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Current top-performing blind perceptual image quality
prediction models are generally trained on legacy
databases of human quality opinion scores on
synthetically distorted images. Therefore, they learn
image features that effectively predict human visual
quality judgments of inauthentic and usually isolated
(single) distortions. However, real-world images usually
contain complex composite mixtures of multiple
distortions. We study the perceptually relevant natural
scene statistics of such authentically distorted images in
different color spaces and transform domains. We
propose a ‘‘bag of feature maps’’ approach that avoids
assumptions about the type of distortion(s) contained in
an image and instead focuses on capturing
consistencies—or departures therefrom—of the statistics
of real-world images. Using a large database of
authentically distorted images, human opinions of them,
and bags of features computed on them, we train a
regressor to conduct image quality prediction. We
demonstrate the competence of the features toward
improving automatic perceptual quality prediction by
testing a learned algorithm using them on a benchmark
legacy database as well as on a newly introduced
distortion-realistic resource called the LIVE In the Wild
Image Quality Challenge Database. We extensively
evaluate the perceptual quality prediction model and
algorithm and show that it is able to achieve good-
quality prediction power that is better than other
leading models.

Introduction

Objective blind or no-reference (NR) image quality
assessment (IQA) is a fundamental problem of vision
science with significant implications for a wide variety
of image engineering applications. The goal of an NR
IQA algorithm is the following: Given an image

(possibly distorted) and no additional information,
automatically and accurately predict its level of visual
quality as would be reported by an average human
subject. Given the tremendous surge in visual media
content crossing the Internet and the ubiquitous
availability of portable image capture (mobile) devices,
an increasingly knowledgeable base of consumer users
is demanding better quality images and video acquisi-
tion and display services. The desire to be able to
control and monitor the quality of images produced
has encouraged the rapid development of NR IQA
algorithms, which can be used to monitor wired and
wireless multimedia services, where reference images
are unavailable. They can also be used to improve the
perceptual quality of visual signals by using ‘‘quality-
centric’’ processing or to improve the perceptual quality
of acquired visual signals by perceptually optimizing
the capture process. Such ‘‘quality-aware’’ strategies
could help deliver the highest possible quality picture
content to camera users.

Current IQA models have been designed, trained,
and evaluated on benchmark human opinion databases
such as the LIVE Image Quality Database (Sheikh,
Sabir, & Bovik, 2006), the TID Databases (Ponomar-
enko et al., 2009, 2013), the CSIQ Database (Larson &
Chandler, 2010), and a few other small databases
(Callet & Autrusseau, 2005). All of these databases
have been developed beginning with a small set of high-
quality pristine images—29 distinct image contents in
Sheikh et al. (2006) and 25 in Ponomarenko et al.
(2009, 2013)—which are subsequently distorted. The
distortions are introduced in a controlled manner by
the database architects. These distortion databases
have three key properties. First, the distortion severities
and parameter settings are carefully (but artificially)
selected, typically for psychometric reasons such as
mandating a wide range of distortions or dictating an
observed degree of perceptual separation between
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images distorted by the same process. Second, these
distortions are introduced by computing them from an
idealized distortion model. Third, the pristine images
are of very high quality and are usually distorted by one
of several single distortions. These databases therefore
contain images that have been impaired by one of a few
synthetically introduced distortion types at a level of
perceptual distortion chosen by image quality scien-
tists.

Existing legacy image quality databases have played
an important role in the advancement of the field of
image quality prediction, especially in the design of
both distortion-specific and general-purpose full-refer-
ence, reduced-reference, and NR image quality pre-
diction algorithms. However, the images in these kinds
of databases are generally inauthentically distorted.
Image distortions digitally created and manipulated by
a database designer for the purpose of ensuring a
statistically significant set of human responses are not
the same as the real-world distortions that are
introduced during image capture by the many and
diverse types of cameras found in the hands of real-
world users. We refer to such images as authentically
distorted. An important characteristic of real-world
authentically distorted images captured by naı̈ve users
of consumer camera devices is that the pictures
obtained generally cannot be accurately described by a
simple generative model or as suffering from single,
statistically separable distortions. For example, a
picture captured using a mobile camera under low-light
conditions is likely to be underexposed in addition to
being afflicted by low-light noise and blur. Subsequent
processes of saving and/or transmitting the picture over
a wireless channel may introduce further compression
and transmission artifacts. Further, the characteristics
of the overall distortion ‘‘load’’ of an image will depend
on the device used for capture and on the camera-
handling behavior of the user, which may induce
further nonlinear shake and blur distortions. Consum-
er-grade digital cameras differ widely in their lens
configurations, levels of noise sensitivity and acquisi-
tion speed, and postacquisition in-camera processing.
Camera users differ in their shot selection preferences,
hand steadiness, and situational awareness. Overall,
our understanding of true, authentic image distortions
is quite murky. Such complex, unpredictable, and
currently unmodeled mixtures of distortions are char-
acteristic of real-world pictures that are authentically
distorted. There currently is not any known way to
categorize, characterize, or model such complex and
uncontrolled distortion mixtures, and it is certainly
unreasonable to expect an image quality scientist to be
able to excogitate a protocol for creating authentically
distorted images in the laboratory by synthetically
combining controlled, programmed distortions into

what must ultimately be regarded as authentically
distorted images.

There is a way to create databases of authentically
distorted images, which is by acquiring images taken by
many casual camera users. Normally, inexpert camera
users will acquire pictures under highly varied and
often suboptimal illuminations conditions, with un-
steady hands, and with unpredictable behavior on the
part of the photographic subjects. Such real-world,
authentically distorted images exhibit a broad spectrum
of authentic quality ‘‘types,’’ mixtures, and distortion
severities that defy attempts at accurate modeling or
precise description. Authentic mixtures of distortions
are even more difficult to model when they interact,
creating new agglomerated distortions not resembling
any of the constituent distortions. A simple example
would be a noisy image that is heavily compressed,
where the noise presence heavily affects the quantiza-
tion process at high frequencies, yielding hard-to-
describe, visible compressed noise artifacts. Users of
mobile cameras will be familiar with this kind of
spatially varying, hard-to-describe distortion amal-
gamation.

With an overarching goal to design an efficient blind
IQA model that operates on images afflicted by real
distortions, we created a challenging blind image
quality database called the LIVE In the Wild Image
Quality Challenge Database. This new database
contains images that were captured using a large
number of highly diverse individual mobile devices,
including tablets and smartphones, to acquire typical
real scenes in the United States and Korea. These
images are affected by unknown mixtures of generally
occurring multiple interacting authentic distortions of
diverse severities (Ghadiyaram & Bovik, 2014, 2016).

A byproduct of the characteristically different
natures of authentically distorted images contained in
the LIVE Challenge Database is that the statistical
assumptions made in the past regarding distorted
images do not hold. For example, statistics-based
natural scene models, which are highly regular de-
scriptors of natural high-quality images, are commonly
modified to account for distortions using ‘‘generalized’’
statistical models. We have found that these models
lose their power to discriminate high-quality images
from distorted images when the distortions are
authentic (Figures 2 through 4). This is of great
consequence for the burgeoning field of blind IQA
model development, where the quality-aware statistical
features used by top-performing NR (blind) image
quality prediction models such as BRISQUE (Mittal,
Moorthy, & Bovik, 2012), BLIINDS (Saad, Bovik, &
Charrier, 2012), and DIIVINE (Moorthy & Bovik,
2011) and that of Tang, Joshi, and Kapoor (2011, 2014)
are highly successful on the legacy IQA databases
(Ponomarenko et al., 2009; Sheikh et al., 2006).
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However, as we will show, the reliability of these
statistical features—and consequently the performanc-
es of these blind IQA models—suffers when applied to
authentically distorted images contained in the new
LIVE Challenge Database. We believe that further
development of successful NR image and video quality
models will greatly benefit by the development of
authentic distortion databases, making for more
meaningful and relevant performance analyses and
comparisons of state-of-the-art IQA algorithms as well
as furthering efforts toward improving our under-
standing of the perception of picture distortions and
building better and more robust IQA models.

Here, we aim to produce as rich a set of perceptually
relevant quality-aware features as might better enable

the accurate prediction of subjective image quality
judgments on images afflicted by complex, real-world
distortions. Our ultimate goal is to design a more
robust and generic quality predictor that (a) performs
well on the existing legacy IQA databases (e.g., the
LIVE IQA Database [Sheikh et al., 2006] and the TID
2013 Database [Ponomarenko et al., 2013]) containing
images afflicted only by single synthetic distortions and
(b) delivers superior quality prediction performance on
real-world images ‘‘in the wild’’ (i.e., as encountered in
consumer image capture devices).

