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Abstract

The Piwi-piRNA pathway is important for germ cell maintenance, genome integrity, DNA 

methylation and retrotransposon control and thus may be involved in cancer development. In the 

present study, we comprehensively analyzed prognostic roles of 3,116 common SNPs in PIWI-

piRNA pathway genes in melanoma disease-specific survival. A published genome-wide 

association study (GWAS) by The University of Texas M.D. Anderson Cancer Center was used to 

identify associated SNPs, which were later validated by another GWAS from the Harvard Nurses’ 

Health Study and Health Professionals Follow-up Study. After multiple testing correction, we 

found that there were 27 common SNPs in two genes (PIWIL4 and DCP1A) with false discovery 

rate < 0.2 in the discovery dataset. Three tagSNPs (i.e., rs7933369 and rs508485 in PIWIL4; 
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rs11551405 in DCP1A) were replicated. The rs11551405 A allele, located at the 3’ UTR 

microRNA binding site of DCP1A, was associated with an increased risk of melanoma disease-

specific death in both discovery dataset [adjusted Hazards ratio (HR) = 1.66, 95% confidence 

interval (CI) = 1.21–2.27, P =1.50×10−3] and validation dataset (HR = 1.55, 95% CI = 1.03–2.34, 

P = 0.038), compared with the C allele, and their meta-analysis showed an HR of 1.62 (95% CI,

1.26–2.08, P =1.55×10−4). Using RNA-seq data from the 1000 Genomes Project, we found that 

DCP1A mRNA expression levels increased significantly with the A allele number of rs11551405. 

Additional large, prospective studies are needed to validate these findings.
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INTRODUCTION

In recent years, it has become increasingly apparent that non-coding RNAs, especially small 

regulatory RNAs, play crucial roles in cancer development.1 To date, three major classes of 

small regulatory RNAs have been identified, including microRNAs (miRNAs), short-

interfering RNAs and PIWI-interacting RNAs (piRNA). piRNA is a novel class of small, 

endogenous, regulatory, non-coding RNA molecules expressed in animal cells.2 piRNAs 

form RNA-protein complexes through binding to PIWI proteins (a subset of Argonaute 

family proteins). Consequently, these complexes regulate both epigenetic and post-

transcriptional gene silencing of transposons and other genetic elements to maintain genome 

integrity in germline cells2, and an abnormal PIWI-piRNA pathway increases repeats of 

retrotransposons, component parts of telomeres.3 Initially, most studies showed that piRNAs 

mainly existed in germline cells,2 but later, some studies reported a widespread presence of 

piRNAs in multiple tissues of fruit fly, mouse and rhesus macaque samples,4 and piRNAs 

were found to accumulate at the onset of meiosis or during spermatogenesis.5 Afterwards, 

piRNAs were also revealed to influence cell proliferation, viability, cell invasion and trans-

well motility.1

In humans, independent studies have accumulated evidence that aberrantly expressed 

piRNAs may play a role in the biogenesis of different types of cancers, including cancers of 

the stomach,6 colon,7 lung,7 liver,8 mesothelium,7 breast9 and ovaries10. The peripheral 

blood levels of piRNAs were also suggested to be valuable biomarkers for detecting 

circulating gastric cancer cells with a favorable area under curve.11 The functions of PIWI in 

the germline cells have been extensively investigated; for instance, studies have indicated 

that altered human PIWI proteins (HIWI and HILI) are aberrantly expressed in a variety of 

cancers12–15 and involved in cell growth, adhesion,15, 16 apoptosis17 and cancer invasion.13 

There are additional clinical reports suggesting a potential use for PIWI expression in 

evaluating cancer clinical outcome, such as cancers of the pancreas,18 colon,19 esophagus,20 

liver,21 and stomach22 as well as gliomas23 and sarcoma.24

Multiple genetic alterations, either germline or somatic, are believed to be involved in 

cutaneous melanoma (CM) development and progression, and the PIWI-piRNA pathway is 
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suggested to have been involved in tumorigenesis. Thus, we hypothesize that genetic 

variants (single-nucleotide polymorphisms, SNPs) of the PIWI-piRNA pathway genes are 

associated with CM survival. To test this hypothesis, we used available genotyping data of 

PIWI-piRNA pathway genes from a previously published genome-wide association study 

(GWAS) of CM,25 followed by validation in another GWAS dataset from Harvard 

University.26 We also tried to provide biological evidence in support for positive associations 

by performing online gene function prediction27 and gene expression Quantitative Trait Loci 

(e-QTL) analyses.

