to metabolize BAs in vitro (see supplemental data).

Quantitative real-time PCR
Approximately 30 mg of liver or distal ileum was homogenized 

using TissueLyzer (Qiagen), and total RNA was isolated using 
RNeasy kit (Qiagen). High Capacity cDNA Reverse Transcription 
Kit (Applied Biosystems) was used to synthesize 20 µl cDNA tem-
plates from 500 ng purified RNA using random hexamer primers, 
and the products were diluted 7× before use in subsequent reac-
tions. 1× SYBR Green Master Mix buffer (Thermo Scientific) was 
used for quantitative RT-PCR at final reaction volumes of 10 µl. 
Gene-specific primers (900 nM) were used in each reaction, and 
all results were normalized to the ribosomal protein L32 mRNA 
[primer sequences were previously described (7)]. Assays were 
performed in a 7900HT Fast Real-Time PCR System (Applied Bio-
systems) or CFX96 Real-Time System (Bio-Rad Laboratories). 
The reactions were analyzed using the CT analysis method.

Statistical analyses
Data are presented as mean ± SEM. Resource equation method 

was used to determine the adequate sample size (15). Significant 
differences between the groups were analyzed with one-way 
ANOVA followed by Tukey’s honestly significant difference using 
R for the BA analysis and one-way ANOVA followed by Dunnett’s 
multiple comparison tests using GraphPad Prism 6 software for 
the gene expression analysis.

RESULTS

Cecal microbiota differs between mice colonized with 
mouse or human microbiota

We analyzed cecal microbiota after short-term (2 weeks) 
or long-term (15 weeks) colonization of GF mice with cecal 
content from a mouse donor (recipient mice termed 
CONV-M) or feces from a human donor (recipient mice 
termed CONV-H), to investigate if there was a difference in 
their gut microbiota composition.

Principal coordinate analysis of weighted UniFrac dis-
tances showed a clear separation between the microbial 
communities in the mice driven by the origin of the donor 
microbiota observed at the first principal coordinate (x-axis), 
which explained more than 66% of the variance (Fig. 1A). 
The second principal coordinate (y-axis) accounted for 

the liver, both of which inhibit expression of the rate-limit-
ing enzyme in BA synthesis, cholesterol 7-hydroxylase 
(CYP7A1) in liver. We have previously shown that differ-
ences in BA metabolism between germ-free (GF) and con-
ventionally raised (CONV-R) mice are dependent on the  
FXR antagonist tauro--muricholic acid (TMCA) (7). 
TMCA is not metabolized in the absence of bacteria. Thus, 
GF mice show accumulation of TMCA and reduced FXR 
signaling (7) and, consequently, increased BA synthesis.

GF mice colonized with a human microbiota (here 
termed humanized mice) have been used to study the ef-
fect of environmental and genetic factors on gut microbi-
ota and host physiology. These studies showed that the 
human microbiota is able to establish a stable community 
in the recipient mice with similarities to the community in 
the donor sample (10–12). However, it is unclear if a hu-
man gut microbiota can metabolize murine BAs and in-
duce FXR signaling. This would be important to elucidate 
in order to improve translation of results from mouse mod-
els into a human setting. Here we aimed to determine 
whether a human gut microbiota can deconjugate and me-
tabolize primary murine BAs and thus increase FXR activa-
tion in the recipient mice.

MATERIALS AND METHODS

Mice and colonization
GF female Swiss Webster mice were maintained in flexible plas-

tic gnotobiotic isolators under a strict 12 h light cycle and fed an 
autoclaved chow diet (Lab diet, St. Louis, MO) ad libitum. GF 
isolators were routinely tested for sterility by culturing and PCR 
analysis of feces amplifying the 16S rRNA gene.