Motivation behind using natural
scene statistics

Current efficient NR IQA algorithms use natural
scene statistics (NSS) models (Bovik, 2013) to capture

Figure 1. (a) A pristine image from the legacy LIVE Image Quality Database (Sheikh et al., 2006). (b) JP2K compression distortion

artificially added to Figure 2a. (c) White noise added to Figure 2a. (d) A blurry image also distorted with low-light noise from the new

LIVE In the Wild Image Quality Challenge Database (Ghadiyaram & Bovik, 2014, 2016).

Figure 2. Histogram of NLCs of the images in Figure 2a through

d. Notice how each single, unmixed distortion affects the

statistics in a characteristic way, but when mixtures of authentic

distortions afflict an image, the histogram resembles that of a

pristine image. Best viewed in color.

Figure 3. Histogram of NLCs of all 29 pristine images contained

in the legacy LIVE IQA Database (Sheikh et al., 2006). Notice

how irrespective of the wide variety of image content of the 29

pristine images, their collective normalized coefficients follow a

Gaussian distribution (estimated GGD shape parameter¼ 2.15).
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the statistical naturalness (or lack thereof) of images
that are not distorted. It should be noted that natural
images are not necessarily images of natural environ-
ments such as trees or skies. Any natural visible-light
image that is captured by an optical camera and is not
subjected to artificial processing on a computer is
regarded here as a natural image, including photo-
graphs of manmade objects. NSS models rely on the
fact that good-quality real-world photographic images
(henceforth referred to as pristine images) that have
been suitably normalized follow statistical laws. Cur-
rent NR IQA models measure perturbations of these
statistics to predict image distortions. State-of-the-art
NSS-based NR IQA models (Mittal, Moorthy et al.,
2012; Mittal, Soundararajan, & Bovik, 2012; Moorthy
& Bovik, 2010, 2011; Saad et al., 2012; Tang et al.,
2011; Y. Zhang, Moorthy, Chandler, & Bovik, 2014)
exploit these statistical perturbations by first extracting
image features in a normalized bandpass space and
then learning a kernel function that maps these features
to ground truth subjective quality scores. To date, these
feature representations have been tested only on images
containing synthetically applied distortions and may
not perform well when applied on real-world images
afflicted by mixtures of authentic distortions (Table 2).

Consider the images in Figure 2, where images were
transformed by a bandpass debiasing and divisive
normalization operation (Ruderman, 1994). This nor-
malization process reduces spatial dependencies in
natural images. The empirical probability density
function (histogram) of the resulting normalized
luminance coefficient (NLC) map of the pristine image
in Figure 2a is quite Gaussian-like (Figure 3). We
deployed a generalized Gaussian distribution (GGD)

model and estimated its parameters: shape (a) and
variance (r2; see later sections for more details). We
found that the value of a for Figure 2a is 2.09, in
accordance with the Gaussian model of the histogram
of its NLC map. It should be noted that the family of
GGDs includes the normal distribution when a¼ 2 and
the Laplacian distribution when a¼ 1. This property is
not specific to Figure 2a but rather is generally
characteristic of all natural images. As first observed in
Ruderman (1994) natural, undistorted images of quite
general (well-lit) image content captured by any good-
quality camera may be expected to exhibit this
statistical regularity after processing by applying
bandpass debiasing and divisive normalization opera-
tions. To further illustrate this well-studied phenome-
nal regularity, we processed 29 pristine images from the
legacy LIVE IQA Database (Sheikh et al., 2006) that
vary greatly in their image content and plotted the
collective histogram of the normalized coefficients of all
29 images in Figure 1. Specifically, we concatenated the
normalized coefficients of all the images into a single
vector and plotted its histogram. The best-fitting GGD
model yielded a¼ 2.15, which is again nearly Gaussian.
The singular spike at zero almost invariably arises from
a cloudless sky entirely bereft of objects.

The same property is not held by the distorted
images shown in Figure 2b and c. The estimated shape
parameter values computed on those images were 1.12
and 3.02, respectively. This deviation from Gaussianity
of images containing single distortions has been
observed and established in numerous studies on large
comprehensive data sets of distorted images irrespec-
tive of the image content. Quantifying these kinds of
statistical deviations as learned from databases of

Figure 4. Two-dimensional scatter plots of subjective quality scores against estimated shape parameters (a) obtained by fitting a GGD

to the histograms of NLCs of all the images in (a) the legacy LIVE Database (Sheikh et al., 2006) and (b) the LIVE Challenge Database

(Ghadiyaram & Bovik, 2014, 2016).
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annotated distorted images is the underlying principle
behind several state-of-the-art objective blind IQA
models (Mittal, Moorthy et al., 2012; Mittal, Soun-
dararajan et al., 2012; Moorthy & Bovik, 2011; Saad et
al., 2012; Tang et al., 2011; Y. Zhang et al., 2014).

While this sample anecdotal evidence suggests that
the statistical deviations of distorted images may be
reliably modeled, consider Figure 2d, from the new
LIVE In the Wild Image Quality Challenge Database
(Ghadiyaram & Bovik, 2014, 2016). This image contains
an apparent mixture of blur, sensor noise, illumination,
and possibly other distortions, all nonlinear and difficult
to model. Some distortion arises from compositions of
these, which are harder to understand or model. The
empirical distribution of its NLC (Figure 3) also follows
a Gaussian-like distribution, and the estimated shape
parameter value (a) is 2.12 despite the presence of
multiple severe and interacting distortions. As a way of
visualizing this problem, we show scatter plots of
subjective quality scores against the a values of the best
GGD fits to NLC maps of all the images (including the
pristine images) in the legacy LIVE Database (of
synthetically distorted pictures; Sheikh et al., 2006) in
Figure 5a and of all the authentically distorted images in
the LIVE Challenge Database in Figure 5b. From
Figure 5a, it can be seen that most of the images in the
legacy LIVE Database that have high human subjective
quality scores (i.e., low difference of mean opinion
scores [DMOS]) associated with them (including the
pristine images) have estimated a values close to 2.0,
whereas pictures having low quality scores (i.e., high
DMOS) take different a values and thus are statistically
distinguishable from high-quality images. However,
Figure 5b shows that authentically distorted images
from the new LIVE Challenge Database may be
associated with a values close to 2.0, even on heavily
distorted pictures (i.e., with low mean opinion scores
[MOS]). Figure 4 plots the distribution of the fraction of

all the images in the database that fall into four discrete
MOS and DMOS categories. It should be noted that the
legacy LIVE IQA Database provides DMOS scores,
whereas the LIVE Challenge Database contains MOS
scores. These histograms show that the distorted images
span the entire quality range in both databases and that
there is no noticeable skew of distortion severity in either
databases that could have affected the results in Figures
5 and 6.

Figure 6 also illustrates our observation that
authentic and inauthentic distortions affect scene
statistics differently. In the case of single inauthentic
distortions, it may be observed that pristine and
distorted images occupy different regions of this
parameter space. For example, images with lower
DMOS (higher quality) are more separated from the
distorted image collection in this parameter space,
making it easier to predict their quality. There is a
great degree of overlap in the parameter space among
images belonging to the categories ‘‘DMOS � 25’’
and ‘‘DMOS . 25 and � 50’’; heavily distorted
pictures belonging to the other two DMOS categories
are separated in the parameter space. On the other
hand, all the images from the LIVE Challenge
Database, which contain authentic, often agglomer-
ated distortions, overlap to a great extent in this
parameter space despite the wide spread of their
quality distributions.

Although the above visualizations in Figures 5 and 6
were performed in a lower dimensional space of
parameters, it is possible that authentically distorted
images could exhibit better separation if modeled in a
higher dimensional space of perceptually relevant
features. It is clear, however, that mixtures of authentic
distortions may affect the statistics of images distorted
by single, synthetic distortions quite differently. Figures
5 and 6 also suggest that although the distortion-
informative image features used in several state-of-the-

Figure 5. Bar plots illustrating the distribution of the fraction of images from (left) the legacy LIVE IQA Database and (right) the LIVE

Challenge Database belonging to four different DMOS and MOS categories, respectively. These histograms demonstrate that the

distorted images span the entire quality range in both the databases.
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art IQA models are highly predictive of the perceived
quality of inauthentically distorted images contained in
legacy databases (Sheikh et al., 2006; Ponomarenko et
al., 2009; Table 6), these features are insufficient to
produce accurate predictions of quality on real-world
authentically distorted images (Table 2). These obser-
vations highlight the need to capture other, more
diverse statistical image features toward improving the
quality prediction power of blind IQA models on
authentically distorted images.