MATERIALS AND METHODS

Study populations

MD Anderson discovery dataset—As described previously,25 all patients in the 

discover GWAS were accrued for a hospital-based case-control study of CM at The 

University of Texas MD Anderson Cancer Center (MDACC). Characteristic details of the 

subjects have also been previously described.28, 29 Briefly, all patients with CM stages I/II 

(primary tumors without evidence of regional or distant metastasis), stage III (locoregional 

disease, including in transit, satellite, and/or regional lymph node metastasis), and stage IV 

(distant metastasis) were classified according to the 7th edition of the American Joint 

Committee on Cancer (AJCC) staging system.30 Follow-up was conducted according to 

standardized guidelines.31 Stage of the disease and length of the follow-up were determined 

from the date of diagnosis. Among the 1,804 patients, 943 patients were excluded because of 

no questionnaire data. Three additional patients were excluded due to loss to the follow-up 

after diagnosis. Hence, the final analysis included 858 patients who had complete 

information about both questionnaire and clinical prognostic variables. All individuals 

provided a written informed consent under an Institutional Review Board-approved protocol.

Harvard validation dataset—The Harvard dataset consisted of two studies: Nurses’ 

Health Study (NHS) and Health Professionals Follow-up Study (HPFS). Sampling, 

genotyping and quality control procedures have been described previously.26 In short, 

eligible cases in both NHS (317 CM cases) and HPFS (177 CM cases) cohorts were 

participants with histopathologically confirmed invasive melanoma, diagnosed at any time 

after baseline up to the 2008 follow-up cycle for both cohorts. These 494 cases with survival 

data were included in final analysis, and all were US non-Hispanic Caucasians.

SNP selection and genotyping

Based on the KEGG (http://www.genome.jp/kegg/) databases for the piRNAs/PIWI 

pathway, there were 23 core genes (TDRKH, TDRD5, MAEL, XRN1, DCP1A, DDX4, 
TDRD6, ASZ1, PIWIL2, TDRD7, TDRD1, PIWIL4, DDX6, PIWIL1, RNF17, TDRD9, 
TNRC6A, TNRC6C, PLD6, TDRD12, PIWIL3, TNRC6B and MOV10L1) that are located 

on autosomes.

Genotyping and quality control (QC) of MDACC genome-wide scan dataset have been 

previously described.25 Briefly, genomic DNA extracted from the whole blood was 

genotyped with the Illumina HumanOmni-Quad_v1_0_B array, and genotypes were called 
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by using the BeadStudio algorithm, at John Hopkins University Center for Inherited Disease 

Research (CIDR). Genome-wide imputation was also performed using the MACH software 

based on the 1000 Genome project, phase I V2 CEPH (Utah residents with ancestry from 

northern and western Europe) or CEU data. The typed or imputed common SNPs (with a 

minor allele frequency ≥ 0.05, a genotyping successful rate ≥ 95%, and a Hardy-Weinberg 

equilibrium P value ≥ 0. 001, and from imputation for those SNPs with r2 ≥ 0.8) within these 

genes were selected. As a result, 3116 SNPs in 23 PIWI-piRNA pathway genes were 

extracted from the MDACC GWAS dataset and used for the analyses, of which there were 

only 105 independent SNPs after performing the LD pruning using SECA with the criterion 

of r2 < 0.1.32 The Hardy-Weinberg equilibrium P value for those discussed SNPs in the 

present study were detailed in Supporting Information Table S1.

