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Abstract

Epithelial (EP) and stromal (ST) are two types of tissues in histological images. Automated 

segmentation or classification of EP and ST tissues is important when developing computerized 

system for analyzing the tumor microenvironment. In this paper, a Deep Convolutional Neural 

Networks (DCNN) based feature learning is presented to automatically segment or classify EP and 

ST regions from digitized tumor tissue microarrays (TMAs). Current approaches are based on 

handcraft feature representation, such as color, texture, and Local Binary Patterns (LBP) in 

classifying two regions. Compared to handcrafted feature based approaches, which involve task 

dependent representation, DCNN is an end-to-end feature extractor that may be directly learned 

from the raw pixel intensity value of EP and ST tissues in a data driven fashion. These high-level 

features contribute to the construction of a supervised classifier for discriminating the two types of 

tissues. In this work we compare DCNN based models with three handcraft feature extraction 

based approaches on two different datasets which consist of 157 Hematoxylin and Eosin (H&E) 

stained images of breast cancer and 1376 immunohistological (IHC) stained images of colorectal 

cancer, respectively. The DCNN based feature learning approach was shown to have a F1 

classification score of 85%, 89%, and 100%, accuracy (ACC) of 84%, 88%, and 100%, and 

Matthews Correlation Coefficient (MCC) of 86%, 77%, and 100% on two H&E stained (NKI and 

VGH) and IHC stained data, respectively. Our DNN based approach was shown to outperform 

three handcraft feature extraction based approaches in terms of the classification of EP and ST 

regions.
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1. Introduction

Stromal (ST) tissue includes the fatty and fibrous connective tissues surrounding the ducts 

and lobules, blood vessels, and lymphatic vessels, which are supportive framework of an 

organ. Epithelial (EP) tissue is the cellular tissue lining and found in the ductal and lobular 

system of the breast milk ducts. About 80% breast tumors originate in the breast EP cells. 

Although ST tissue is typically considered as not being part of malignant tissue, the changes 

in the stroma tend to drive tumor invasion and metastasis [11]. Therefore, tumor-stroma ratio 

in histological tissues is being recognized as an important prognostic value [12], since 

cancer growth and progression is dependent on the microenvironment of EP and ST tissues. 

Yuan et al. in [31] found that the spatial arrangement of stromal cell in tumors is a 

prognostic factor in breast cancer. Consequently a critical initial step in developing 

automated computerized algorithms for risk assessment and prognosis determination is to be 

able to distinguish stromal from epithelial tissue compartments on digital pathology images. 

This is however extremely challenging due to the high data density, the complexity of the 

tissue structures, and the inconsistencies in tissue preparation. Therefore, it is crucial to 

develop intelligent algorithms for the segmentation of different tissue structures in an 

accurate, fast, practical and robust manner [25,32–34].

2. Previous works

There has been substantial interest recently in developing approaches for automated 

classification of stromal and epithelial regions within H&E tissue images. In [19], local 

binary pattern (LBP) and contrast measure based texture features were used for 

discriminating epithelium and stroma from immunohistochemistry (IHC) stained tumor 

tissue microarrays (TMAs) of colorectal cancer. Five perception-based features (coarseness, 

contrast, directionality, line-likeness and roughness), features related to human perception, 

were presented in [6] to differentiate EP and ST patches [19]. In [14], color based texture 

features extracted from square image blocks for automated segmentation of stromal tissue 

from IHC images of breast cancer. A binary graph cuts approach where the graph weights 

were determined based on the color histogram of two regions, was used for segmenting EP 

and ST regions from odontogenic cysts images in [13]. In [17], a cell graph feature 

describing the topological distribution of the tissue cell nuclei was used for discriminating 

tumor and stromal areas on immunofluorescence histological images. In [3], IHC stained 

TMA cores were automatically stratified as tumor or non-tumor cores based on a visual 

word dictionary learning approach. As LBP based approaches can only deal with gray scale 

images, in [19], prior to feature extraction, each color image is converted into gray scale 

images by computing a weighted sum of R, G, and B components. However since the 

conversion assumes that each pixel in the gray scale image is a linear combination of three 

color components, an assumption that is not always true, LBP features could be derived off 

sub-optimal image representations.