Our contributions and their relation
to human vision

To tackle the difficult problem of quality assessment
of images in the wild, we sought to produce a large and
comprehensive collection of quality-sensitive statistical
image features drawn from among the most successful
NR IQA models that have been produced to date (Xu,
Lin, & Kuo, 2015). However, going beyond this and
recognizing that even top-performing algorithms can
lose their predictive power on real-world images
afflicted by possibly multiple authentic distortions, we
also designed a number of statistical features implied by
existing models not yet used in hopes that they might
supply additional discriminative power on authentic
image distortion ensembles. Even further, we deployed
these models in a variety of color spaces representative
of both chromatic image sensing and bandwidth-

efficient and perceptually motivated color processing.
This large collection of features defined in various
complementary, perceptually relevant color and trans-
form-domain spaces drives our feature maps–based
approach.1

Given the availability of a sizeable corpus of
authentically distorted images with a very large
database of associated human quality judgments, we
saw the opportunity to conduct a meaningful, gener-
alized comparative analysis of the quality prediction
power of modern quality-aware statistical image
features defined over diverse transformed domains and
color spaces. We thus conducted a discriminant
analysis of an initial set of 560 features designed in
different color spaces, which, when used to train a
regressor, produced an NR IQA model delivering a
high level of quality prediction power. We also
conducted extensive experiments to validate the pro-
posed model against other top-performing NR IQA
models using both the standard benchmark data set
(Sheikh et al., 2006) and the new LIVE In the Wild
Image Quality Challenge Database (Ghadiyaram &
Bovik, 2014, 2016). We found that all prior state-of-
the-art NR IQA algorithms perform rather poorly on
the LIVE Challenge Database, whereas our perceptu-
ally motivated, feature-driven model yielded good
prediction performance. We note that we could
compare only with those algorithms whose code was
publicly available. These results underscore the need
for more representative quality-aware NSS features
that are predictive of the perceptual severity of
authentic image distortions.

Figure 6. Two-dimensional scatter plots of the estimated shape and scale parameters obtained by fitting a GGD to the histograms of

NLCs of all the images in (a) the legacy LIVE Database (Sheikh et al., 2006) and (b) the LIVE Challenge Database (Ghadiyaram & Bovik,

2014, 2016). Best viewed in color.
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Relation to human vision and perception

The responses of neurons in area V1 of the visual
cortex perform scale-space orientation decomposi-
tions of visual data leading to energy compaction
(decorrelation and sparsification) of the data (Field,
1987). The feature maps that define our perceptual
picture quality model are broadly designed to mimic
the processing steps that occur at different stages
along the early visual pipeline. Some of the feature
maps used (i.e., neighboring pair products, debiased
and normalized coefficients, Laplacian) have been
previously demonstrated to possess powerful percep-
tual quality prediction capabilities on older, standard
‘‘legacy’’ picture quality databases. However, we have
shown that they perform less effectively on realistic,
complex hybrid distortions. As such, we exploit other
perceptually relevant features, including a heretofore
unused detail (‘‘sigma’’) feature drawn from current
NSS models as well as chromatic features expressed in
various perceptually relevant luminance and opponent
color spaces. Specifically, the novel feature maps
designed in this work are the sigma map in different
color channels, the red–green and blue–yellow color
opponent maps, the yellow color map, the difference
of Gaussian (DoG) of the sigma map in different color
channels, and the chroma map in the LAB color
spaces. Overall, our feature maps model luminance
and chrominance processing in the retina, V1 simple
cells, and V1 complex cells via both oriented and
nonoriented multiscale frequency decomposition and
divisive contrast normalization processes operating on
opponent color channels. The feature maps are also
strongly motivated by recent NSS models (Mittal,
Moorthy et al., 2012; Ruderman, 1994; Srivastava,
Lee, Simoncelli, & Zhu, 2003; Y. Zhang et al., 2014) of
natural and distorted pictures that are dual to low-
level perceptual processing models.

Distinction from other machine learning
methods

Although using NSS models for IQA remains an
active research area (Goodall, Bovik, & Paulter,
2016; Mittal, Moorthy et al., 2012; Moorthy &
Bovik, 2011; Y. Zhang & Chandler, 2013; Y. Zhang
et al., 2014), our bag of features approach goes
significantly beyond the use of a variety of heretofore
unexploited perceptually relevant statistical picture
features. This places it in distinction with respect to
ad hoc machine learning–driven computer vision
models not founded on perceptual principles (Kang,
Ye, Li, & Doermann, 2014, 2015; Tang et al., 2011;
Ye & Doermann, 2011).

Related work

The development of blind IQA models has been
largely devoted to extracting low-level image descrip-
tors that are independent of image content. There are
several models proposed in the past that assume a
particular kind of distortion and thus extract distor-
tion-specific features (Barland & Saadane, 2006; Chen
et al., 2008; Ferzli & Karam, 2009; Golestaneh &
Chandler, 2014; Narvekar & Karam, 2009; Sheikh,
Bovik, & Cormack, 2005; Varadarajan & Karam,
2008a, 2008b; Zhu & Karam, 2014).

The development of NR IQA models based on NSS
that do not make a priori assumptions on the contained
distortion is also experiencing a surge of interest. Tang
et al. (2011) proposed an approach combining NSS
features along with a very large number of texture,
blur, and noise statistic features. The DIIVINE Index
(Moorthy & Bovik, 2011) deploys summary statistics
under an NSS wavelet coefficient model. Another
model, BLIINDS-II (Saad et al., 2012), extracts a small
number of NSS features in the discrete cosine
transform (DCT) domain. BRISQUE (Mittal, Moor-
thy et al., 2012) trains a support vector regressor (SVR)
on a small set of spatial NSS features. CORNIA (Ye &
Doermann, 2011), which is not an NSS-based model,
builds distortion-specific code words to compute image
quality. NIQE (Mittal, Soundararajan et al., 2012) is an
unsupervised NR IQA technique driven by spatial
NSS-based features that requires no exposure to
distorted images at all. BIQES (Saha & Wu, 2015) is
another recent training-free blind IQA model that uses
a model of error visibility across image scales to
conduct image quality prediction.

Kang et al. (2014) used a convolutional neural
network (CNN), divided an input image to be assessed
into 32332 nonoverlapping patches, and assigned each
patch a quality score equal to its source image’s ground
truth score during training. The CNN is trained on
these locally normalized image patches and the
associated quality scores. In the test phase, an average
of the predicted quality scores is reported. This data
augmentation and quality assignment strategy could be
acceptable in their work (Kang et al., 2014) because
their model is trained and tested on legacy benchmark
data sets containing single homogeneous distortions
(Ponomarenko et al., 2009; Sheikh et al., 2006).
However, our method designs a quality predictor for
nonhomogeneous, authentic distortions containing
different types of distortions affecting different parts of
images with varied severities. Thus, the CNN model
and the quality assignment strategy in the training
phase and the predicted score pooling strategy in the
test phase, as used in Kang et al. (2014), cannot be
directly extended to the images in the LIVE Challenge
Database. Similarly, Tang et al. (2014) used a deep
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belief network combined with a Gaussian process
regressor to train a model on quality features proposed
in their earlier work (Tang et al., 2011).

All of these models (other than NIQE) were trained
on synthetic and usually singly distorted images
contained in existing benchmark databases (Ponomar-
enko et al., 2009; Sheikh et al., 2006). They are also
evaluated on the same data challenging their extensi-
bility on images containing complex mixtures of
authentic distortions, such as those found in the LIVE
Challenge Database (Ghadiyaram & Bovik, 2014,
2016). Indeed, as we show in our experiments, all of the
top-performing models perform poorly on the LIVE
Challenge Database.

LIVE In the Wild Image Quality
Challenge Database

We briefly describe the salient aspects of the new
LIVE Challenge database that helps motivate this
work. A much more comprehensive description of this
significant effort is given in Ghadiyaram and Bovik
(2014, 2016). The new LIVE In the Wild Image
Quality Challenge Database (Ghadiyaram & Bovik,
2014) contains 1,163 images impaired by a wide
variety of randomly occurring distortions and genuine
capture artifacts that were obtained using a wide
variety of contemporary mobile camera devices,
including smartphones and tablets. We gathered
numerous images containing diverse distortion types,

mixtures, and severities taken by many dozens of
casual international users. The images were collected
without artificially introducing any distortions beyond
those occurring during capture, processing, and
storage.

Figure 7 depicts a small representative sample of the
images in the LIVE Challenge Database. Because these
images are authentically distorted, they usually contain
mixtures of multiple impairments that defy categori-
zation into distortion types. Such images are encoun-
tered in the real world and reflect a broad range of
composite image impairments that are difficult to
describe (or pigeonhole). With a goal to gather a large
number of human opinion scores, we designed and
implemented an online crowdsourcing system by
leveraging Amazon’s Mechanical Turk. We used our
framework to gather more than 350,000 human ratings
of image quality from more than 8,100 unique subjects,
which amounts to about 175 ratings on each image in
the new LIVE Challenge Database. This is the world’s
largest, most comprehensive study of real-world
perceptual image quality ever conducted.

