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Abstract

Schistosomiasis is a neglected tropical disease that affects millions of people worldwide. 

Thioredoxin glutathione reductase of Schistosoma mansoni (SmTGR) is a validated drug target 

that plays a crucial role in the redox homeostasis of the parasite. We report the discovery of new 

chemical scaffolds against S. mansoni using a combi-QSAR approach followed by virtual 

screening of a commercial database and confirmation of top ranking compounds by in vitro 
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experimental evaluation with automated imaging of schistosomula and adult worms. We 

constructed 2D and 3D quantitative structure–activity relationship (QSAR) models using a series 

of oxadiazoles-2-oxides reported in the literature as SmTGR inhibitors and combined the best 

models in a consensus QSAR model. This model was used for a virtual screening of Hit2Lead set 

of ChemBridge database and allowed the identification of ten new potential SmTGR inhibitors. 

Further experimental testing on both shistosomula and adult worms showed that 4-nitro-3,5-bis(1-

nitro-1H-pyrazol-4-yl)-1H-pyrazole (LabMol-17) and 3-nitro-4-{[(4-nitro-1,2,5-oxadiazol-3-

yl)oxy]methyl}-1,2,5-oxadiazole (LabMol-19), two compounds representing new chemical 

scaffolds, have high activity in both systems. These compounds will be the subjects for additional 

testing and, if necessary, modification to serve as new schistosomicidal agents.

1. Introduction

Schistosomiasis is one of the major neglected tropical diseases (NTDs) that affects millions 

of people worldwide.1 Recent estimates suggest that at least 261 million people required 

preventive treatment for this disease in 2013. This parasitosis is reported in 78 countries 

located in sub-Saharan Africa, the Middle East, the Caribbean, and South America, resulting 

in 20,000 to 200,000 deaths annually.2 The disease is caused by flatworms of the genus 

Schistosoma (S. mansoni, S. japonicum, S. haematobium, S. intercalatum, and S. 
mekongi).3, 4 In the absence of a vaccine, praziquantel (PZQ) has been the drug of choice 

recommended by the World Health Organization for the treatment and control of all the 

major Schistosoma species in mass drug administration programs for almost three decades.5 

However, the disseminated and repeated use of this drug in endemic areas, because of the 

high incidence of reinfection, brings concerns about the development of parasitic 

resistance.6, 7 This problem is further emphasized by the known lack of efficacy of PZQ 

against juvenile worms,8 which is a potential cause of treatment failure in endemic areas. 

For these reasons, the development of new schistosomicidal drugs is urgently required.6–10

The complete genome sequencing of S. mansoni has brought the possibility of exploring a 

great variety of biological targets in the search for new drugs against this parasite.11, 12 

Thioredoxin glutathione reductase of S. mansoni (SmTGR, E.C. 1.8.1.9) plays a crucial role 

in the redox homeostasis of the parasite.13 SmTGR is a multifunctional enzyme that acts in 

the detoxification of reactive oxygen species (ROS) present in the blood vessels of the 

mammalian host, thus allowing parasite survival. While mammalian cells use several 

enzymes of the glutathione and thioredoxin systems, S. mansoni ROS detoxification relies 

only on SmTGR. 13, 14 Moreover, it has been validated as a potential drug target as 

demonstrated in studies silencing SmTGR expression using RNA interference.13 Validation 

studies have also been performed in S. japonicum, confirming the importance of TGR in 

parasite survival.15, 16

Advances in computational hardware and software over the last few decades have enabled 

the development of new strategies for computer-aided/assisted drug design (CADD), which 

has the advantages of reducing the time and costs in the identification of new drug 

candidates.17–23 Quantitative structure-activity relationship (QSAR) has been widely-used as 

a lead optimization tools as well as for pharmacokinetics property optimization and in 
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virtual screening campaigns.24, 25 Our group has been working on developing and applying 

many CADD strategies aiming at discovering new drug candidates for neglected tropical 

diseases. In this context, different QSAR methods have been applied for identification of 

new hits for these diseases.26–28 Another important technological advance impacting drug 

discovery was the introduction of automated microscopes along with powerful image 

analysis software enabling high-throughput phenotypic assays of cells and small organisms, 

a technique known as high-content screening (HCS), imaging (HCI) or analysis (HCA).29 

Whole-organism antihelminthic screens employing the HCS approach have already proved 

useful for the larval stage of S. mansoni.30

The goal of this study was the identification of novel anti-schistosomal agents, preferably 

representing new chemical scaffolds. To achieve this goal, we used combi-QSAR approach, 

uniting 2D and 3D QSAR models, followed by virtual screening of Hit2Lead chemical 

library and experimental evaluation of the potential SmTGR inhibitors against schistosomula 

and adult lifecycle stages of S. mansoni. For the latter test, novel medium-throughput assay 

methodology using 96-well microplate and HCI technology is implemented.

2. Methods

All critical steps of the study are summarized in the workflow presented in Figure 1. Our 

workflow followed the best practices of QSAR modeling and computer-assisted molecular 

design.21, 31 The main steps of the workflow are the following: (i) data curation; (ii) models 

building; (iii) virtual screening; and (iv) experimental validation of suggested/designed hits.