The fixed-size window or pixel-grid is one of the traditional ways to select patches from 

bigger images prior to feature extraction. Recently, superpixel based approaches [23] are 

being employed to group pixels into meaningful atomic regions based on similarity. Two 

popular superpixel algorithms are Normalized Cut (Ncut)-based [23,24] and Simple Linear 
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Iterative Clustering (SLIC)-based [1]. Ncut-based superpixel algorithm essentially employs 

graph theory to explore the pixel-wise similarity among the pixels being interrogated and 

their neighbourhood pixels. The SLIC-based superpixel algorithm is based on clustering and 

employs the similarity of each pixel’s color and Euclidean distance. Ncut-based superpixel 

algorithm is more accurate but is more computationally intensive. Compared to Ncut-based 

algorithm, the SLIC-based approach is simple and faster, but is less accurate. Compared to 

traditional pixel-grids, the atomic regions generated via a superpixel algorithm represent a 

natural partitioning of visual scenes. As different tissue structures are mutually present in 

histologic images, superpixel based approaches are often employed as a pre-processing step 

to mitigate the issue of possible over-segmentation of the tissue images into atomic regions. 

The atomic regions are then subsequently segmented into epithelial and stromal regions. In 

[4], a superpixel based algorithm was used to over-segment breast tissue Hematoxylin and 

Eosin (H & E) images into small compartments. Subsequently the cell nuclei and cytoplasm 

within each smaller subcompartment were further classified into epithelial and stromal 

regions by a Support Vector Machine (SVM) classifier. Similarly, a superpixel based SVM 

was employed to separate EP from ST areas in tissue regions of oropharyngeal squamous 

cell carcinoma in [2].

All the previously proposed methods were based off handcrafted features such as color and 

texture which aim to simulate the visual perception of human pathologist in interpreting the 

tissue samples [30]. Recently, however, there has been interested “deep learning” (DL) 

strategies for classification and analysis of big data. Histopathology, given the data 

complexity and density, is ideally aligned with deep learning approaches that attempt to use 

deep architectures to learn complex features from data. DL approaches unlike handcrafted 

feature approaches represent end-to-end feature learning approach which attempt to learn 

high-level structural features from a large amount of training data to best discriminate 

between the classes of interest. The DL approach can thus serve as a good feature extractor 

for better data representation [18]. In [9], a deep max-pooling convolutional neural network 

was presented for detecting mitosis in breast histological images. The approach comprised a 

deep neural network involving a convolutional and a max-pooling layer which were 

employed to learn the representation of high-level features. Then, a supervised softmax 

classifier was trained to classify each pixel within a square window as containing a mitotic 

nucleus or not. In [10], a convolutional neural networks (CNN) and autoencoder were 

combined for histopathological image representation based learning. Then a softmax 

classification approach was employed for distinguishing cancerous and non-cancerous 

tissue. The approach in [10] used a one-layer autoencoder for high-level feature 

representation. In [28,29], we presented a Stacked Sparse Autoencoder (SSAE) framework 

for automated nuclear detection from high resolution breast histopathological images. 

Handcrafted features were combined with CNN features in [26] for mitosis detection in 

breast cancer pathology. DCNN is a hierarchical neural network which mimics the network 

structure of neural systems. It is a multi-layer network of interconnected simple “neurons” 

by connecting links characterized by a weight.