Genotyping in the Harvard dataset was performed using the Illumina HumanHap550 array, 

HumanHap610 array and Affymetrix 6.0 array.26 Imputation was performed based on 

genotyped SNPs and haplotype information from phase II HapMap CEU data using the 

program MACH.33 Only SNPs with imputation quality r2 > 0.95 were included, and a total 

of 1,579,307 SNPs passed through the filter. Finally, we extracted interested SNPs from 

Harvard dataset for validation.

Statistical methods

Disease-specific survival (DSS) was the primary endpoint of the present study, which was 

calculated from the date of diagnosis to the date of death from melanoma or the date of the 

last follow-up, whichever came first. Using data from the MDACC dataset, associations 

between SNPs and DSS, presented as hazards ratios (HRs) in an additive model, were 

obtained by both univariate and multivariate Cox proportional hazards regression models 

performed with the GenABEL package of R software34 with adjustment for age, sex, 

Breslow thickness, tumor stage, tumor cell mitotic rate and ulceration of tumor. A false 

discovery rate (FDR) cut-off of 0.2 was applied to limit the probability of false positive 

findings arising from multiple comparisons.35 Kaplan-Meier survival curves and log-rank 

tests were also used to evaluate effects of SNPs on DSS. Using linkage disequilibrium (LD) 

information from the latest 1000 Genomes Project for CEU populations,36 we selected 

tagSNPs based on r2>0.8 and LD analysis. Next, the identified tagSNPs were further 

validated in the Harvard dataset, and pooled HRs and 95% CIs were obtained from the meta-

analysis using a conservative random-effects model, and the inter-study heterogeneity was 

assessed with Cochrane's Q test.

A Fine-Gray37 competing-risks regression model was further used for univariate and 

multivariate regression analyses, which results in sub-distribution HR from a proportional 

hazards model. It assesses the SNPs of interest and cumulative incidence of melanoma-

specific death, where deaths due to other causes were modeled as a competing event rather 

than a censoring event as in a Cox model.

Finally, SNP rs11551405, which was significantly associated with risk of melanoma death in 

both MDACC and Harvard datasets, was predicted to regulate protein translation by 

affecting microRNA (miRNA) binding sites activity by SNPinfo.27 The e-QTL analyses 

were also used to test for trends in associations between rs11551405 genotypes and 
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corresponding gene expression levels obtained from RNA-seq data both from all populations 

and European descendants, which are part of the GEUVADIS RNA sequencing project for 

the 1000 Genomes Project samples.38 The GEUVADIS RNA sequencing project for the 

1000 Genomes Project samples have combined transcriptome and genome sequencing data 

generated by mRNA and miRNA sequencing on 465 lymphoblastoid cell lines (LCLs) 

derived from five populations of the 1000 Genomes Project: the CEPH (CEU), Finns (FIN), 

British (GBR), Toscani (TSI) and Yoruba (YRI). Of these samples, 423 were part of the 

1000 Genomes Project Phase 1 dataset39 with low-coverage whole genome and high-

coverage exome sequencing data, and the remaining 42 are part of the later phases of the 

1000 Genomes Project with Omni 2.5M SNP array data available at time of this study; these 

genotypes were imputed from the array data using Phase 1 as the reference.40 All other 

analyses were performed using SAS software (Version 9.3; SAS institute, Cary, NC). All 

reported P values were two-sided, and P<0.05 was considered statistically significant. The 

flow chart of this study is illustrated in Supporting Information Fig S1.

RESULTS

Patient characteristics

The final analysis included 858 patients from MDACC and 494 patients from Harvard 

University (Table 1). All patients with CM were non-Hispanic white, with complete 

information regarding follow-up and GWAS data. In the MDACC dataset, patients had an 

age range between 17 and 94 years (with a mean age of 52.4 ±14.4 years) at diagnosis, with 

more men (496, 57.8%) than women (362, 42.2%). There were more patients with stages I/II 

melanoma (709, 82.6%) than with stages III/IV melanoma (149, 17.4%). Pathological 

information was shown in Supporting Information Table S2. The 858 MDACC patients had 

a median follow-up time (MFT) of 81 months (95% CI = 82.9–88.7; interquartile range: 

67.2–103.0), during which 95 (11.07%) died of CM; while the 494 Harvard patients had a 

mean age 60.1±10.6 years at diagnosis and a relatively longer MFT (179 months, 95% CI = 

177–203; interquartile range: 140.0–287.0), during which 57 (11.5%) patients died of CM.