Dataset

The QSAR studies were performed using a series of 35 oxadiazoles-2-oxides reported in the 

literature as inhibitors of SmTGR. Theirs in vitro enzymatic potency values (measured by 

IC50) were obtained by the same experimental protocol.32, 33 The molecules were drawn 

manually and resulting chemical structures as well as associated activity values were verified 

following our standard curation protocols.34, 35 Then the IC50 values were converted to 

negative logarithmic units, pIC50 (−log IC50) with approximate range of three orders of 

magnitude. The dataset was manually divided into training and external test sets, ensuring a 

representative coverage across the entire range of pIC50 values. Curated chemical structures 

and corresponding IC50 and pIC50 values are listed in Table 1.

The 3D structures of compounds were generated using OMEGA software v.2.5.1.4.36, 37 

OMEGA generates various initial conformations for each compound based on a database of 

pre-calculated fragments and the structures are optimized by MMFF94 force field. All 

QSAR models were generated and analyzed using SYBYL-X software v.1.2.38

HQSAR

The HQSAR module available at SYBYL-X software v.1.2 38 was used for generation of 

HQSAR models. The models were derived using the standard fragment size (4–7 atoms) and 

various combinations of fragment distinctions. Only the models with q2
LOO > 0.5 were 

chosen for external validation.
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HQSAR models were obtained using combinations of different fragment distinctions (A, 

atoms; B, bonds; C, connectivity; H, hydrogen; DA, donor and acceptors of hydrogen 

bonds), fragment size (2–5, 3–6, 4–7, 5–8, 6–9, 7–10 atoms), and hologram length (53–401).

Atomic charges assignment

Two different charge assignment methods were used, the empirical method Gasteiger-

Hückel,39, 40 available at SYBYL-X v.1.2 platform 38 and the semi-empirical AM1-BCC 

charges 41, 42 available at QUACPAC software v.1.6.3.143

Molecular alignment

The shape-based alignment and alignment based on a morphological similarity function 

were evaluated. The former was performed using ROCS software v.3.2.1.4.44, 45 First, 

several conformers were calculated for each molecule in OMEGA v.2.5.1.4,36, 37 which 

generated various initial conformations obtained from a database of pre-calculated 

fragments. Then, the conformers were superimposed, using ROCS, with the most potent 

SmTGR inhibitor (33). The conformers were classified according to the TanimotoCombo 

score function.45 The alignment based on morphological similarity function was done in 

Surflex-Sim, available at SYBYL-X v.1.2.38 Two most potent SmTGR inhibitors, 

compounds 24 and 33, were chosen for template definition. Remaining compounds were 

superimposed with this template. The maximal number of poses generated per molecule was 

20. The best pose of each compound was chosen based on the calculated similarity to the 

template.

CoMFA

The aligned training set molecules were placed in a 3D lattice box, with a grid spacing of 

0.5, 1.0, 1.5 and 2.0 Å in the x, y, and z directions. CoMFA steric and electrostatic fields 

were calculated at each grid point with the Tripos force field using a carbon atom probe with 

sp3 hybridization (Csp3) and charge +1.0. The energy cutoff was set to 30 kcal/mol. The 

standard deviation coefficients (SDC) were used for region focusing, with values ranging 

from 0.3 to 1.5.

CoMSIA

CoMSIA models were generated using the same molecular alignments used for CoMFA. 

The aligned compounds were placed in a 3D lattice box, with a grid spacing of 2.0 Å. In 

addition to the steric and electrostatic fields, hydrophobic, hydrogen bond donor and 

acceptor descriptors were included in CoMSIA studies. A probe carbon atom with radius of 

1.0 Å and charge +1.0 was used for obtaining the similarity indices. A Gaussian function 

was used to describe the energetic terms in function of the distance between the probe atom 

and the aligned molecules with an attenuation factor of 0.3.

QSAR models building and validation

Partial least squares regression (PLS)46–48 was used for development of statistical models 

for all 3 descriptors sets. The internal validation of the QSAR models was performed using 

the full cross-validation r2 (q2), leave-one-out (LOO), and leave-many-out (LMO) methods. 
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The latter was used to evaluate the stability of the best models and was performed using five 

groups and 25 runs. The predictive ability of the models was assessed by Q2
ext estimated on 

external set compounds that were not used for model building or selection. Four consensus 

models were generated using different combinations of the best individual HQSAR, 

CoMFA, and CoMSIA models. Three consensus models were obtained by pairwise 

combinations of individual models (HQSAR+CoMFA, HQSAR+CoMSIA, and CoMFA

+CoMSIA) and one model was obtained by combination of three models (HQSAR+CoMFA

+CoMSIA). The combination did not occur during models building. The models were built 

and used separately for predictions. The predicted activity of each compound by a consensus 

model was the result of the arithmetic mean of individual models predictions. The external 

validation of these models was done using the same metrics as for individual models.

Virtual screening of new potential Sm TGR inhibitors

The virtual screening of potential SmTGR inhibitors was performed based on similarity and 

common substructure search in the Hit2Lead chemical library from ChemBridge database.49 

First, the most potent inhibitor of the dataset (33) was used as a template for the similarity 

search. The molecular access system (MACCS) structural key fingerprints50–52 were 

calculated for compound 33 and molecules from Hit2Lead chemical library. Subsequently, 

Tanimoto coefficient was calculated between compound 33 and compounds from database. 

Compounds with Tanimoto coefficient (Tc ≥ 0.6) were selected. Additionally, the 

substructure search was applied to find compounds containing the common substructure, 

i.e., the oxadiazole ring. All compounds were prepared using the same protocol and software 

used in QSAR dataset preparation, i.e., 3D structure and conformer generation, partial 

atomic charges calculation and molecular alignment. The chosen method of alignment and 

partial charges calculation was the same of the best individual CoMFA and CoMSIA 

models. In the next step, the best consensus model was used to predict the biological activity 

of the potential SmTGR inhibitors. The most promising compounds, with highest predicted 

pIC50, were selected for biological evaluation. Furthermore, five highly-predictive in-house 

models, described elsewhere,53, 54 were used to predict some ADME properties of the 

compounds, such as logP, Caco-2 cell permeability, blood-brain barrier penetration (BBBP), 

hERG inhibition, CYP3A4 inhibition, and water solubility.