Building on these approaches, in this work, we present a patch based DCNN approach for 

distinguishing epithelial and stromal compartments within H&E images of breast cancers 

[8]. Each histologic image is first represented by thousands of cropped sub-images. Two 
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different approaches involving the use of superpixel (SP) and a fixed-size square window is 

used to generate sub-images from H&E and IHC stained images, respectively. Different 

from color or intensity based features, such as LBP [19] and texture [6], our approach 

employs architectural features of atomic regions in the tumor and stroma for tissue 

classification. The DCNN based feature learning is applied to two classifications of EP and 

ST patches on (1) IHC stained histologic images of colorectal cancer and (2) on H&E 

stained images of breast cancer. For simplicity, throughout this paper, we use two different 

terms “Classification” and “Segmentation” to represent the two different applications, 

respectively. The classification of EP and ST patches of IHC stained images is an easier task 

which aims to assign a single label to the respective patch. Segmentation of EP and ST 

regions is more difficult since it aims to detect the regions of interest (ROIs) and then assign 

a label to each corresponding ROI. For the classification task, we employed a fixed-size SW 

to extract candidate sub-images defined via a sliding window scheme. These are then fed to 

the DCNN for training the network. The flowchart for the classification framework with 

DCNN is shown in Fig. 2(g)–(k). As the separation of the epithelial and stromal regions 

from H&E images is a more difficult task, we firstly employ a superpixel based scheme to 

over-segment the image into atomic regions. Then the atomic regions are resized into fixed-

size square images, prior to feeding them to a DCNN for feature learning.

The rest of this paper is organized as follows. A detailed description of DCNN is presented 

in Section 3. The experimental setup and comparative strategies are presented in Section 4. 

The experiment results and a discussion of the results are reported in Section 5. Concluding 

remarks are presented in Section 6.

3. Methods

3.1. The deep convolutional neural networks (DCNN)

The DCNN approach employed in this paper comprises two alternating convolutional layers 

(or  layers, see Fig. 1(b)), max-pooling (or  layers, see Fig. 1(c)), two full connection 

layers, and a final classification layer. The  and  layers produce a convolution and a 

max-pooling feature map via successive convolution and max-pooling operations, 

respectively. These feature maps then enable the extraction and combination of a set of 

appropriate image features from the training exemplars.

3.2. The convolutional layer (  layer)

Let  be a filter bank. Each , , is an ml × ml linear 

filter embedded in the l-th layer.  is the number of different filters or kernels in the filter 

bank Wl. An input ωl−1 × ωl−1 patch  is convolved with a ml × ml local receptive region 

in the image  encompassed by the filter  The filter  moves over the input patch 

and allows for a local convolution operation. For each image patch extracted from the image, 

the convolutional operations with  filters result in  feature maps. The result of the linear 

convolutional operation on  by  can be re-written as . Here the pixel 

value gk(p) of each location of the resultant image  is the sum of products of the filter 

Xu et al. Page 4

Neurocomputing. Author manuscript; available in PMC 2017 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coefficients and the image pixels of the local receptive region encompassed by the filter. 

During the convolutional operations, each filter wk convolves across (ωl−1−ml + 1) × 

(ωl−1−ml + 1) pixels in . The size of the resultant images  is therefore (ωl−1−ml + 1) × 

(ωl−1−ml + 1) following the convolutional operation.  is the pre-activation or input to the 

nonlinear activation function of a neuron. The output of the active function is 

. The procedure of convolu tional operation 

is illustrated in Fig. 1(b).

3.3. The max-pooling layer (  layers)

The max-pooling layers or  layers aim to achieve spatial invariance by reducing the 

resolution of the feature maps obtained in layer . It applies local pooling of feature maps 

using a max operation in the neighbourhood of the results of the  layer. The max-pooling 

operation in  layers is described in Fig. 1(c). Subsequent to the max-pooling operation, the 

size of the resultant images becomes , where s refers to 

the scale at which the operation was applied.

3.4. Output layer: softmax classifier (SMC)

Softmax classifier (SMC) is a supervised model which generalizes logistic regression as

(1)

where  is a sigmoid function with parameters W(l). The input xl of SMC 

is a high-level feature learned by the DCNN. The parameter W(l) corresponding to the SMC 

learned via a training set. With the learned parameter W(l), each patch that is fed to the 

function in Eq. (1) produces a value between 0 and 1 that can be interpreted as the 

probability of the input patch corresponding to either EP or ST. The predicted class  and 

prediction score  can then be represented as,

(2)

and

(3)

respectively.
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3.5. Generating training and testing samples

Table 2 shows the number of training and testing images for the two data sets (D1 and D2) 

evaluated in this work. Additional details regarding to D1 and D2 are provided in Section 

4.1.