Discovery in the MADCC dataset

To assess associations of 3116 SNPs in 23 PIWI-piRNA pathway genes (Supporting 

Information Table S3) with DSS, we performed both univariate and multivariate Cox 

hazards regression analyses with adjustment for age, sex, tumor stage, Breslow thickness, 

ulceration of tumor and tumor cell mitotic rate. Specifically, 257 SNPs were individually 

significantly associated with DSS at P < 0.05 in an additive genetic model (Supporting 

Information Fig S2). When FDR was used to control the probability of false positive 

associations arising from multiple comparisons, 27 SNPs were still considered noteworthy, 

including 19 SNPs of DCP1A and 8 SNPs of PIWIL4 (Supporting Information Fig S2 and 

Supporting Information Table S4). The regional association plots for DCP1A and PIWIL4 in 

the additive genetic model are presented in Supporting Information Fig S3. Next, with 

r2>0.8 among SNPs in the same gene as the cut-off value, DCP1A rs11551405 C>A and 

PIWIL4 rs7933369 G>A, rs508485 T>C were chosen as the representative tagSNPs 

(Supporting Information Fig S4). We found that the rs11551405 A allele showed a strong 

association with a shorter DSS [A vs C: adjusted HR = 1.66, 95% confident interval (CI) = 
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1.21–2.27, P = 1.50×10−3 in an additive model]. Besides, rs7933369 A allele carriers 

exhibited a significantly increased HR of early melanoma-specific death (adjusted HR = 

1.97, 95% CI = 1.45–2.67, P = 1.43×10−5), compared with G allele carriers. Furthermore, 

the rs508485 C allele was associated with a statistically significantly favorable DSS 

(adjusted HR = 0.57, 95% CI = 0.42–0.77, P = 0.0002), compared with the T allele (Table 

2).

Validation in the Harvard dataset

As shown in Table 2 and Supporting Information Fig S2, the initial Cox regression analyses 

indicated that three SNPs (DCP1A rs11551405 C>A and PIWIL4 rs7933369 G>A and 

rs508485 T>C) were important predictors for DSS of CM patients. We further validated the 

effects on risk of DSS in the Harvard dataset. As shown in Table 3, per-unit increase of the 

rs11551405 A allele (the trend measure) was associated with an increased risk of melanoma-

specific death (HR =1.55, 95% CI = 1.03–2.34, P = 0.038). However, associations with 

PIWIL4 rs7933369 A and, rs508485 C failed to reach significance (P = 0.767 and 0.806, 

respectively).

Meta-analysis

When we combined the results from the MDACC and the Harvard datasets together, there 

was no heterogeneity for rs11551405 among the two datasets (Pheterogeneous = 0.792), and 

this SNP was associated with a significantly increased risk of melanoma-specific death by 

1.62 fold (95% CI = 1.26–2.08, P = 1.55×10−4, Supporting Information Fig S5). As shown 

in Fig. 1 with the Kaplan-Meier curves, patients with an increased number of the DCP1A 
rs11551405 A allele had a poorer DSS (log-rank P = 0.003 in the MDACC dataset, and log-

rank P = 0.059 in the Harvard dataset), compared with those with C allele. The results for 

other two SNPs remained statistically non-significant.

Competing-risks regression model

In the Fine and Gray competing-risks regression model, cumulative incidence of an event of 

interest (i.e., melanoma-specific mortality) was calculated in the presence of competing risks 

(death from other causes). During the follow-up, 38 and 117 patients died as a result of other 

causes in MDACC and Harvard datasets, respectively. Table 3 lists univariate and 

multivariate competing-risks regression models. In multivariate competing-risks regression 

models, rs11551405 was a statistically significant predictor of melanoma-specific death, 

after accounting for other-cause mortality in both datasets (with a sub-distribution HR of 

1.61 in the MDACC and 1.53 in Harvard study populations).