Biological evaluation on S. mansoni

Compounds and Media—Ten selected compounds were purchased from ChemBridge 

(San Diego-CA, USA) and given the identifiers LabMol-13 to LabMol-22. Compounds were 

resuspended in 100% DMSO and used immediately in the assays. DMEM and M169 media 

were purchased from Vitrocell (Campinas, SP, Brazil). All other reagents were purchased 

from Sigma-Aldrich (St. Louis, MO, USA).

Larval Schistosoma mansoni (schistosomula) in vitro assay—Schistosomula 

were produced by the mechanical method adapted from both Mansour et al. (2010) 55 and 

Marxer et al. (2012).56 The cercariae (S. mansoni, BH strain) were vortexed at maximum 

speed for 5 minutes for tail shedding and cercariae transformation into schistosomula. The 

schistosomula were resuspended in Medium 169, plated in 384 well plates (120 per well) 

and maintained in an incubator with 5% CO2 overnight before compound addition. 
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Schistosomula were divided into three groups: negative control (0.625% DMSO), positive 

control (10 µM of PZQ or Oltipraz (OLT)), and treated (LabMol compounds at a 

concentration range of 0.3125-20 µM). The effect of the compounds on schistosomula 

motility and phenotypes was assessed at 48h after compound addition using an automated 

analysis method described below.

Automated scoring of schistosomula motility and phenotype—The automated 

image-based method for scoring schistosomula motility and phenotype was performed as 

described previously.57 Bright-field images were collected using an ImageXpressMicro HCS 

microscope (IXM; Molecular Devices, Wokingham, UK). For motility analysis 5 × 6 sec 

interval time-lapse images were collected using a 4x objective. For detailed morphology a 

10x objective was used to collect 4 adjacent images fields from within a well, which were 

considered together to maximize larval numbers for phenotype analysis. Analysis of both the 

larval phenotype and motility was then carried out in Pipeline Pilot 9 as described by 

Paveley et al. (2012).57 Phenotype analysis of individual parasites was carried out by a two 

class Laplacian-modified Bayesian categorization model analysis of 80 image descriptors 

which constituted shape, size, image intensity, and texture statistics and compared to a 

training set of data comprising 20,000 parasites. Motility analysis of individual parasites was 

also done by the average object displacement from the origin point in subsequent 4x image 

across the time-frame series. Both the Bayesian phenotype and motility scores are 

subsequently adjusted to the control wells (DMSO treated) on each plate.57

Adult Schistosoma mansoni ex vivo assays—Three- to six-days-old Swiss mice 

were individually infected percutaneously with 150 ± 10 S. mansoni cercariae (BH strain). 

The animals were placed into cylindrical vials under incandescent light with a thin water 

layer containing the cercariae for a period of 30 min. At 42–49 days after infection (i.e., the 

time required for S. mansoni to reach maturity), the animals were euthanized, and the worms 

were perfused (with 0.85% sodium chloride and 0.75% sodium citrate solution) from 

mesenteric and portal hepatic veins. Worms were rinsed and individually transferred into 96 

well plates with complete DMEM media (i.e., DMEM plus 10% fetal calf serum, 2mM L-

glutamine, 100 µM/ml penicillin, 100 µg/ml streptomycin). Male and female worms were 

distributed in three groups of six individuals each: negative control (0.02% DMSO), positive 

control (10 µM PZQ) and treatment (10 µM LabMol compounds). The plates were 

maintained at 37 °C in a humidified atmosphere of 5% CO2 throughout the entire 

experiment. The effect of the compounds on adult worm motility was assessed either 

immediately or 24, 48, or 72h after compound addition using the automated analysis method 

(see below).

Automated measurement of adult worm mobility—Our strategy was based on 

sequential pairwise comparison of 100 time-lapse images captured every 250–300 ms using 

an automated bright-field microscope with a 2x objective lens (ImageXpress Micro XLS, 

Molecular Devices, CA). Subsequent quantitative image analysis used a custom-developed 

pipeline for detecting changes in parasite motility using the open-source CellProfiler 

software version 2.1.2.58 The pipeline along with its validation will be thoroughly described 

in a subsequent publication and the pipeline itself will be made freely available. Briefly, at 
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each cycle of the pipeline, an image captured at a given instant (tn) is compared with the 

image captured at the preceding instant (tn-1) and so on until all images are processed. Two 

different motility measurements were calculated. First, a precursor metric, 

“AdjustedRandIndex” is calculated by comparing worm objects identified on images 

captured at times tn and tn-1 with CellProfiler’s Overlap module. This measure ranges from 0 

to 1, with 1 meaning two objects are perfectly aligned (no movement). Hence, we created an 

“Overlap” mobility score, which is directly proportional to the amount of movement, by 

subtracting 1-”AdjustedRandIndex”. Another motility measure, “DiffWorms”, is the mean 

pixel intensity of the image calculated from the absolute difference of the parasite images in 

tn-1 and tn. The higher the DiffWorms score higher is the parasite mobility measured. Both 

measures are iteratively taken for the 99 image pairs and scores per well are calculated by 

averaging over all measurements.