For the segmentation of the epithelial and stromal compartments for the images in D1, the 

sub-images are generated with two superpixel approaches. The images corresponding to the 

training and testing sets within D1 and D2 are initially over-sesgmented into smaller tissue 

partitions by superpixel based algorithms [1,23]. Each tissue compartment is subsequently 

resized into 50 × 50 square sub-image patches via a bicubic interpolation approach [16]. The 

procedure for generating sub-images for the images from D1 is shown in Fig. 2(a)–(d). We 

use both the Ncut (Normalized cuts) [20,23] and SLIC (the Simple Linear Iterative 

Clustering) approach [1]. Our implementations are based on the source code provided in 

[20,23]. For comparison, we also employed a fixed-size SW approach for the images in D1. 

Each image in D1 is over-segmented into 50 × 50 sub-images using a sliding window. The 

window slides across the entire image row by row from the upper left corner to the lower 

right with a step size of 25 pixels. Border padding is employed to address issues of boundary 

artifacts.

For classification of the tissue compartments for the images in D2 we employ the approach 

in [19] to sub-divide the images into 80 × 80 square window images using a sliding window. 

A step size of 40 pixels is employed and as with D1. Also border padding is used to avoid 

boundary artifacts. The procedure for generating sub-images for images from D2 is shown in 

Fig. 2(g)–(i).

The sub-images in the training sets for D1 and D2 are used for training and optimizing the 

DCNN based and comparative models (see Table 3) while sub-images in the testing sets are 

used for qualitative and quantitative evaluations.

4. Experimental Setup

In order to show the effectiveness of the approach, the DCNN and comparative models are 

qualitatively and quantitatively evaluated on D1 and D2, respectively.

4.1. Data set

4.1.1. Data set 1 (D1)—This data set was downloaded via the links provided in [4]. The 

data was acquired from two independent cohorts: Netherlands Cancer Institute (NKI) and 

Vancouver General Hospital (VGH). It consists of 157 rectangular image regions (106 NKI, 

51 VGH) in which Epithelial and Stromal regions were manually annotated by pathologists. 

The images are H&E stained histologic images from breast cancer TMAs. The size of each 

image is 1128 × 720 pixels at a 20 × optical magnification.

4.1.2. Data set 2 (D2)—This data was downloaded from the links provided in [19]. The 

data was originally acquired at the Helsinki University Central Hospital from 1989 to 1998. 

D2 comprises 27 TMAs of colorectal cancer that were stained with epidermal growth factor 

receptor (EGFR) antibody and hematoxylin counterstain. The slides were digitized with a 
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whole slide scanner under 20 × magnification. For the study, a total 1377 rectangular tissue 

samples of (826 EP and 451 ST) were chosen from 643 tumor cores. The tissue samples had 

been previously manually labeled as EP or ST by expert pathologists. The size of the 

annotations varied between 93 and 2372 pixels in width and 94-2373 in pixel height. As 

Table 2 shows, the image patches in both D1 and D2 were approximately evenly divided into 

training and testing subsets.

4.2. Training the DCNN

We used a coarse-to-fine sweep approach [27] to choose hyper-parameters for the DCNN. 

Our approach begins with a coarse setting (wide hyperparameter ranges, training only for 1–

5 epochs), to more fine tuned settings (narrow ranges, training with many more epochs). The 

training procedure is based on the CAFFE framework [15].

4.3. Parameter setting

The flowchart illustrated in Fig. 2 is applied to both the comparative and DCNN-based 

approaches for tissue segmentation and classification. Note however that the different 

approaches differ in terms of the mechanism for feature extraction.