Expression Quantitative Trait Loci (e-QTL) analyses

We further evaluated correlations between rs11551405 genotypes and mRNA expression 

levels of DCP1A in normal cells, a possible functional basis for the observed associations, 

by using the gene expression data of the publically available RNA-seq data both from all 

populations (457 individuals) and European descendants (370 individuals, from the 1000 

Genomes Project), whose genotyping data were available for DCP1A rs11551405. 

Consistent with the observed associations, the rs11551405 A allele were associated with 
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significantly higher mRNA expression levels of DCP1A in all populations (P = 0.039) and 

European descendants (P = 0.043) in an additive genetic model (Fig. 2).

DISCUSSION

To our knowledge, this is the first study to evaluate associations between genetic variants in 

PIWI-piRNA pathway genes and CM DSS. We found that DCP1A rs11551405 was likely to 

modulate DSS of CM patients, possibly through a mechanism of modulating gene 

expression.

Regulation of mRNA translation and degradation is critical in control of cell growth and 

survival. Processing bodies (P-bodies) are dynamic foci with untranslated mRNA and can 

serve as sites of mRNA degradation.41 The full name of DCP1A is mRNA-Decapping 

Enzyme 1a (Dcp1a), and DCP1A is a component of the decapping enzyme and has been 

shown to reside in P-bodies in mammals.42 In animal experiments, Dcp1a is also suggested 

to be involved in modulation of, or signal transduction from, P-bodies.43 Meanwhile, the 

turnover of mRNA is a critical step in the regulation of gene expression, and an important 

step in mRNA decay is removal of the 5’ cap.43 Following the poly(A) tail shortening, the 5-

methylguanosine cap is removed through the action of Dcp1a and Dcp2.42 Subsequent to 

decapping, Xrn1 degrades mRNA in a 5-3 fashion.44 Meanwhile, Dcp1a and other proteins 

involved in mRNA degradation or translation repression are key factors in the messenger 

ribonucleoprotein granule assembly.42 Dcp1a has also been reported to have roles in cellular 

signaling. Dcp1a contains an N-terminal EVH1 (enabled vasodilator-stimulated protein 

homology 1) domain, and the EVH1 domain of Dcp1a has a role in transforming growth 

factor-β signaling through a SMAD4 interaction.45 In addition, Dcp1a is found to induce 

translational arrest through protein kinase R (PKR) activation that requires the EVH1 

Domain.46 Interestingly, in a recent investigation of the status of Dcp1a and P-bodies during 

stages of the cell cycle, Dcp1a was found to be hyper-phosphorylated during mitosis.42

In the present study, we revealed some significant associations between genetic variants in 

DCP1A and CM DSS. Specifically, The DCP1A rs11551405 C>A SNP showed a prognostic 

role in both MDACC and Harvard datasets. This variant was computationally predicted to be 

located in the binding sites of hsa-miR-1322, hsa-miR-144, hsa-miR-203, hsa-miR-299-3p, 

hsa-miR-302c, hsa-miR-302d, hsa-miR-338-3p, hsa-miR-372, hsa-miR-373, hsa-

miR-520a-3p, hsa-miR-520b, hsa-miR-520c-3p, hsa-miR-520d-3p, hsa-miR-520e, hsa-

miR-520f, hsa-miR-522, hsa-miR-573 and hsa-miR-584.27 Among the above-mentioned 

miRNAs, miR-203 was reported to be associated with melanoma survival.47 Therefore, 

rs11551405 may regulate protein translation by affecting miRNA-binding site activity.27 

Genetic variants in the predicted miRNA binding sites are suggested to be deleterious, and 

they are likely to be candidates for causal variants of human disease48 or associated with 

disease survival.49 At the same time, in the published expression data of the 1000 Genomes 