Statistical Analysis of biological evaluation—All statistical analysis and graphs were 

performed using GraphPad Prism version 5.00 for Windows (GraphPad Software, La Jolla, 

CA, USA, www.graphpad.com).

Ethics statement—Animals were maintained and experiments carried out in accordance 

with the Institutional Ethics Committee for Laboratory Animal Use at the Oswaldo Cruz 

Foundation (CEUA/FIOCRUZ, Brazil; license number, LW-78/12) or using the NC3Rs and 

ARRIVE guidelines under the United Kingdom Animal’s Scientific Procedures Act 1986 

with approval from the London School of Hygiene and Tropical Medicine Ethics committee.

Molecular Docking

The structure of SmTGR was obtained from Protein Data Bank59(PDB ID: 2×8H, resolution 

of 1.9 Å).60 The structure was imported to Maestro v. 10.0 61 and prepared using Protein 

Preparation Wizard workflow as follows: hydrogen atoms were added according to Epik v. 

2.7 62, 63 (pH 7.4 ± 0.5) and minimized using the OPLS-2005 force field.64 Then the 

structures of compounds to be docked were drawn on MarvinSketch65 and a maximal of 

2,000 conformations was generated using OMEGA v.2.5.1.4.36 Subsequently, the 

conformers had their most favorable ionization state calculated at pH 7.4, using ‘fixpka’ 

function available on QUACPAC v.1.6.3.1.43 Additionally, AM1-BCC charges were added 

using QUACPAC v.1.6.3.1.43 Prior to docking studies, two different grids were defined: one 

for the thioredoxin domain (Trx) and another for glutaredoxin domain (Grx). The Trx grid 

was built with dimensions of 30.73 Å × 19.18 Å × 19.61 Å (x, y and z) and volume of 

11,562 Å3. The Grx grid had dimensions of 19.89 Å × 14.89 Å × 13.61 Å (x, y and z) and 

volume of 4,029 Å3. Finally, molecular docking of selected compounds was performed in 

FRED, available in OEDocking suite v. 3.0.166, using the high resolution precision and 

ChemGauss4 scoring function. In addition, a covalent docking was performed on the 

package Prime v.3.8.67, 68 Prior to covalent docking, the ligands were prepared on LigPrep69 

using OPLS-2015 force field64 and Epik v. 2.7 62, 63 (pH 7.4 ± 0.5).
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3. Results and Discussion

QSAR models

Hologram length and fragment size and distinction can affect the quality of HQSAR 

models.46, 70 In this work, various combinations of these parameters were tested. The final 

HQSAR models were obtained using combinations of different fragment distinctions (A, 

atoms; B, bonds; C, connectivity; H, hydrogen; DA, donor and acceptors of hydrogen 

bonds), fragment size (2–5, 3–6, 4–7, 5–8, 6–9, 7–10 atoms) and hologram length (53–401).

Three best HQSAR models are presented in Table S1 (Supporting Information). They have 

similar statistical characteristics but model 2 showed a slight superiority when evaluated the 

external set. The best HQSAR model was obtained using the fragment distinction A/DA 

(Table 2). The predicted activity (pIC50) for the test set compounds using this model (Table 

S2, Supporting Information) indicated that only two compounds had their predicted values 

greater than the standard deviation of residuals, indicating a good predictive capacity of the 

model. The plot of the experimental versus predicted biological activity of the best HQSAR 

model is displayed in Supporting Information (Figure S1A).

Besides predicting the biological activity of untested compounds, HQSAR models also give 

information regarding the relationships between the structural fragments and the biological 

activity, which can be visualized through the contribution maps. These maps indicate the 

individual contribution of each atom or fragment for the activity by color-coded schemes. 

Colors around red spectrum (orange, red orange, and red) indicate negative contribution, 

while colors around green (yellow, green blue, and green) indicate positive contribution to 

biological activity. The contribution maps for the most (33) and the less (2) potent 

compounds of our data set are presented in Figure 2.

The contribution map for the most potent inhibitor of the dataset (33, Figure 2) suggests that 

the oxygen atom (O11) from carbonyl group has positive contribution for the biological 

activity. Moreover, the furan ring is important for the biological activity since the O17 has a 

positive contribution for activity. The carbon atoms C10, C13, and C14 also have positive 

contribution to the biological activity. Despite the fragments in green and yellow, the 

contribution map for the less potent inhibitor (2) suggests that the hydrogen atom attached to 

the carbon atom C12 negatively contribute to biological activity. The absence of the two 

carbonyl groups and furan rings in compound 2 suggests that these groups may play a 

critical role in SmTGR inhibition, because the activity decreased three logarithmic units in 

comparison to compound 33.

Previous study carried out by Gasco and co-workers 71 indicated that the oxadiazoles are 

capable of releasing nitric oxide in solution containing thiols by nucleophilic attack in C3 

and C4 carbon atoms. Because SmTGR has a selenocysteine (Sec) residue in the C-terminal 

end, the oxadiazoles may undergo nucleophilic attack mainly by this residue due to its 

superior reactivity in comparison to cysteine. The resulting nitric oxide release may be the 

reason for the antiparasitic activity described for these compounds.32 The presence of the 

carbonyl group in the most potent inhibitors of the dataset suggests an important role of this 

group, which behaves as a linker that favors the nucleophilic attack in C3 and C4 atoms.
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In CoMFA and CoMSIA studies, the calculation of electrostatic descriptors depends on the 

assignment of partial atomic charges of the compounds. Therefore, the charge assignment 

method is critical to the success and may affect the quality of the developed models.26 

Furthermore, the contour maps may have some differences depending on the method used 

for partial atomic charges assignment.72, 73 Two different charge assignment methods were 

tested in this study, the empirical method Gasteiger-Hückel,39, 40 and the semi-empirical 

AM1-BCC charges.41, 42

Another crucial aspect in 3D-QSAR studies is the structural alignment, which is used to 

represent the probable bioactive conformation of the compounds. The quality of the 3D-

QSAR models can be directly affected by the structural alignment.74 Therefore, two ligand-

based alignment hypotheses were tested, the shape-based alignment using ROCS software v.