Despite the widely diverse study conditions, we
observed a very high consistency in users’ sensitivity to
distortions in images and their ratings. To evaluate
subject consistency, we split the ratings obtained on an
image into two disjoint equal sets and computed two
MOS values (one from each set) for every image. When
repeated over 25 random splits, the average linear
(Pearson) correlation between the mean opinion scores
between the two sets was found to be 0.9896. Also, when
the MOS values obtained on a fixed set of images (five

Figure 7. Sample images from the LIVE In the Wild Image Quality Challenge Database (Ghadiyaram & Bovik, 2014, 2016). These

images include pictures of faces, people, and animals; close-up shots; wide-angle shots; nature scenes; manmade objects; images

with distinct foreground and background configurations; and images without any notable object of interest.
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gold standard images) via our online test framework
were compared with the scores obtained on the same
images from a traditional study setup, we achieved a
very high correlation of 0.9851. Both these experiments
highlight the high degree of reliability of the gathered
subjective scores and of our test framework.

We refer the reader to Ghadiyaram and Bovik (2016)
for details on the content and design of the database,
our crowdsourcing framework, and the very large scale
subjective study we conducted on image quality. The
database is freely available to the public at http://live.
ece.utexas.edu/research/ChallengeDB/index.html.

Feature maps–based image quality

Faced with the task of creating a model that can
accurately predict the perceptual quality of real-world
authentically distorted images, an appealing solution
would be to train a classifier or a regressor using the
distortion-sensitive statistical features that currently
drive top-performing blind IQA models. However, as
illustrated in Figures 3 through 6, complex mixtures of
authentic image distortions modify the image statistics
in ways not easily predicted by these models. They
exhibit large, hard-to-predict statistical variations
compared with synthetically distorted images. Thus, we
devised an approach that leverages the idea that
different perceptual image representations may distin-
guish different aspects of the loss of perceived image
quality. Specifically, given an image, we first construct
several feature maps in multiple color spaces and
transform domains. We then extract individual and
collective scene statistics from each of these maps.
Before we describe the types of feature maps that we
compute, we first introduce the statistical modeling
techniques that we use to derive and extract features.

Divisive normalization

Wainwright, Schwartz, and Simoncelli (2002),
building on Ruderman’s (1994) work, empirically
determined that bandpass natural images exhibit
striking nonlinear statistical dependencies. Applying a
nonlinear divisive normalization operation, similar to
the nonlinear response behavior of certain cortical
neurons (Heeger, 1992), wherein the rectified linear
neuronal responses are divided by a weighted sum of
rectified neighboring responses, greatly reduces such
observed statistical dependencies and tends to Gaus-
sianize the processed picture data.

For example, given an image’s luminance map L of
size M 3 N, a divisive normalization operation
(Ruderman, 1994) yields an NLC map:

NLCði; jÞ ¼ Lði; jÞ � lði; jÞ
rði; jÞ þ 1

; ð1Þ

where

lði; jÞ ¼
X3

k¼�3

X3

l¼�3

wk;lLði� k; j� lÞ ð2Þ

and

rði; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

k¼�3

X3

l¼�3

wk;l Lði� k; j� lÞ � lði� k; j� lÞ½ �2
vuut ;

ð3Þ
where i � 1, 2, . . . , M and j � 1, 2, . . . , N are spatial
indices and w¼ {wk,ljk¼�3, . . . , 3, l¼�3, . . . , 3} is a
two-dimensional circularly symmetric Gaussian
weighting function.

Divisive normalization by neighboring coefficient
energies in a wavelet or other bandpass transform
domain similarly reduces statistical dependencies and
Gaussianizes the data. Divisive normalization or
contrast gain control (Wainwright et al., 2002) ac-
counts for specific measured nonlinear interactions
between neighboring neurons. It models the response of
a neuron as governed by the responses of a pool of
neurons surrounding it. Further, divisive normalization
models account for the contrast masking phenomena
(Sekuler & Blake, 2002) and hence are important
ingredients in models of distorted image perception.
Most of the feature maps we construct as part of
extracting the proposed bag of features are processed
using divisive normalization.

Generalized Gaussian distribution

Our approach builds on the idea exemplified by
observations like those depicted in Figure 3—namely
that the normalized luminance or bandpass/wavelet
coefficients of a given image have characteristic
statistical properties that are predictably modified by
the presence of distortions. Effectively quantifying
these deviations is crucial to be able to make
predictions regarding the perceptual quality of images.
A basic modeling tool that we use throughout is the
GGD, which effectively models a broad spectrum of
(singly) distorted image statistics, which are often
characterized by changes in the tail behavior of the
empirical coefficient distributions (Sharifi & Leon-
Garcia, 1995). A GGD with zero mean is given by

fðx; a;r2Þ ¼ a
2bCð1=aÞ exp � jxj

b

� �a� �
; ð4Þ

where
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b ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1=aÞ
Cð3=aÞ

s
ð5Þ

and C (.) is the gamma function

CðaÞ ¼
Z ‘

0

ta�1e�t dt a. 0: ð6Þ

A GGD is characterized by two parameters: a
controls the ‘‘shape’’ of the distribution and r2 controls
its variance. A zero mean distribution is appropriate for
modeling NLC distributions because they are (gener-
ally) symmetric. These parameters are commonly
estimated using an efficient moment matching–based
approach (Mittal, Moorthy et al., 2012; Sharifi & Leon-
Garcia, 1995).

Asymmetric GGD model

Additionally, some of the normalized distributions
derived from the feature maps are skewed and are
better modeled as following an asymmetric GGD
(AGGD; Lasmar, Stitou, & Berthoumieu, 2009). An
AGGD with zero mode is given by

fðx; m;r2
l ; r

2
r Þ

¼

m
ðbl þ brÞCð1=mÞ

exp � �x
bl

 !m !
x, 0

m
ðbl þ brÞCð1=mÞ

exp � x

br

 !m !
x. 0

;

8>>>>><
>>>>>:

ð7Þ

where

bl ¼ rl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1=aÞ
Cð3=aÞ

s
ð8Þ

br ¼ rr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1=aÞ
Cð3=aÞ

s
; ð9Þ

where g is given by

g ¼ ðbr � blÞ
Cð2=mÞ
Cð1=mÞ : ð10Þ

An AGGD is characterized by four parameters: m
controls the ‘‘shape’’ of the distribution, g is the mean
of the distribution, and r2

l and r2
r are scale parameters

that control the spread on the left and right sides of the
mode, respectively. The AGGD further generalizes the
GGD (Sharifi & Leon-Garcia, 1995) and subsumes it
by allowing for asymmetry in the distribution. The
skew of the distribution is a function of the left and

right scale parameters. If r2
l ¼ r2

r , then the AGGD
reduces to a GGD. All the parameters of the AGGD
may be efficiently estimated using the moment match-
ing–based approach proposed in Lasmar et al. (2009).

Although pristine images produce normalized coeffi-
cients that reliably follow a Gaussian distribution, this
behavior is altered by the presence of image distortions.
The model parameters, such as the shape and variance
of either a GGD or an AGGD fit to the NLC maps of
distorted images, aptly capture this non-Gaussianity and
hence are extensively utilized in our work. Additionally,
sample statistics such as kurtosis, skewness, and
goodness of the GGD fit have been empirically observed
to also be predictive of perceived image quality and are
considered here. Thus, we deploy either a GGD or an
AGGD to fit the empirical NLC distributions computed
on different feature maps of each image encountered in
Ghadiyaram & Bovik (2014, 2016).

Images are naturally multiscale, and distortions
affect image structures across scales. Existing research
on quality assessment has demonstrated that incorpo-
rating multiscale information when assessing quality
produces quality assessment algorithms that perform
better in terms of correlation with human perception
(Saad et al., 2012; Wang, Simoncelli, & Bovik, 2003).
Hence, we extract these features from many of the
feature maps at two scales: the original image scale and
a reduced resolution (low-pass filtered and down-
sampled by a factor of 2). It is possible that using more
scales could be beneficial, but we did not find this to be
the case on this large data set; hence, we report scores
using two scales.

Feature maps

Our approach to feature map generation is decidedly
a ‘‘bag of features’’ approach, as is highly popular in
the development of a wide variety of computer vision
algorithms that accomplish tasks such as object
recognition (Csurka, Dance, Fan, Willamowski, &
Bray, 2004; Grauman & Darrell, 2005). Our approach
uses a large collection of highly heterogeneous features,
as mentioned earlier; however, all of them either (a)
have a basis in current models of perceptual processing
and/or perceptually relevant models of natural picture
statistics or (b) are defined using perceptually plausible
parametric or sample statistic features computed on the
empirical probability distributions (histograms) of
simple biologically and/or statistically relevant image
features.

We also deploy these kinds of features on a diverse
variety of color space representations. Currently, our
understanding of color image distortions is quite
limited. By using the bag of features approach on a
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variety of color representations, we aim to capture
aspects of distortion perception that are possibly
distributed over the different spaces. Figure 8 sche-
matically describes some of the feature maps that are
built into our model, whereas Figure 9 shows the flow
of statistical feature extraction from these feature maps.
Further, we will use the images illustrated in Figure
10a–d in the below sections to illustrate the proposed
feature maps and the statistical variations that occur in
the presence of distortions.