Colonization was performed by diluting human fecal or mouse 
cecal samples (0.5 g) in 5 ml reduced PBS; 0.2 ml of this suspen-
sion was introduced by gavage into each GF mouse. The human 
fecal sample from the first donor was obtained from a healthy 
38-year-old female volunteer, and the sample from the second do-
nor was obtained from a healthy 40-year-old male volunteer. The 
samples were obtained shortly before colonization and immedi-
ately (within 5 min) diluted and introduced into the GF mice by 
gavage within 2 h after dilution. The mouse cecal sample was ob-
tained from a 9-week-old CONV-R Swiss Webster female mouse. 
The GF and humanized (CONV-H) mice were maintained in the 
isolators, and the conventionalized (CONV-M) mice were trans-
ferred from the isolators into conventional cages after colonization.

Mice were colonized at 8–15 weeks of age and maintained for  
2 weeks or 15 weeks after colonization. Blood was collected from 
the portal vein and inferior caval vein under deep isoflurane-in-
duced anesthesia following 4 h of fasting. The mice were then 
euthanized, and tissues (liver, gallbladder, ileum, and cecum) 
were harvested. All tissues were immediately frozen in liquid ni-
trogen and stored at 80°C until further processed.

All experiments were performed in conformity with the Public 
Health Service Policy on Humane Care and Use of Laboratory 
Animal using protocols approved by the University of Gothen-
burg Animal Studies Committee. The use of human feces from 
healthy volunteers was approved by the Regional Ethics Commit-
tee in Gothenburg.

Gut microbiota analysis
Genomic DNA was isolated, and the V4 region of the bacterial 

16S rRNA gene was amplified with PCR (see supplemental data). 
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(supplemental Fig. S2). Several members of the Bacte-
roidetes phylum such as Prevotella, Parabacteroides, and Bac-
teroides, as well as an unclassified RF39 Mollicutes and a 
member of the Proteobacteria phylum, Desulfovibrio, were 
also enriched in the CONV-M mice after 2 weeks of coloni-
zation (supplemental Fig. S2). The taxa enriched in the 
cecal microbiota of CONV-H mice after 2 weeks of coloni-
zation were affiliated to Akkermansia from the Verrucomi-
crobia phylum, several members of class Erysipelotrichi 
such as Allobaculum, Coprobacillus, Eubacterium dollichum and 
cc115 and Oxalobacter formigenes, Suturella and Bilophila from 
the Proteobacteria phylum.

Most of the taxonomic clades that were differently en-
riched after 2 weeks’ colonization showed a similar pattern 
after 15 weeks’ colonization demonstrating stability of the 
bacterial communities in the colonized mice over time. 
Some of the additional differences we found after 15 weeks’ 
colonization were enrichment of Bifidobacterium, the genus 
Anaeroplasma from the Tenerecutes phylum and Allobacu-
lum in the CONV-M mice and enrichment of Enterobacte-
rales in the CONV-H mice (supplemental Fig. S3).

In summary, we show that the microbiota composition 
differs between mice colonized with mouse and human mi-
crobiota, and the major differences between the groups 
are preserved over long-term colonization.

BA composition differs between mice colonized with 
mouse or human microbiota

Next, we evaluated how colonization with mouse or hu-
man microbiota affected BA levels and composition in 
liver, gallbladder, and cecum of the recipient mice. Be-
cause of the major differences in relative gallbladder and 
cecum weights between the GF and colonized mice (sup-
plemental Tables S2 and S3), we calculated the amounts of 
BAs in the whole organ rather than the amount of BAs per 

15% of the variance and separated the microbial commu-
nities by host (human vs. mouse) (Fig. 1A). In particular, 
the community of the human donor sample separated 
from the communities of CONV-H mice, CONV-M mice, 
and the mouse donor sample. In contrast, the community 
of the mouse donor sample and the CONV-M recipient 
mice clustered together (Fig. 1A).