3.2.1.444, 45 and the morphological similarity alignment, implemented in Surflex-Sim, 

available at SYBYL-X v.1.2 platform.38 The data set was aligned using the two schemes, 

displayed in Figure 3. In alignment 1, the best conformer of each molecule, after 

superposition, was classified according to TanimotoCombo score function. TanimotoCombo 
is a combination of the functions ShapeTanimoto, which compares the molecules according 

to the best molecular volume superposition, and ColorTanimoto which is related to the 

appropriate superposition of groups with certain properties like hydrogen bond donors and 

acceptors, hydrophobic, cations, anions, and rings.45 In alignment 2, no previous conformers 

were generated since Surflex-Sim has fast techniques to generate poses. Additionally, a 

morphological similarity function is used to align the molecules. This function is defined as 

a Gaussian function of the distances of two molecules to observation points of a grid.75

In 3D-QSAR, similarly to HQSAR, compounds 4 and 6 were identified as outliers, the same 

identified in HQSAR modeling. The outlier detection was performed using a CoMFA model 

generated with all compounds of the dataset and default grid spacing of 2.0 Å. The 

compounds 4 and 6 were identified as outliers, since their calculated residues were near or 

higher than two times the standard deviation of residues.

CoMFA and CoMSIA models were investigated by PLS analysis, using the full cross-

validated r2 (q2) leave-one-out (LOO) method. The leave-many-out (LMO) method was used 

to evaluate the stability of the best models. To evaluate the 3D-QSAR models predictive 

power, we used Q2
ext. The full results of the best CoMFA and CoMSIA models are 

displayed in Supporting Information (Tables S3 and S4, respectively).

Two best CoMFA models presented good internal consistence and high external predictivity 

(Table 2). The models generated using the AM1-BCC charges and ROCS alignment (Models 

I and II) showed superior performance in comparison with those generated using Gasteiger-

Hückel charges and Surflex-Sim alignment (Table 2 and Table S3, Supporting Information).

The best CoMSIA models were obtained using the steric, electrostatic, hydrophobic, and H-

bond acceptor fields (Table S4, Supporting Information). The two best CoMSIA models 

were obtained using ROCS alignment, one using Gasteiger-Hückel charges (Model I, Table 

2) and the other using AM1-BCC charges (Model II, Table 2). These two models have 

similar results for internal validation and external predictivity. The difference between the 
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two best CoMSIA models can be better visualized in the prediction of the activity of test set 

compounds (Table S2, Supporting Information). Observed versus predicted activities for 

both training and test sets are displayed in Figure S1B and S1C (Supporting Information).

The best CoMFA and CoMSIA models were used to generate contour maps. These maps 

indicate regions where certain types of interactions are favorable or unfavorable for 

biological activity.76 The interpretation of contour maps is useful to guide the design of new 

potent inhibitors of SmTGR. CoMFA and CoMSIA contour maps were generated using the 

STDEV*COEFF field type and the function Contour by actual. Figure 4 shows contour 

maps obtained from (A) CoMFA steric (green/yellow) and (B) electrostatic (red/blue) fields; 

(C–F) CoMSIA steric (green/yellow), electrostatic (red/blue), hydrophobic (yellow/gray) 

and hydrogen bond acceptor (purple/magenta) fields with the most potent compound of the 

data set (33).

The steric contour map of the best CoMFA model (Figure 4A) shows green contours 

surrounding the furan ring of the compound (33), indicating that bulky substituents could be 

favorable to biological activity. Figure 4B shows red regions near the oxygen atoms O12 and 

O11 of the carbonyl groups, where substitution for electronegative groups can favor the 

biological activity. Furthermore, this map shows blue regions surrounding the carbon atoms 

of the furan rings, indicating that electronegative substituents at the furan rings are 

unfavorable. This map indicates that the carbonyl group represented by C7 and O12 atoms is 

important for biological activity. For the CoMFA and CoMSIA models, steric and 

electrostatic contribution maps were similar. The steric contour map of the best CoMSIA 

(Figure 4C) model also indicates that bulky groups in the region near the furan ring are 

favorable to biological activity. The electrostatic map (Figure 4D) indicates that 

electronegative groups in the region of the oxygen atoms of the carbonyl groups (O12 and 

O11) are favorable. Furthermore, electropositive groups in the region near the carbon atom 

C7 are favorable. In addition, the electrostatic CoMSIA map indicates that electronegative 

groups near the oxygen atom O17 of the furan ring are favorable to biological activity. The 

hydrophobic contour map (Figure 4E) shows two gray contours near the oxygen atoms of 

the carbonyl groups (O12 and O11), indicating that hydrophobic groups are unfavorable in 

this region. Figure 4F shows a purple region near the oxygen atoms of the carbonyl groups 

(O12 and O11), suggesting that hydrogen bond acceptors groups in this region are favorable, 

whereas in regions near the two furan rings there are magenta contours, indicating that 

substitution for hydrogen bond acceptors is unfavorable to biological activity.