Luminance feature maps

Next we describe the feature maps derived from the
luminance component of any image considered.

Luminance map

There is considerable evidence that local center-
surround excitatory-inhibitory processes occur at sev-
eral types of retinal neurons (Bovik, 2013; Kuffler,
1953), thus providing a bandpass response to the visual
signal’s luminance. It is common to also model the
local divisive normalization of these nonoriented
bandpass retinal responses, as in Mittal, Moorthy et al.
(2012).

Thus, given an M3N3 3 image I in red-green-blue
(RGB) color space, its luminance component is first
extracted, which we refer to as the Luma map. An
NLC map as defined in Equation 1 is then computed
on it by applying a divisive normalization operation
on it (Ruderman, 1994). A slight variation from the

Figure 8. Given any image, our feature maps–based model first constructs channel maps in different color spaces and then constructs

several feature maps in multiple transform domains on each of these channel maps (only a few feature maps are illustrated here).

Parametric scene statistic features are extracted from the feature maps after performing perceptually significant divisive

normalization (Ruderman, 1994) on them. The design of each feature map is described in detail in later sections.

Figure 9. Our proposed model processes a variety of perceptually relevant feature maps by modeling the distribution of their

coefficients (divisively normalized in some cases) using GGD (in real or complex domain), AGGD, or wrapped Cauchy distribution and

by extracting perceptually relevant statistical features that are used to train a quality predictor.

Journal of Vision (2017) 17(15):32, 1–25 Ghadiyaram & Bovik 11



usual retinal contrast signal model is the use of
divisive normalization by the standard deviation (as
defined in Equation 3) of the local responses rather
than by the local mean response. The best-fitting
GGD model to the empirical distribution of the NLC
map is found (Mittal, Moorthy et al., 2012). Two
parameters (a, r2) are estimated and two sample
statistics (kurtosis, skewness) are computed from the
empirical distribution over two scales, yielding a total
of eight features. The features may be regarded as
essential NSS features related to classical models of
retinal processing.

Neighboring paired products

The statistical relationships between neighborhood
pixels of an NLC map are captured by computing four
product maps that serve as simple estimates of local
correlation. These four maps are defined at each
coordinate (i, j) by taking the product of NLC(i, j) with
each of its directional neighbors: NLC(i, jþ1), NLC(iþ
1, j), NLC(iþ 1, jþ 1), and NLC(iþ 1, j–1). These maps
have been shown to reliably obey an AGGD in the
absence of distortion (Mittal, Moorthy et al., 2012). A
total of 24 parameters—four AGGD parameters per
product map and two sample statistics (kurtosis,

skewness)—are computed. These features are comput-
ed on two scales, yielding 48 additional features. These
features use the same NSS/retinal model to account for
local spatial correlations.

Sigma map

The designers of existing NSS-based blind IQA
models have largely ignored the predictive power of the
sigma field (Equation 3) present in the classic Ruder-
man model. However, the sigma field of a pristine
image also exhibits a regular structure that is disturbed
by the presence of distortion. We extract the sample
kurtosis, skewness, and the arithmetic mean of the
sigma field at two scales to efficiently capture structural
anomalies that may arise from distortion. Although
this feature map has not been used before for visual
modeling, it derives from the same NSS/retinal model
and is statistically regular.

DoG of sigma map

Center-surround processes are known to occur at
various stages of visual processing, including the
multiscale receptive fields of retinal ganglion cells
(Campbell & Robson, 1968). A good model is the two-
dimensional difference of isotropic Gaussian filters
(Rodieck, 1965; Wilson & Bergen, 1979):

DoG ¼ 1ffiffiffiffiffiffi
2p
p 1

r1
e
�ðx2þy2Þ

2r2
1 � 1

r2
e
�ðx2þy2Þ

2r2
2

 !
; ð11Þ

where r2 ¼ 1.5r1. The value of r1 in our implementa-
tion was 1.16. The mean subtracted and divisively
normalized coefficients of the DoG of the sigma field
(obtained by applying Equation 3 on the DoG of the
sigma field; denoted henceforth as DoGsigma) of the
luminance map of a pristine image exhibits a regular
structure that deviates in the presence of some kinds of
distortion (Figure 11a). Features that are useful for
capturing a broad spectrum of distortion behavior
include the estimated shape, standard deviation, sample
skewness, and kurtosis. The DoG of the sigma field can
highlight conspicuous stand-out statistical features that
may particularly affect the visibility of distortions.

We next extract the sigma field of DoGsigma and
denote its mean subtracted and divisively normalized
coefficients as DoG0

sigma. The sigma field of DoGsigma

is obtained by applying Equation 3 on DoGsigma. We
found that DoG0

sigma also exhibits statistical regular-
ities disrupted by the presence of distortions (Figure
11b). The sample kurtosis and skewness of these
normalized coefficients are part of the list of features
that are fed to the regressor.

Figure 10. (a) A high-quality image and (b through d) a few

distorted images from the LIVE Challenge Database (Ghadiyar-

am & Bovik, 2014, 2016). We use these images in later sections

to illustrate the proposed feature maps and the statistical

variations that occur in the presence of distortions.
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Laplacian of the luminance map

A Laplacian image is computed as the downsampled
difference between an image and a low-pass filtered
version of it. The Laplacian of the luminance map of a
pristine image is well modeled as AGGD, but this
property is disrupted by image distortions (L. Zhang,
Zhang, & Bovik, 2015). We therefore compute the
Laplacian of each image’s luminance map (Luma) and
model it using an AGGD. This is also a bandpass
retinal NSS model but without normalization. The
estimated model parameters ðm;r2

l ; r
2
r Þ of this fit are

used as features along with this feature map’s sample
kurtosis and skewness.

Features extracted in the wavelet domain

The next set of feature maps are extracted from a
complex steerable pyramid wavelet transform of an
image’s luminance map. This could also be accom-
plished using Gabor filters (Clark & Bovik, 1989), but
the steerable pyramid has been deployed quite
successfully in the past on NSS-based problems
(Moorthy & Bovik, 2011; Sheikh et al., 2005, 2006;
Wainwright et al., 2002). The features drawn from this
decomposition are strongly multiscale and multior-
ientation, unlike the other features. C-DIIVINE (Y.
Zhang et al., 2014) is a complex extension of the NSS-
based DIIVINE IQA model (Moorthy & Bovik,
2011), which uses a complex steerable pyramid.
Features computed from it enable changes in local
magnitude and phase statistics induced by distortions
to be effectively captured. One of the underlying

parametric probability models used by C-DIIVINE is
the wrapped Cauchy distribution. Given an image
whose quality needs to be assessed, 82 statistical C-
DIIVINE features are extracted on its luminance map
using three scales and six orientations. These features
are also used by the learner.

Chroma feature maps

Feature maps are also defined on the Chroma map
defined in the perceptually relevant CIELAB color
space of one luminance (L*) and two chrominance (a*
and b*) components (Rajashekar, Wang, & Simoncelli,
2010). The coordinate L* of the CIELAB space
represents color lightness, a* is its position relative to
red/magenta and green, and b* is its position relative to
yellow and blue. Moreover, the nonlinear relationships
between L*, a*, and b* mimic the nonlinear responses
of the L-, M-, and S-cone cells in the retina and are
designed to uniformly quantify perceptual color dif-
ferences. Chroma, on the other hand, captures the
perceived intensity of a specific color and is defined as
follows:

C*
ab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a*2þ b*2

p
ð12Þ

where a* and b* refer to the two chrominance
components of any given image in the LAB color
space. The chrominance channels contained in the
chroma map are entropy-reduced representations
similar to the responses of color-differencing retinal
ganglion cells.

Figure 11. Histogram of normalized coefficients of (a) DoGsigma and (b) DoG 0
sigma of the luminance components of Figure 10a

through d.
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Chroma map

The mean subtracted and divisively normalized
coefficients of the Chroma map (Equation 12) of a
pristine image follow a Gaussian-like distribution,
which is perturbed by the presence of distortions
(Figure 12a); thus, a GGDmodel is apt to capture these
statistical deviations. We extract two model parameters
(shape and standard deviation) and two sample
statistics (kurtosis and skewness) at two scales to serve
as image features.

Sigma field of the chroma map

We next compute a sigma map (as defined in
Equation 3) of Chroma (henceforth referred to as
Chromasigma). The mean subtracted and divisively
normalized coefficients of Chromasigma of pristine
images also obey a unit Gaussian-like distribution,
which is violated in the presence of distortions (Figure
12b). We again use a GGD to model these statistical
deviations, estimate the model parameters (shape and
standard deviation), and compute the sample kurtosis
and skewness at two scales. All of these are used as
features deployed by the learner.