Next, we analyzed the microbiota composition of the do-
nors and recipient mice and found that at order level the 
cecal microbiota of the CONV-M mice had a higher repre-
sentation of Clostridiales, whereas CONV-H mice were 
characterized by a more pronounced representation of 
Verrucomicrobiales, Burkoholderiales, and Erysipelo
trichales (Fig. 1B). The lower abundance of Clostridiales in 
the humanized mice was not caused by low representation 
of this taxon in the human donor samples. In fact, Clos-
tridiales was highly abundant in the human donor sample, 
in agreement with a previous report (12). In contrast, the 
human donor sample had relatively low abundance of Ver-
rucomicrobiales, Burkoholderiales, Erysipelotrichales, and 
Bacteroidales. The microbiota composition of CONV-M 
mice was similar to the mouse donor sample apart from a 
lower representation of Lactobacillales and higher repre-
sentation of Campylobacterales. The mice colonized for 15 
weeks had similar microbiota composition at the order 
level as the mice colonized for 2 weeks, which indicates that 
the microbiota composition remains stable over time (Fig. 
1B). These findings were also confirmed in mice colonized 
with a second human donor (supplemental Fig. S1A).

To identify taxonomic differences in the microbiota be-
tween mice colonized with mouse and human microbiota, 
we applied an LEfSe algorithm (13). After 2 weeks’ coloni-
zation, the cecal microbiota of CONV-M mice was enriched 
in members of Bacilli such as Lactobacillus and Staphylo-
coccus and the Epsilonproteobacteria-Helicobacteraceae 

Fig.  1.  Gut microbiota composition after coloniza-
tion with human or mouse microbiota. A: Mouse cecal 
bacterial communities were clustered using princi-
pal coordinates analysis of the UniFrac weighted 
distance matrix. The percentage of the variation ex-
plained by the plotted principal coordinates is indi-
cated in the axis labels. Each dot represents a cecal 
community. B: Relative abundance of orders in cecal 
bacteria from CONV-M and CONV-H mice colo-
nized for 2 weeks or 15 weeks. n = 6–10 mice /group.
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colonization with either mouse or human microbiota, 
while the levels of TCA were reduced only in the CONV-H 
mice (Fig. 2B; supplemental Table S2).

In cecum, mouse microbiota had a large effect on BA 
composition. The major cecal BAs in CONV-M mice were 
MCA and DCA (secondary BAs derived from TMCA and 
TCA, respectively) (Fig. 2C; supplemental Table S3). In ce-
cum of the humanized mice, the most prevalent BA was 
MCA followed by TMCA, and there were only small 
amounts of DCA and almost no MCA (Fig. 2C; supple-
mental Table S3). To rule out the possibility that the low 
amounts of secondary BAs in the humanized mice were 
specific to this particular human donor, we colonized GF 
mice with human feces from a second donor and analyzed 
the BA composition. Levels of total and secondary BAs in 
cecum of mice colonized with feces from the second hu-
man donor did not differ significantly from the first donor 
(supplemental Fig. S1B) indicating that low production of 
secondary BAs in humanized mice might be a general find-
ing. The relative amount of secondary BAs in cecum was 
low in the humanized mice, while secondary BAs consti-
tuted more than 50% of the cecal BAs in mice colonized 

milligram of tissue. Total BA levels (referring to the total 
amounts of BAs analyzed) in the liver did not change sig-
nificantly after the short-term colonization, but after 15 
weeks’ colonization, the total BAs were reduced in both 
CONV-M and CONV-H mice compared with GF counter-
parts (Fig. 2A; supplemental Table S1). In gallbladder, to-
tal BAs were significantly reduced in all colonized mice at 
both time points (Fig. 2B; supplemental Table S2), and 
BAs levels in cecum were reduced in all groups except for 
CONV-M mice after 15 weeks (Fig. 2C; supplemental Table 
S3). Analysis of individual BAs showed that TMCA and 
TCA were the predominant BAs in all compartments ana-
lyzed in GF mice (Fig. 2A–E; supplemental Tables S1–S5). 
In the liver, short-term colonization with mouse or human 
microbiota did not change the levels of TMCA or TCA 
significantly, but colonization with mouse microbiota re-
sulted in the presence of tauro--muricholic acid (TMCA), 
a secondary BA derived from TMCA (Fig. 2A; supplemen-
tal Table S1). After 15 weeks’ colonization, the levels of 
TMCA decreased in both CONV-M and CONV-H mice, 
while the levels of TCA remained unchanged. In gallbladder, 
the levels of TMCA were significantly reduced after 2 weeks’ 