Project,38 we found that the DCP1A mRNA expression levels changed in a linear manner 

with an increasing number of the rs11551405A allele in an additive genetic model. We also 

performed FDR multiple comparison correction tests to assess the possibility of false 

positive associations with adjustment for some statistically significant and clinically 

important variables that could confound genetic effects on DSS.
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In MDACC and Harvard datasets, none of the top five components showed significant 

association with melanoma-specific survival, so they were not controlled in the survival 

analyses. Another caveat regarding the present study is that the adjustment in the Harvard 

dataset only contained age and sex, which were inconsistent with the MDACC dataset, due 

to limited information available to us. But in the MDACC dataset, we found that the results 

of baseline model (adjusted for age and sex) and the multivariate model (adjusted for age, 

sex, tumor stage, Breslow thickness, ulceration of tumor and tumor cell mitotic rate) were 

similar, suggesting that our results did not dramatically change in different adjustment 

models. In addition, the identified SNP just has moderate effect on melanoma prognosis, 

which limited its application to personal prognostic management. Considering this, if could 

be validated by other independent studies, this SNP needs to be combined with identified 

genetic factors and clinical variables for personal prognostic assessment.

In summary, we performed a comprehensive assessment of genetic variants in genes 

involved in the PIWI-piRNA pathway, and we identified that DCP1A rs11551405 may have 

a prognostic effect on survival of CM patients. However, our findings need to be validated in 

other independent, larger patient populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty and Impact

The PIWI-piRNA pathway is suggested to be involved in tumorigenesis. In the present 

study, the authors identified one tagSNP, rs11551405 C>A in the PIWI-piRNA pathway 

gene DCP1A, was associated with an increased risk of melanoma disease-specific death 

in both discovery and validation datasets. The discovery offers a translational potential 

for using genetic variants in the PIWI-piRNA pathway gene DCP1A as biomarkers for 

developing improved prognostic assessment and personalized management of cutaneous 

melanoma patients.
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Figure 1. 
Kaplan-Meier survival curve plots of CM DSS with different rs11551405 genotypes in (a) 

the MDACC dataset and (b) the Harvard dataset.
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Figure 2. 
Association between expression quantitative trait loci (eQTL) and DCP1A rs11551405 

genotypes. The eQTL analyses were performed in additive models. We used RNA-seq data 

both from (a) all populations (457 individuals) and (b) European descendants (370 

individuals), which are part of the 1000 Genomes Project.
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Table 2

Associations between DSS of CM patients and selected SNPs in the PIWI-piRNA pathway in the MDACC 

dataset.

Genotype No. of patients Death (%)

Univariate analysis Multivariate analysis*

HR (95% CI) P HR (95% CI) P

PIWIL4

rs7933369

  GG 250 22 (8.8) 1.00 1.00

  AG 427 40 (9.4) 1.07 (0.64–1.80) 0.797 1.44 (0.83–2.51) 0.193

  AA 181 33 (18.2) 2.20 (1.28–3.78) 0.004 3.66 (2.04–6.56) 1.31×10−5

  Trend 1.53 (1.15–2.05) 0.004 1.97 (1.45–2.67) 1.43×10−5

PIWIL4

rs508485

  TT 224 34 (15.2) 1.00 1.00

  CT 430 46 (10.7) 0.68 (0.44–1.07) 0.092 0.59 (0.38–0.93) 0.024

  CC 204 15 (7.4) 0.46 (0.25–0.84) 0.012 0.32 (0.17–0.60) 0.0004

  Trend 0.68 (0.51–0.91) 0.009 0.57 (0.42–0.77) 0.0002

DCP1A

rs11551405

  CC 530 47 (8.9) 1.00 1.00

  AC 287 39 (13.6) 1.60 (1.05–2.44) 0.030 2.02 (1.30–3.15) 1.80×10−3

  AA 41 9 (22.0) 2.97 (1.45–6.07) 0.003 2.23 (1.03–4.81) 0.041

  Trend 1.67 (1.22–2.29) 0.001 1.66 (1.21–2.27) 1.50×10−3

SNP, single nucleotide polymorphisms; CM, cutaneous melanoma; HR, hazards ratio; DSS, disease-specific survival; HR, hazards ratio; 95%CI, 
95% confidence interval;

*
Adjusted by age, sex, tumor stage, Breslow thickness, ulceration of tumor, tumor cell mitotic rate in the Cox models, in additive model.
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