Furthermore, as was done on the luminance
component’s sigma field in the previous section, we
compute the sample mean, kurtosis, and skewness of
Chromasigma. We also process the normalized coeffi-
cients of the Chroma map and generate four neigh-
boring pair product maps, the Laplacian, DOGsigma,
and DOG0

sigma maps, and extract the model parameters
and sample statistics from them. C-DIIVINE features
on the Chroma map of each image are also extracted to
be used later by the learner.

LMS feature maps

The LMS color space mimics the responses of the
three types of cones in the human retina. Hurvich and
Jameson (1957) suggested that the retina contains three
types of cone photoreceptors that are selectively
sensitive to different color mixtures of long (L),
medium (M), and short (S) wavelengths. They also
postulated that each photoreceptor pair has two
physiologically opponent color members: red–green
(RG), blue–yellow (BY), and an achromatic white–
black. Later, Ruderman, Cronin, and Chiao (1998)
experimentally gathered cone response statistics and
found robust orthogonal decorrelation of the (loga-
rithmic) data along three principal axes, corresponding
to one achromatic (lˆ) and two chromatic-opponent
(RG and BY) responses.

Denoting L, M, and S as the three components of
LMS color space, the three chromatic-opponent axes
are

l̂ ¼ 1ffiffiffi
3
p ðL̂þ M̂þ Ŝ Þ; ð13Þ

BY ¼ 1ffiffiffi
6
p ðL̂þ M̂� 2Ŝ Þ; ð14Þ

RG ¼ 1ffiffiffi
2
p ðL̂� M̂Þ; ð15Þ

where l,̂ M̂, and Ŝ are the NLCs (Equation 1) of the
logarithmic signals of the L, M, and S components,
respectively; that is,

Figure 12. Histogram of normalized coefficients of (a) the Chroma map and (b) Chromasigma of Figure 10a through d.
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L̂ði; jÞ ¼ logLði; jÞ � lLði; jÞ
rLði; jÞ þ 1

; ð16Þ

where lL (i, j) is the mean and rL (i, j) is the standard
deviation of log L, similar to those defined in Equations
2 and 3 for L. M̂(i,j) and Ŝ(i,j) are defined in the same
manner as Equation 16 from log M(i,j) and log S(i,j),
respectively.

BY and RG color-opponent maps

The marginal distributions of image data projected
along each opponent axis follow a Gaussian distribu-
tion (Figure 13). In the presence of distortion, this
statistical regularity is perturbed along all three axes
(Equations 13 through 15). By projecting each image
along the two color opponent axes (RG and BY) and
then fitting them with an AGGD model, we are able to
capture additional distortion-sensitive features in the
form of the model parameters ðm; r2

l ; r
2
r Þ. We also

compute the sample kurtosis and skewness of the color
opponent maps RG and BY.

M and S channel maps

After transforming an image into LMS color space,
the M and S components are processed as in the
previous section and their normalized coefficients are
modeled along with their sigma field. We also generate
the Laplacian, DOGsigma, and DOG0

sigma feature maps
from both M and S channels and extract model
parameters and sample statistics from them. C-DII-
VINE features at three scales and six orientations are

also computed on both the channel maps and added to
the final list of features.

Statistics from the hue and saturation
components

We also extract the hue and saturation components
of every image in the HSI (hue, saturation, intensity)
color space and compute the arithmetic mean and
standard deviation of these two components. These
four features are also added to the list of features to be
considered by the learner. We did examine the
bandpass distributions of the HS components, but we
found that they were redundant with respect to those of
other color channels in regards to distortion. Thus, in
order to avoid redundancy in our final feature
collection, we decided to exclude these from the final
feature list.

Yellow color channel map

Similar to the design of saliency-related color
channels in Itti, Koch, and Niebur (1998), we
constructed a yellow color channel map of an RGB
image I, which is defined as follows:

Y ¼ Rþ G

2
� jR� Gj

2
� B; ð17Þ

where R, G, and B refer to the red, green, and blue
channels, respectively. Our motivation for using the
yellow channel is simply to provide the learner with
direct yellow-light information rather than just BY

Figure 13. Histogram of color opponent maps of (a) RG channel and (b) BY channel.
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color opponency, which might be relevant to distortion
perception, especially on sunlit scenes.

Divisive normalization of Y computed on a pristine
image yields coefficients that, as illustrated in Figure
14a, exhibit Gaussian-like behavior on good-quality
images. Furthermore, the normalized coefficients of the
sigma map of Y (denoted henceforth as Ysigma) also
display Gaussian behavior on pristine images (Figure
14b). This behavior is often not observed on distorted
images. Thus, the goodness of generalized Gaussian fit
of both the normalized coefficients of Y and Ysigma at
the original scale of the image are also extracted and
added as features used in our model. As discussed in
the next section, features drawn from the yellow color
channel map were able to efficiently capture a few
distortions that were not captured by the luminance
component alone.

Advantages of the proposed feature maps

As an example to illustrate the advantages of the
proposed feature maps, consider the four images
presented in Figure 2. To reiterate, Figure 2a is a
pristine image from the legacy LIVE Image Quality
Database (Sheikh et al., 2006), whereas Figure 2b and
c are JPEG2000 compression and additive white noise
distortions (respectively) artificially applied to Figure
2a. On the other hand, Figure 2d is a blurry image
distorted by low-light noise and presumably com-
pression, drawn from the LIVE In the Wild Image
Quality Challenge Database (Ghadiyaram & Bovik,
2014).

We processed these four images using three
different operations: (a) the mean subtraction, divisive
normalization operation used in Mittal, Moorthy et
al. (2012) on singly distorted images; (b) the yellow
color channel map (Equation 17); and (c) the
DoGsigma map on the luminance map as defined in
earlier sections. It may be observed that although the
histograms of the singly distorted images differ greatly
from those of the pristine image in Figure 15a, the
distribution of an authentically distorted image
containing noise, blur, and compression artifacts
closely resembles the distribution of the pristine
image. However, when the normalized coefficients of
the proposed yellow color channel and the DoGsigma

feature maps are observed in Figure 15b and c, it is
clear that these distributions are useful for distin-
guishing between the pristine image and both singly
and authentically distorted images. We have observed
the usefulness of all of the proposed feature maps on a
large and comprehensive collection of images con-
tained in the LIVE Challenge database.

We have thus far described a series of statistical
features that we extract from a set of feature maps and
how each of these statistics are affected by the
presence of image distortions (summarized in Table 1).
In Table 1, we did not show the four features extracted
in the HSI space due to space constraints. Also, the
number of features shown in the LMS column refers
to the sum of the number of features extracted on the
M and S channel maps. Predicting the perceptual
severity of authentic distortions is recondite, and a bag
of features approach is a powerful way to approach
the problem.

Figure 14. Histogram of the normalized coefficients of (a) Y and (b) Ysigma of Figure 10a through d.
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Regression

These perceptually relevant image features, along
with the corresponding real-valued MOS of the training
set, are used to train a support vector regressor (SVR).
SVR is the most common tool for learning a nonlinear
mapping between image features and a single label
(quality score) among IQA and VQA algorithms
(Goodall et al., 2016; Mittal, Moorthy et al., 2012;
Moorthy & Bovik, 2011; Saad et al., 2012; Y. Zhang et
al., 2014). Given an input image (represented by a
feature vector), SVM maps the high-dimensional
feature vector into a visual quality score (Ben-Hur &
Weston, 2010; Xu et al., 2015). Although the database
is large, it is not large enough to motivate deep learning
methods. The SVM classifier and regressor is widely
used in many disciplines due to its high accuracy,
ability to deal with high-dimensional data, and
flexibility in modeling diverse sources of data (Ben-Hur
& Weston, 2010).

In our algorithm, we used an SVR with a radial basis
kernel function. Following this, given any test image’s
image features as input to the trained SVR, a final
quality score may be predicted. The optimal model
parameters of the learner were found via cross-
validation. Our choice of the model parameters was
driven by the obvious aim of minimizing the learner’s
fitting error to the validation data.

Experiments

In the following, we refer to our blind IQA model as
the Feature Maps–Based Referenceless Image Quality

Evaluation Engine (FRIQUEE), following IQA nam-
ing conventions and to achieve brevity. FRIQUEE
combines a large, diverse collection of perceptually
relevant statistical features across multiple domains,
which are used to train a regressor that is able to
conduct blind image quality prediction. Variations
called FRIQUEE-Luma, FRIQUEE-Chroma, FRI-
QUEE-LMS, and FRIQUEE-ALL are developed
according to the subset of overall features considered.
Thus, FRIQUEE-Luma uses feature maps a through f,
FRIQUEE-Chroma uses feature maps g and h,
FRIQUEE-LMS uses feature maps i and j, and
FRIQUEE-ALL uses all feature maps as well as the
two HSI color space feature maps and the yellow color
channel map.