Fig.  2.  Changes in BAs composition in different 
compartments after colonization. Whole organ 
amounts of BAs in liver (A), gallbladder (B), and ce-
cum (C). Concentrations of BAs in portal vein (D) 
and caval vein (E). For statistics on specific BA levels, 
see supplemental Tables 1–5. Whole organ amounts 
of iso-DCA (F) and CA-7 sulfate (G) in cecum. Mean 
values ± SEM are plotted; n = 4–9 samples/group; 
a P < 0.05, b P < 0.01, c P < 0.001, d P < 0.0001 indicate 
differences versus GF with ANOVA and Dunnett’s 
multiple comparisons test. HDCA, hyodeoxycholic 
acid.
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2 weeks’ colonization (supplemental Fig. S1C, D). As ex-
pected, we did not detect any iso-DCA in the GF mice and 
only traces of CA-7 sulfate (Fig. 2F, G; supplemental Fig. 
S1C, D). Thus, CONV-H mice deconjugated primary BAs 
as CONV-M counterparts but only metabolized CA and not 
MCA. In addition, humanized mice generated more CA-7 
sulfate than mice colonized with a mouse microbiota.

Metabolism of TCA by a human microbiota in vitro
To further investigate the potential of a human micro-

biota to deconjugate, dehydroxylate, and sulfate TCA, we 
performed in vitro experiments with fecal samples from 
the first human donor in culture medium supplemented 
with TCA or CA. BA analysis showed that the human micro-
biota sufficiently deconjugated TCA into CA, but there was 
only minor conversion into DCA and no production of 
CA-7 sulfate (supplemental Fig. S6A, B).

Colonization with a human microbiota induces FXR 
signaling

To evaluate if the changes in BAs composition following 
colonization with a human microbiota would be sufficient 
to increase FXR signaling, we analyzed gene expression of 
FXR target genes in ileum and liver. Colonization with 
mouse microbiota induced expression of both Fgf15 and 
Shp in ileum already after 2 weeks’ colonization (Fig. 3A), 
and the expression was further increased after 15 weeks’ 
colonization (Fig. 3B), which is in agreement with our pre-
vious study (7). Colonization with a human microbiota 
showed a tendency of induction after 2 weeks’ colonization 
and reached significant levels after 15 weeks’ colonization. 
We also analyzed gene expression of the ileal BA trans-
porter Ibat and found a significant reduction in the mice 
colonized with a mouse microbiota at both time points and 
a minor reduction in the humanized mice (Fig. 3A, B).

with a mouse microbiota (supplemental Fig. S4A–F). In ad-
dition, the relative amount of unconjugated BAs was higher 
in the CONV-M mice after 15 weeks’ colonization com-
pared with the humanized mice, suggesting a difference in 
bile salt hydrolase activity between the mouse and human 
microbiota (supplemental Fig. S5A–F).

We also analyzed the BA composition in portal vein se-
rum, which contains reabsorbed BAs from the intestine 
and thus reflects the BA composition in ileum. Total BA 
levels and, in particular, TMCA levels were dramatically 
reduced in the portal vein serum by colonization with 
mouse or human microbiota (Fig. 2D; supplemental Table 
S4). We found a similar pattern of BA changes in caval vein 
serum, with particularly low BA levels in the CONV-M mice 
2 weeks after colonization (Fig. 2E; supplemental Table 
S5). The total concentration of BAs were >30-fold lower in 
the peripheral circulation compared with the levels in por-
tal vein demonstrating the capacity of the liver to maintain 
BAs within the enterohepatic circulation. Furthermore, we 
found high levels of CA in both portal and caval vein serum 
after 15 weeks’ colonization with mouse microbiota (Fig. 
2D, E; supplemental Tables S4 and S5).

In addition to the regular BAs we also analyzed 3-
hydroxylated iso-BAs in cecum and found significant 
amounts of iso-DCA after 2 weeks’ colonization both in 
CONV-M and CONV-H mice and after 15 weeks’ coloniza-
tion the levels were decreased in both groups of colonized 
mice (Fig. 2F).

We also investigated the levels of sulfated BAs in cecum 
and found that mice colonized with a human microbiota 
had four times higher levels of CA-7 sulfate than mice colo-
nized with mouse microbiota (Fig. 2G).