Four different consensus models were obtained using different combinations of the best 2D- 

and 3D-QSAR models (Table 3). The external validation of consensus models was 

performed using the same test set and metrics used in individual models. Model 4 (Table 3) 

was selected as the best consensus model because it had good performance and unites the 

characteristics of the three QSAR approaches explored.

Virtual screening

The best consensus model was used to activity prediction after a virtual screening of new 

potential SmTGR inhibitors. Firstly, a similarity search on the Hit2Lead library of 

ChemBridge database49 identified 80 compounds with TC≥0.6 with compound 33. 
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Additionally, 377 compounds containing the oxadiazole ring (common substructure) were 

identified. Duplicates including compounds already used to derive the QSAR models were 

excluded. Then, model 4 was used to predict the SmTGR inhibitory activity of remaining 

194 compounds. The consensus prediction of the biological activity was calculated using the 

arithmetic mean of the predictions from individual HQSAR, CoMFA, and CoMSIA models 

(Table S5, Supporting Information).

The use of similarity search in virtual screening is an example of computational approach for 

identification of new chemical scaffolds, as described elsewhere.77, 78 In the review by 

Heikamp & Bajorath78, the use of molecular fingerprints is highlighted as an important way 

to search novel active compounds. Other examples of approaches for scaffold hopping are 

shape matching, 3D pharmacophore searching and fragment replacement.77 In a study 

performed by Gardiner and coworkers, the use of 2D fingerprint similarity has proven to be 

a simple and efficient way to perform the search of new chemical scaffolds. In their study, 

they evaluated the effectiveness of six different types of 2D fingerprints for scaffold hopping 

in three different databases.79 Several successful examples of drug design by scaffold 

hopping approaches are also described elsewhere.80

Poor pharmacokinetic properties are important causes of costly late-stage failures in drug 

development.81 Our laboratory has been working to overcome or reduce these failures using 

in silico tools for early prediction and optimization of ADME properties, such as Caco-2 cell 

permeability, blood-brain barrier penetration (BBBP), hERG inhibition, CYP3A4 inhibition 

and water solubility. Five in-house highly-predictive models were developed using large 

datasets of diverse compounds to cover the chemical space for the prediction of new 

compounds and are described elsewhere.53, 54 Table 4 shows the structure, consensus 

predicted potency against SmTGR (IC50 in µM), and some predicted ADME properties of 

the ten new potential SmTGR inhibitors.

As we can see from Table 4, ten compounds selected as virtual hits presented high predicted 

potency against SmTGR, using the consensus QSAR model. Moreover, the selected hits 

were predicted to present favorable ADME properties and did not show any potential of 

being hERG blocker or CYP3A4 inhibitors. These compounds were selected for subsequent 

in vitro biological evaluation against schistosomula and adult S. mansoni worms.

Biological evaluation on S. mansoni

The whole-organism screening (phenotypic screening) is an indispensable method to 

identify new anti-schistosomal compounds. In our study, despite the prediction of 

compounds as potential SmTGR inhibitors, it was necessary to evaluate their activity in a 

phenotypic screening. A promising anti-schistosomal compound, to reach the target, must be 

able to cross many biological membranes and resist degradation by enzymes of the parasite. 

Thus, a hit identified in early phenotypic screening has more biological relevance than one 

identified in an enzyme inhibition assay. Two out of ten tested compounds (LabMol-17 and 

LabMol-19) were confirmed experimentally as new hits against Schistosoma mansoni.

Motility and phenotypic scores of LabMol-17 and LabMol-19 at 10 µM along with the 

negative (DMSO 0.625%) and positive controls (PZQ or OLT 10 µM) are shown in Table 5. 
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The phenotypic and mobility scores calculated by the Bayesian model for both hits indicate 

their effects on schistosomula are equivalent or even more pronounced than produced by the 

reference drugs PZQ and OLT. EC50 values could be calculated from dose-response curves 

using either motility score (LabMol-19 EC50 1.00 ± 0.11 µM) or phenotype score as the 

response (LabMol-17 EC50 4.76 ± 1.15 µM). The motility EC50 value determined for 

LabMol-19 was comparable to PZQ (EC50: 2.2 µM).82

Furthermore, the Bayesian model was able to classify the phenotype induced by both hit 

compounds as OLT-like indicating that the phenotype induced by these compounds was 

closest to OLT in comparison to the other modeled schistosomacides (PZQ, 

dihydroartemisinin, methylclonazepam, Ro15-5458, and oxamniquine). This result is 

consistent with the fact that both LabMol-17 and LabMol-19 are potential inhibitors of 

SmTGR, an enzyme involved in ROS detoxification in the S. mansoni, similar to the OLT 

mechanism of action which is also thought to interfere with the parasite’s redox defense 

system.83

Compounds active on schistosomula were then tested on S. mansoni adult worms in vitro. 

Chemicals were assayed by a new methodology that utilizes HCS technology to 

automatically score changes on parasite motility. Besides avoiding human bias, this 

quantitative method is more robust and sensitive to subtle changes in parasite movement 

than the standard assay using manual microscopic visualization.84 Figures 5 and 6 shows 

percent motilities of male and female worms, respectively, measured after exposure to drugs 

at 10 µM for up to 72h incubation time.