In all of the experiments we describe below, the
model (initialized with the optimal parameters) was
trained from scratch on a random sample of 80%
training images and tested on the remaining nonover-
lapping 20% test data. To mitigate any bias due to the
division of data, the process of randomly splitting the
data set was repeated 50 times. Spearman’s rank-
ordered correlation coefficient (SROCC) and Pearson’s
correlation coefficient (PLCC) between the predicted
and the ground truth quality scores were computed at
the end of each iteration. The median correlation over
these 50 iterations is reported. A higher value of each of
these metrics indicates better performance in terms of
both correlation with human opinion and the perfor-
mance of the learner. We also report the outlier ratio
(Wang, Lu, & Bovik, 2004), which is the fraction of the
number of predictions lying outside the range of 62
times the standard deviations of the ground truth
MOS. A lower value of the outlier ratio indicates better
performance of a given model.

Figure 15. (a) Histogram of the normalized coefficients of the images in Figure 2a through d when processed using (a) BRISQUE-like

normalization defined in Equation 1, (b) yellow color channel maps (Equation 17), and (c) DoGsigma computed on the luminance map.

Notice how for the authentically distorted image Figure 2d, the corresponding histogram in Figure 2a resembles that of a pristine

image. However, in the case of the two feature maps (yellow color map and DoGsigma), the histograms of pristine versus authentically

distorted images vary. Best viewed in color.
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Comparing different IQA techniques

We trained several other well-known NR IQA
models (whose code was publicly available) on the
LIVE In the Wild Image Quality Challenge Database
using identical train–test settings and the same cross-
validation procedure over multiple random trials. In
the case of DIIVINE (Moorthy & Bovik, 2011) and C-
DIIVINE (Y. Zhang et al., 2014), which are two-step
models, we skipped the first step of identifying the
probability of an image belonging to one of the five
distortion classes present in the legacy LIVE IQA
Database because it doesn’t apply to the newly
proposed database. Instead, after extracting the fea-
tures as proposed in their work, we learned a regressor
on the training data. An SVR with an RBF (radial
basis function) kernel was trained using FRIQUEE
features; we denote this model as FRIQUEE-ALL. The
median and the standard deviations of the correlations
and the mean of the outlier ratios across the 50 train–
test iterations are reported in Table 2. We note that the
NIQE (Mittal, Soundararajan et al., 2012) score is a
measure of how far a given image is from ‘‘natural-
ness,’’ which is different from the subjective MOS
values. Because it is not trained on MOS values, we do
not compute an outlier ratio on the predicted NIQE
scores. We may conclude from this table that the
performance of the proposed model on unseen test data
is significantly better than that of current top-
performing state-of-the-art NR IQA models on the
LIVE Challenge Database (Ghadiyaram & Bovik,
2014, 2016).

To justify our design choice of an SVR with an RBF
kernel, we also trained a linear SVR (FRIQUEE-
LSVR) on FRIQUEE features extracted from the
images in the LIVE Challenge Database. The training
was performed under the same setting (on 50 random
train–test splits). The median correlations across 50
iterations are reported in Table 2. From this table we
may conclude that the performance of FRIQUEE-ALL
is better than the other learners. Also, comparing the
median correlation scores of FRIQUEE-ALL with

those of top-performing IQA models such as C-
DIIVINE, BRISQUE, and DIIVINE, all of which also
use an SVR as a learning engine, reveals that the
perceptually driven FRIQUEE NSS features perform
better than the features designed in the other top-
performing IQA models.

The high internal statistical consistency and reli-
ability of the subjective scores gathered in the
crowdsource study make it possible to consider the
MOS values obtained from the online study as ground
truth quality scores of the images (Ghadiyaram &
Bovik, 2016). Moreover, the poor correlation scores
reported by most algorithms suggest that the LIVE
Challenge Database is a difficult test of the generaliz-
ability of those models.

Statistical significance and hypothesis testing

Although there exist apparent differences in the
median correlations between the different algorithms
(Table 2), we evaluated the statistical significance of the
performance of each of the algorithms considered.
Thus, we performed hypothesis testing based on the
paired t test (Sheskin, 2004) on the 50 SROCC values
obtained from the 50 train–test trials. The results are
tabulated in Table 3. The null hypothesis is that the
mean of the two paired samples is equal—that is, the
mean correlation for the (row) algorithm is equal to the
mean correlation for the (column) algorithm with a
confidence of 95%. The alternative hypothesis is that
the mean correlation of the row algorithm is greater
than or lesser than the mean correlation of the column
algorithm. A value of 1 in the table indicates that the
row algorithm is statically superior to the column
algorithm, whereas a value of�1 indicates that the row
is statistically worse than the column. A value of 0
indicates that the row and column are statistically
indistinguishable (or equivalent); that is, we could not
reject the null hypothesis at the 95% confidence level.
From Table 3 we conclude that FRIQUEE-ALL is
statistically superior to all of the NR algorithms that

IQA model PLCC SROCC OR

FRIQUEE-ALL 0.72 6 0.04 0.72 6 0.04 0.04

FRIQUEE-LSVR 0.65 6 0.04 0.62 6 0.04 0.04

BRISQUE (Mittal, Moorthy et al., 2012) 0.61 6 0.06 0.58 6 0.05 0.07

DIIVINE (Moorthy & Bovik, 2011) 0.59 6 0.05 0.56 6 0.05 0.06

BLIINDS-II (Saad et al., 2012) 0.45 6 0.05 0.40 6 0.05 0.09

NIQE (Mittal, Soundararajan et al., 2012) 0.48 6 0.05 0.42 6 0.05 —

C-DIIVINE (Y. Zhang et al., 2014) 0.66 6 0.04 0.63 6 0.04 0.05

Table 2. Median PLCC and SROCC and mean outlier ratio (OR) of several NR IQA metrics across 50 train–test combinations on the LIVE
Challenge database (Ghadiyaram & Bovik, 2014, 2016). FRIQUEE-ALL refers to the scenario in which the proposed learning engine
(i.e., SVR with an RBF) was used. The IQA algorithm that achieves top-performance is indicated in bold font.
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we evaluated when trained and tested on the LIVE
Challenge Database.

Contribution of features from each color space

We next evaluated the performance of FRIQUEE-
Luma, FRIQUEE-Chroma, and FRIQUEE-LMS.
We trained three separate SVRs with features ex-
tracted from each color space serving as an input to
each SVR and report the median correlation values
across 50 random train–test splits in Table 4. These
values justify our choice of different color spaces, all
of which play a significant role in enhancing image
quality prediction.

Contribution of different feature maps

To better understand the relationship between our
feature set and perceptual quality, we trained separate
learners (SVR with radial basis kernel functions) on the
statistical features extracted from each feature map on
50 random, nonoverlapping train and test splits. We
report the median SROCC scores over these 50
iterations in Figure 16. This plot illustrates the degree
to which each of these features accurately predicts
perceived quality while also justifying the choice of the
feature set. We included the yellow map under
FRIQUEE-Luma in Figure 16 purely for the purpose
of illustration. It is not extracted from the luminance

component of an image but rather is a color feature as
described earlier.

Evaluating the robustness of different IQA
techniques

The goal of this experiment was to study the
efficacy of training IQA models on the synthetically
distorted images contained in current benchmark
databases relative to training on authentically dis-
torted images. Some of the current top-performing
IQA learning models have been made publicly
available (i.e., the model parameter values used by
their SVRs) after being trained on the images on the
legacy LIVE IQA Database. We sought to understand
the performance of these publicly available models
when they are used in real-world scenarios to predict
the quality of real-world images captured using mobile
devices. We used the publicly available model BRIS-
QUE (Mittal, Moorthy et al., 2012) trained on the
legacy LIVE Database. With regards to the other
blind algorithms, we extracted image features from
each image in the LIVE IQA Database following the
same procedure as was originally presented in their
work and separately trained SVRs for each model on
these image features.

Next, we used the 50 randomly generated test splits
and evaluated each learned engine (trained on the
LIVE IQA Database) on the 50 test splits. We report
the median of the correlations of the predicted scores
with human judgments of visual quality across the 50
test splits in Table 5. This analysis provides an idea of
how well state-of-the-art quality predictors generalize
with respect to image content and real-world distor-
tions. As can be seen from the results reported in Table
5, although FRIQUEE performed better than all of the
algorithms, the performance of all the models suffers
when they are trained only on images containing
synthetic, inauthentic distortions.

IQA model PLCC SROCC

FRIQUEE-Luma 0.64 6 0.04 0.61 6 0.04

FRIQUEE-LMS 0.63 6 0.04 0.60 6 0.04

FRIQUEE-Chroma 0.36 6 0.05 0.34 6 0.05

Table 4. Median PLCC and SROCC across 50 train–test
combinations on Ghadiyaram and Bovik (2014, 2016) when
FRIQUEE features from each color space were independently
used to train an SVR.