Mice colonized with the second human donor had simi-
lar levels of CA-7 sulfate as mice colonized with the first 
human donor, but the levels of iso-DCA were lower at  

Fig.  3.  Microbiota-induced changes in FXR signal-
ing. Gene expression of FXR target genes Fgf15, Shp, 
and Ibat in ileum after 2 weeks (A) or 15 weeks (B) of 
colonization. Expression of genes involved in BA syn-
thesis in liver after 2 weeks (C) or 15 weeks (D) of 
colonization. Gene expression is presented as rela-
tive expression compared with the mean expression 
of the GF control group. Mean values ± SEM are plot-
ted; n = 4–9 samples/group; a P < 0.05, b P < 0.01, 
c P < 0.001, d P < 0.0001 indicate differences versus 
GF with ANOVA and Dunnett’s multiple compari-
sons test.
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Furthermore, we analyzed gene expression of liver en-
zymes involved in BA synthesis and found that colonization 
with mouse microbiota (both short term and long term) 
promoted decreased gene expression of the rate-limiting 
enzyme CYP7A1, and the humanized mice showed a simi-
lar expression pattern, although the changes were not sig-
nificant (Fig. 3C, D). The changes in Cyp7a1 expression 
corresponded inversely with the changes in Fgf15 expres-
sion in ileum; this reciprocal pattern has been observed in 
previous studies (7, 8, 16–19). The gene expression of ste-
rol 12--hydroxylase (CYP8B1), which is required for CA 
synthesis, was increased after colonization (Fig. 3C, D). 
The expression of Cyp7a1 and Cyp8b1 is regulated by a 
negative feedback mechanism involving FXR and SHP in 
the liver (20–22). However, our finding that Cyp7a1 and 
Cyp8b1 are differently regulated is supported by several pre-
vious studies (7, 23–26). The genes encoding the cytochrome 
enzymes involved in the alternative BA synthesis, sterol 
27-hydroxylase (CYP27A1) and oxysterol 7--hydroxylase 
(CYP7B1), were unchanged after 2 weeks’ colonization 
with mouse or human microbiota (Fig. 3C), and after  
15 weeks’ colonization, the expression of CYP27A1 was still 
unchanged while CYP7B1 expression was reduced in both 
CONV-M and CONV-H mice (Fig. 3D).

To further pinpoint the relationship between BA com-
position and FXR signaling in mice colonized with mouse 
versus human microbiota, we calculated the percentage of 
the FXR antagonist TMCA in liver, gallbladder, and por-
tal and caval veins and investigated if the levels of TMCA 
would reflect the differences in expression of FXR target 
genes. Indeed, the reduction in percentage of TMCA cor-
responded inversely with the increased expression of Fgf15 
and Shp in ileum. In the CONV-M mice, there was a signifi-
cant reduction in TMCA levels in liver and gallbladder 
already after 2 weeks, while in the CONV-H mice a signifi-
cant reduction of TMCA was not seen until after 15 weeks’ 
colonization (Fig. 4A, B). In portal and caval veins, the per-
centage of TMCA was significantly reduced in all the colo-
nized mice after 2 weeks’ colonization and further reduced 
after 15 weeks’ colonization (Fig. 4C, D). Because FXR  
activation is dependent on the levels of both agonists and 
antagonists, we also calculated the ratio between FXR ago-
nistic (TCA, TCDCA, TDCA, TLCA, CA, CDCA, DCA, LCA) 
and antagonistic BAs (TMCA, TMCA). We found an in-
creased ratio in the CONV-M mice already after 2 weeks’ 
colonization and a minor but significant increase of the 
ratio in gallbladders of the humanized mice after 15 weeks’ 
colonization (supplemental Fig. S7A–D), which is in agree-
ment with the changes in FXR target gene expression.