Like PZQ, both LabMol-17 and LabMol-19 were more active on male worms. LabMol-17 

was the most active hit, reducing male worm motility up to five times compared to untreated 

control worms. Significant reduction (p<0.05) of male worm motility was observed 

immediately after addition of the drugs to the microplate well and in the case of LabMol-17 

peaked after 48h incubation. Effects on female worms were less pronounced. A discernible, 

although not statistically significant, trend could still be observed for LabMol-17 after 24 h 

and 48 h of drug exposure. Interestingly, although not statistically significant for the whole 

treatment group, LabMol-19 induced augmented motility in at least half of the female 

worms in the group on exposure times up to 48h. Further experiments will elucidate if this 

different behavior on drug sensitivity between male and female worms may be due to 

different expression patterns of SmTGR or other reasons.

Both experimentally validated hits, LabMol-17 and LabMol-19, are dissimilar from the most 

potent compound (33) in the training set (Tc of 0.60 and 0.63, respectively, see Table S5, 

Supporting Information). Moreover, the most active hit, LabMol-17, is very dissimilar from 

the current schistosomicidal drug, PZQ (Tc = 0.07) and oltipraz (Tc = 0.08), as well as from 

other known antischistosomal drugs (Figure 7).

Moreover, we have also analyzed the similarity between LabMol-17 and LabMol-19 and 

known SmTGR hits discovered in a HTS screening (PubChem BioAssay, AID: 485364). As 

we can see from Figure 7, LabMol-17 represents a new chemical scaffold very dissimilar 

(Tc = 0.20 – 0.47) from known drugs and active compounds against S. mansoni. The 
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situation with LabMol-19 is pretty much the same (Tc = 0.24 – 0.38). High activity against 

schistosomula and adult worms of LabMol-17 and LabMol-19 made them promising 

potential SmTGR inhibitors representing novel not yet explored chemical scaffolds highly 

dissimilar with known anti-schistosomal drugs.

Molecular docking

The two hits identified in this study were docked in two important catalytic domains of 

SmTGR: (i) Trx domain where reducing equivalents are transferred from reduced FAD to 

the Cys154-Cys159 pair and (ii) the Grx domain, which contains the Cys28-Cys31 pair and 

receives reducing equivalents from the highly mobile C-terminal end. The C-terminal end, 

which has cysteine and a selenocysteine residues (Cys596-Sec597 pair) was not used for 

docking for two reasons: (i) The C-terminal end is missing in the structure from PDB (ID: 

2X8H); and (ii) The PDB structure containing the C-terminal end (ID: 2X8C) has low 

quality in terms of resolution (3.1 Å).

Two different docking methods were used: a conventional docking for evaluation of 

molecular interactions and a covalent docking. Figure 8 shows the interactions, after 

conventional docking, between the hits and SmTGR. It can be observed that both 

compounds establish important interactions in both domains of SmTGR. The ChemGauss4 

score of LabMol-17 and LabMol-19, in Grx domain (Figure 8A and 8C), was −3.292 and 

−3.802 kcal/mol, respectively. However, the scores were better in Trx domain, −9.569 and 

−8.209 kcal/mol, respectively. It suggests a possible higher affinity of these hits to the Trx 

domain. Furthermore, the binding modes of these ligands, near to cysteine residues, suggest 

the possibility of nucleophilic attacks from these residues and formation of covalent bonds.

The covalent docking was performed because SmTGR has, in both domains, a pair of 

cysteine residues which have important role in the catalytic process. Cysteine residues are 

nucleophiles and, as demonstrated in previous studies, some SmTGR inhibitors including 

the oxadizole-2-oxides, can undergo nucleophilic attack by cysteines and bind covalently in 

these residues. As result, these compounds release nitric oxide, an anti-parasitic molecule.32 

Figure 9 shows the interactions between the two hits and SmTGR after covalent docking. In 

addition to covalent bond, the hydrogen bonds between the compounds and residues seem to 

be important to the inhibition mechanism, helping the ligands to be placed in favorable 

positions to undergo nucleophilic attack and form a covalent bond with cysteine. These 

results suggest that these compounds have potential to be irreversible inhibitors of SmTGR.

One of the future directions of our study is the addition of LabMol-17 and LabMol-19, after 

their testing in enzymatic assay against SmTGR, into training set of next generation of 

models. This will provide new structural information and will increase AD of QSAR 

models. Although the introduction of new scaffolds will not affect HQSAR because of 

fragment-based nature of the approach, it will strongly influence the superposition of 

compounds in CoMFA and CoMSIA. This limitation was discussed in the original 

publication85 and was resolved in the follow-up publication.86 However, when the dataset 

consists of various scaffolds, we would recommend to use fragment-based approaches like 

HQSAR70, SiRMS87, etc.
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4. Conclusions

We succeed to develop robust and externally predictive consensus model merging 2D 

(HQSAR) and 3D (CoMFA and CoMSIA) QSAR models for SmTGR inhibition. We 

applied this model for virtual screening of Hit2Lead library of ChemBridge database and 

identified ten new potential SmTGR inhibitors. The ten virtual hits were tested against S. 
mansoni on both schistosomula and adult worms in vitro. Two of them, LabMol-17 and 

LabMol-19, showed high activity, represent new chemical scaffolds and are highly dissimilar 

(Tc = 0.20 – 0.47) with known anti-schistosomal drugs. As a future direction, we will 

perform structural modification of discovered scaffolds (compounds) to improve their 

properties and develop on their base new schistosomicidal agents.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
General workflow of our study.
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Figure 2. 
HQSAR contribution maps for the most (A, 33) and less (B, 2) potent SmTGR inhibitors. 