DIIVINE BRISQUE NIQE C DIIVINE BLIINDS-II FRIQUEE-LSVR FRIQUEE-ALL

DIIVINE 0 �1 1 �1 1 �1 �1
BRISQUE 1 0 1 �1 1 �1 �1
NIQE �1 �1 0 �1 0 �1 �1
C-DIIVINE 1 1 1 0 1 0 �1
BLIINDS-II �1 �1 0 �1 0 �1 �1
FRIQUEE-LSVR 1 1 1 0 1 0 �1
FRIQUEE-ALL 1 1 1 1 1 1 0

Table 3. Results of the paired one-sided t test performed between SROCC values generated by different measures. Values of 1, 0, and
�1 indicate that the NR IQA algorithm in the row is statistically superior, equivalent, or inferior to the algorithm in the column,
respectively.

Journal of Vision (2017) 17(15):32, 1–25 Ghadiyaram & Bovik 20



Evaluating IQA models on Legacy LIVE Database

We next compared the performance of our model
against several other top-performing blind IQA models
on the older standard benchmark LIVE IQA Database
(Sheikh et al., 2006). Regarding FRIQUEE-ALL, 560
features were extracted on all the images of the LIVE
IQA Database, and the image data were divided into
training and test subsets, with no overlap in content.
This process was repeated 1,000 times, and we report

IQA model PLCC SROCC

FRIQUEE-ALL 0.6289 6 0.0425 0.6303 6 0.0405

BRISQUE (Mittal,

Moorthy et al., 2012)

0.3296 6 0.0505 0.2650 6 0.0505

DIIVINE (Moorthy &

Bovik, 2011)

0.3667 6 0.0504 0.3328 6 0.0536

BLIINDS-II (Saad et al.,

2012)

0.1791 6 0.0713 0.1259 6 0.0704

C-DIIVINE (Y. Zhang et

al., 2014)

0.4705 6 0.0549 0.4589 6 0.0515

Table 5. Median PLCC and SROCC across 50 train–test
combinations of a few NR IQA models on Ghadiyaram and Bovik
(2014, 2016) when models trained on the LIVE IQA Database are
used to predict the quality of the images from the LIVE
Challenge Database. The IQA algorithm that achieves top-
performance is indicated in bold font.

Figure 16. Contribution of different types of features that are extracted in different color spaces. A correlation of 0 in a color space

indicates that that specific feature map was not extracted in that color space.

IQA model SROCC PLCC

PSNR (Wikpedia, 2017) 0.8636 0.8592

SSIM (Wang, Bovik,

Sheikh, & Simoncelli,

2004)

0.9129 0.9066

MS-SSIM (Wang et al.,

2003)

0.9535 0.9511

CBIQ (Ye & Doermann,

2011)

0.8954 0.8955

LBIQ (Tang et al., 2011) 0.9063 0.9087

DIIVINE (Moorthy &

Bovik, 2011)

0.9250 0.9270

BLIINDS-II (Saad et al.,

2012)

0.9124 0.9164

BRISQUE (Mittal,

Moorthy et al., 2012)

0.9395 0.9424

NIQE (Mittal,

Soundararajan et al.,

2012)

0.9135 0.9147

C-DIIVINE (Y. Zhang et

al., 2014)

0.9444 0.9474

FRIQUEE-ALL 0.9477 6 0.0250 0.9620 6 0.0223

Table 6. Performance on legacy LIVE IQA Database (Sheikh et al.,
2006). Italics indicate NR IQA models.
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the median correlation values in Table 6. With regards
to the other models, we report the median correlation
scores as reported in their papers. Tang et al. (2014)
reported an SROCC value of 0.9650 on the legacy
LIVE IQA Database, but this result is not verifiable
because the authors do not make the code publicly
available. Because we cannot validate their claim, we
do not include it in Table 6.

Comparing the correlation scores reported in Table 2
with those in Table 6, we observe that several other
blind IQA models are not robust to authentic
distortions because although they achieve superior
performance on the legacy LIVE IQA Database, they
fail to accurately predict the quality of authentically
distorted images. On the other hand, it may be
observed that FRIQUEE not only performs well on the
LIVE Challenge database (Table 2) but also competes
very favorably with all the other blind IQA models as
well as with full-reference IQA models on the legacy
LIVE Database. It reaches and exceeds the saturation
level of performance achieved on this long-standing
synthetic distortion database by the tested prior
models. This supports our contention that a combina-
tion of semantically rich, perceptually informative
image features feeding a highly discriminative learning
model is a powerful way to automatically predict the
perceptual quality of images afflicted by both authentic
and synthetic distortions.

Evaluating IQA models on other legacy
databases

Although our primary focus was to evaluate the
performance of our proposed algorithm on the LIVE
In the Wild Challenge Database (because we wanted to
benchmark the superior performance of FRIQUEE on
authentically distorted images), we understand that
some readers may find performance on the legacy
databases to be relevant. Therefore, we evaluated
FRIQUEE and a few other top-performing NR IQA
algorithms on other legacy databases such as TID2013
(Ponomarenko et al., 2013) and CSIQ (Larson &
Chandler, 2010), both of which contain single, synthetic
distortions, and LIVE-Multiply Database (Jayaraman,
Mittal, Moorthy, & Bovik, 2012), which contains
Gaussian blur followed by JPEG compression distor-
tions (in Part I) and Gaussian blur followed by additive
white noise distortions (in Part II). The images in all of
these data sets were divided into nonoverlapping
training and test sets, and this process was repeated 100
times. For each IQA algorithm on every database,
optimal model parameters were chosen for an SVR
with a radial basis kernel while training a model. In
Tables 7 through 10, we report the median correlation
values between ground truth and predicted quality
scores across 100 iterations on all these databases.
Comparing the correlation scores, it may be observed
that FRIQUEE features perform better than the
features designed in all the other top-performing IQA
models on synthetic distortions modeled in Jayaraman

IQA model PLCC SROCC

FRIQUEE-ALL 0.9664 0.9632

BRISQUE (Mittal, Moorthy et al., 2012) 0.9070 0.8748

DIIVINE (Moorthy & Bovik, 2011) 0.8956 0.8677

NIQE (Mittal, Soundararajan et al., 2012) 0.8316 0.7762

C-DIIVINE (Y. Zhang et al., 2014) 0.8837 0.8772

Table 8. Median PLCC and SROCC across 100 train–test
combinations of a few NR IQA models on the LIVE Multiply
Database Part II (Jayaraman et al., 2012). The IQA alogrithm that
achieves top-performance is indicated in bold font.

IQA model PLCC SROCC

FRIQUEE-ALL 0.9287 0.9138

BRISQUE (Mittal, Moorthy et al., 2012) 0.7781 0.7515

DIIVINE (Moorthy & Bovik, 2011) 0.8066 0.7644

NIQE (Mittal, Soundararajan et al., 2012) 0.3592 0.3137

C-DIIVINE (Y. Zhang et al., 2014) 0.7319 0.6602

Table 9. Median PLCC and SROCC across 100 train–test
combinations of a few NR IQA models on the TID2013 Database
(Ponomarenko et al., 2013). The IQA algorithm that achieves
top-performance is indicated in bold font.

IQA model PLCC SROCC

FRIQUEE-ALL 0.9667 0.9591

BRISQUE (Mittal, Moorthy et al.,

2012)

0.9391 0.9238

DIIVINE (Moorthy & Bovik, 2011) 0.9424 0.9327

NIQE (Mittal, Soundararajan et al.,

2012)

0.9075 0.8614

C-DIIVINE (Y. Zhang et al., 2014) 0.9336 0.9179

Table 7. Median PLCC and SROCC across 100 train–test
combinations of a few NR IQA models on the LIVE Multiply
Database Part I (Jayaraman et al., 2012). The IQA algorithm that
achieves top-performance is indicated in bold font.

IQA model PLCC SROCC

FRIQUEE-ALL 0.9622 0.9627

BRISQUE (Mittal, Moorthy et al., 2012) 0.8926 0.8823

DIIVINE (Moorthy & Bovik, 2011) 0.9171 0.9282

NIQE (Mittal, Soundararajan et al., 2012) 0.6943 0.6142

C-DIIVINE (Y. Zhang et al., 2014) 0.8660 0.8611

Table 10. Median PLCC and SROCC across 100 train–test
combinations of a few NR IQA models on the CSIQ Database
(Larson & Chandler, 2010). The IQA algorithm that achieves top-
performance is indicated in bold font.
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et al. (2012), Larson and Chandler (2010), and
Ponomarenko et al. (2013).

Conclusions and future work

We have described a first effort toward the design of
blind IQA models that are capable of predicting the
perceptual quality of images corrupted by complex
mixtures of authentic distortions. Its success encour-
ages us to explore the feasibility of developing
analogous powerful blind video quality assessment
models using space–time natural video statistics models
(Saad, Bovik, & Charrier, 2014; Seshadrinathan &
Bovik, 2007; Soundararajan & Bovik, 2013) and to
practically adapt our model for application to real-
world problems, such as perceptual optimization of
digital camera capture.

Keywords: perceptual image quality, natural scene
statistics, blind image quality assessment, color image
quality assessment
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