DISCUSSION

We show that colonization of mice with a human micro-
biota reduces total BA levels to a similar extent as coloniza-
tion with a mouse microbiota, but BA composition differs 
and fewer secondary BAs are present in the humanized 
mice. Furthermore, we show that a human microbiota 
can reduce the levels of TMCA sufficiently to induce FXR 

Fig.  4.  Changes in TMCA levels after colonization. Percentage 
of the FXR antagonist TMCA in liver (A), gallbladder (B), portal 
vein (C), and caval vein (D). Mean values ± SEM are plotted; n = 4–9 
samples/group; a P < 0.05, b P < 0.01, c P < 0.001, d P < 0.0001 indi-
cate differences versus GF with ANOVA and Dunnett’s multiple 
comparisons test. 2w, 2 weeks; 15w, 15 weeks.

signaling and increase expression of FXR target genes in 
ileum.

Nevertheless, it appears that humanized mice lack spe-
cific bacteria important for secondary BA production. In 
particular, human microbiota seems to lack capacity to 
generate secondary BAs from the murine primary BAs, 
which has been indicated in earlier studies (27, 28). This 
may be explained by the fact that the human microbiome 
has never been exposed to murine BAs and is therefore not 
adapted to them. We tested the hypothesis that the human 
microbiota might require a longer time to adjust to the en-
vironment of the mouse gut and colonized some of the 
mice for 15 weeks. Long-term colonization resulted in 
lower levels of the FXR antagonist TMCA, but the levels of 
secondary BAs did not increase significantly, and we did 
not observe major changes in the microbiota composition 
of the humanized mice after long-term colonization.

One notable difference between the microbiota compo-
sition of CONV-M and CONV-H mice was the higher repre-
sentation of Clostridiales in the mice colonized with mouse 
microbiota even though the Clostridiales was highly abun-
dant in the human donor sample. This finding is in agree-
ment with a previous study on mice colonized with human 
microbiota, which reported relatively high abundance of 
Clostridia and low abundance of Erysipelotrichi in the hu-
man donor sample and the opposite (low Clostridia and 
high Erysipelotrichi abundance) in the recipient mice 
(11). These results indicate that some species-specific di-
vergences in microbiota composition cannot be transferred 
from one mammalian host to another, likely due to the 
environment in the recipient gut, and hence the microbiota 



418 Journal of Lipid Research  Volume 58, 2017

could be inhibition of CA transport into 7-dehydroxylating 
bacteria.

Our finding that Fgf15 and Shp expression in ileum was 
increased after colonization shows that a human microbi-
ota can enhance FXR signaling, but not to the same extent 
as observed with a mouse microbiota. It is noteworthy that 
even though the human microbiota cannot metabolize 
TMCA to secondary murine BAs, it can still induce a 
change in BA composition that permits FXR signaling. We 
hypothesize that deconjugation of TMCA is sufficient to 
remove the FXR antagonistic effect and initiate the nega-
tive-feedback inhibition of BA synthesis. This is in line with 
other studies and our previous findings showing that only 
the T-conjugated form of MCA displays FXR antagonistic 
properties (7, 8, 43).

In conclusion, we show that a human microbiota can es-
tablish a functional community in the mouse gut and that 
it reduces total BA levels to the same extent as a mouse 
microbiota. Furthermore, a human microbiota can reduce 
TMCA levels and induce FXR signaling. These are impor-
tant findings that justify the use of humanized mice for 
studies on FXR-dependent interactions between a human 
microbiota and host metabolism. However, it is important 
to keep in mind that when we introduce human bacteria 
into GF mice with the aim to study the effect of specific 
bacteria on metabolic functions, the starting condition is 
inhibition of FXR by TMCA, which is absent in humans. 
CYP2C70 has recently been suggested as the enzyme re-
sponsible for the formation of murine BAs by catalyzing 
6-hydroxylation of CDCA and ursodeoxycholic acid 
(UDCA) into - and MCA respectively (44). Thus, mice with 
a deletion in the Cyp2c gene cluster (including Cyp2c70) 
exhibit a BA pool without murine BAs and solely CA, 
CDCA, and UDCA as primary BAs, although still with al-
most exclusively T conjugates. To use GF Cyp2c70-deficient 
mice and introduce human microbiota into these mice 
might be an improved model to study the effect of a hu-
man microbiota on metabolic functions.
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