The 1,2,5-oxadiazole ring is highlighted in blue, which is the maximal common 

substructure.
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Figure 3. 
Molecular alignment used in 3D-QSAR studies. (A) Shape-based alignment performed in 

ROCS; (B) Surflex-Sim alignment which uses a morphological similarity function.
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Figure 4. 
CoMFA steric and electrostatic (A–B) and CoMSIA steric, electrostatic, hydrophobic, and 

H-bond acceptor (C–F) contour maps surrounding the most potent inhibitor (33). Steric 

fields: green contours indicate region where bulky groups are favorable for biological 

activity; electrostatic fields: red contours indicate regions where electronegative groups are 

favorable to biological activity and blue contours indicate regions where electronegative 

groups are unfavorable; Hydrophobic fields: yellow contours indicate regions where 

hydrophobic groups are favorable and gray contours indicate regions where these groups are 

unfavorable; H-bond acceptor fields: purple contours indicate regions where hydrogen bond 

acceptors are favorable for biological activity and magenta contours indicate regions where 

hydrogen bond acceptors are unfavorable.
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Figure 5. 
The effect of compounds on male adult worm motility as analyzed by HCS analysis for 0–72 

h. PZQ, LabMol-17, and LabMol-19 were screened at 10 µM and DMSO at an equivalent % 

concentration. The percentage motility values were determined immediately (A); 24 h (B); 

48 h (C); or at 72 h (D) by comparison to the average motility of the worms before 

compound addition. CTL - DMSO 0.02%, PZQ - Praziquantel. Statistical significance (* = 

p<0.05) was calculated by One-way ANOVA analysis followed by Tuckey´s post-hoc test.
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Figure 6. 
The effect of compound on female adult worm motility as analyzed by HCS analysis for 0 

−72 h. PZQ, LabMol-17, and LabMol-19 were screened at 10 µM and DMSO at an 

equivalent % concentration. The percentage motility values were determined immediately 

(A); 24 h (B); 48 h (C); or at 72 h (D) by comparison to the average motility of the worms 

before compound addition. CTL - DMSO 0.02%, PZQ - Praziquantel. Statistical 

significance (* = p<0.05) was calculated by One-way ANOVA analysis followed by Tuckey

´s post-hoc test.
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Figure 7. 
Radial plots for similarity of LabMol-17 with known schistosomicidal drugs and known 

SmTGR hits. The central node represents the target compound surrounded by known 

schistosomicidal drugs (left-hand side) and known SmTGR hits from a HTS screen retrieved 

from PubChem BioAssay (AID: 485364) (right-hand side). The similarity was calculated 

using Tanimoto coefficient (Tc) using MACCS structural key fingerprints.
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Figure 8. 
Interactions between the two hits and SmTGR after conventional docking. The yellow 

dashed lines show important interactions of LabMol-17 with residues of Grx domain (A) 

and Trx domain (B). The interactions of LabMol-19 with Grx domain (C) and Trx domain 

(D) are also highlighted. Both compounds have established hydrogen bonds in both domains 

and the proximity of cysteines (Cys28 and Cys159) indicate the possibility of ligands to 

undergo nucleophilic attack by these residues.
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Figure 9. 
Interactions between the two hits and SmTGR after covalent docking. The yellow dashed 

lines show important interactions of LabMol-17 with residues of Grx domain (A) and Trx 

domain (B). The interactions of LabMol-19 with Grx domain (C) and Trx domain (D) are 

also highlighted. Both compounds have established hydrogen bonds in both domains and 

covalent bonds were formed with cysteines (Cys28 and Cys159). These results suggest an 

irreversible mechanism of inhibition of SmTGR.
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Table 2

Statistical characteristics for the best individual QSAR models obtained.

Model q2
LOO q2

LMO r2 N Q2
ext

HQSAR 0.61 0.57 0.85 4 0.94

CoMFA-model I 0.71 0.66 0.99 6 0.90

CoMFA-model II 0.72 0.67 0.99 6 0.82

CoMSIA-model I 0.51 0.48 0.99 6 0.95

CoMSIA-model II 0.60 0.55 0.99 6 0.96

q2LOO, leave-one-out cross-validated determination coefficient; q2LMO, leave-many-out cross-validated determination correlation coefficient; 

r2, non-cross-validated determination coefficient; N, optimal number of latent variables in PLS analysis; Q2ext, determination coefficient for 

external set.
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Table 3

Statistical characteristics for the consensus QSAR models.

Model Models RMSEP Q2
ext

1 HQSAR + CoMFA 0.16 0.96

2 HQSAR + CoMSIA 0.12 0.98

3 CoMFA + CoMSIA 0.18 0.95

4 HQSAR + CoMFA + CoMSIA 0.14 0.97

The best consensus model is highlighted in bold font. RMSEP, root mean square error of prediction; Q2ext, determination coefficient for external 

set.
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Table 5

Motility and phenotype adjusted index values for S. mansoni schistosomula exposed for 48h to hit compounds 

or standard drugs at 10 µM.

Compound Motility adjusted index
(mean ± SD)

Phenotype
adjusted index
(mean ± SD)

Motility image Phenotype image

Control (DMSO 0.625%)

LabMol-17 −0.95 ± 0.01 −0.43 ± 0.11

LabMol-19 −0.95 ± 0.01 −0.63 ± 0.02

PZQ −0.48 ± 0.04 −0.17 ± 0.02

OLT −0.90 ± 0.04 −0.34 ± 0.07

Motility images represent the position of each parasite over 5 time points (11s interval).
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