The parameter set for DCNN shown in Fig. 1 are as follows. , , m1 =m3 = 5, ω0 

= 32, ω1 = 28, ω2 = 14, ω3 = 10, ω4 = 5. The max-pooling operation in the 2-nd and 4-th -

layers involves searching over each 2 × 2 (s=2) neighborhood (see Fig. 1(c)). In L5, 50 

feature maps of size 5 × 5 are fully connected with  neurons. These 500 neurons are 

subsequently connected with  neurons in L6. For the output layer, 100 neurons are 

fully connected with outputs.

We employ a greedy layer-wise approach [5] for training the DCNN by training each layer 

in a sequential manner. The trained SMC classifier yields an output based on Eq. (1). Based 

on Eq. (2), the class predicted for each input patch is either EP  or ST .

4.4. Implementation of DCNN and SVM

All experiments were carried out on a PC (Intel Core(TM) 3.4 GHz processor with 16 GB of 

RAM) and a Quadro 2000 NVIDIA Graphics Processor Unit. The software implementation 

was performed using MATLAB 2014a. During the implementation, as Fig. 1 shows, we used 

two -Layers, 2 -Layers, two full connection layer ( -Layers), and an output layer. 

For the - and -Layers, a fixed 5 × 5 convolutional and 2 × 2 pooling kernel were used.

For the SVM classifier, we employed LIBSVM [7]. The Gaussian kernel was used and 10-

fold cross-validation was employed for determining the parameters of the Gaussian kernel.

4.5. Experimental design

In the upper block in Fig. 2(b), the region with the red contour represents an atomic region 

generated by the SP algorithm. As DCNN requires uniformly sized sub-images as input, the 

atomic regions are then resized into 50 × 50 square image patches and subsequently fed to 

the DCNN for model training, segmentation, and classification. Applying this procedure to 
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all atomic regions, the entire input image is classified as being either EP or ST via the 

DCNN + SMC classifier. For D2, the final classification of IHC patches is determined via 

the averaging of the confidence scores of all the sub-images in each patch.

For the SW based approach, each image pixel is usually segmented twice, the final 

segmentation result being determined as the most likely of the two segmentation results. To 

avoid bias in the evaluation process, we used the same image size (80 × 80) as described in 

[19] to extract sub-images in D2.

4.6. Comparative strategies

The DCNN based models and comparative strategies are shown in Table 3. A detailed 

description of the different models is illustrated in Table 3.

4.6.1. DCNN based models versus handcrafted features—We compared DCNN 

based approaches with extant handcrafted features used in [19,6]. For the color feature based 

approach (SW-color-SVM), we used color features which includes the color representation 

of pixel intensities in different color spaces. Linder [19] and Bianconi [6] described two state 

of art texture feature based approaches to classify EP and ST patches on D2, both of which 

are compared against our DCNN based model.

For D1, we implemented the LBP+Contrast measure [19]. Since the authors in [19] did not 

provide the source code, our implementation is based on the source code provided in [21], 

which appears to be the approach that inspired the work in [19]. We further compared 

DCNN+SMC against the approaches in [6] and [19] on D2. In order to compare the results 

of our version of the implementation in [21] the classification results reported in [6] and 

[19], we linearly mapped the results obtained by the softmax classifier for the approach we 

implemented based off [21] from [0,1] to [−3,3]. Based on Eqs. (2) and (3), the prediction 

confidence score is computed by

(4)

where  is defined in (1). The confidence scores in Figs. 4 and 6 are the computed 

based on Eq. (4).

4.6.2. Evaluating DCNN across different sub-image generation methods—We 

compared the SP algorithm with fixed-size SW scheme for generating the sub-images. Also, 

in order to show the performance of different SP algorithms in terms of generation of the 

sub-images, we applied two popular algorithms: Ncut [23] and SLIC [1] for generating the 

atomic regions.

4.6.3. Evaluating DCNN with different supervised classifiers—In order to show 

the efficiency of DCNN for learning high-level feature, we compared the performance of 

DCNN coupling to different machine learning classifiers. We compared the DCNN+SMC 
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with the DCNN+SVM. For the DCNN+SVM model, we first trained the DCNN+SMC 

model with training data. The model parameters for the DCNN model were thus learnt and 

then fixed for the testing phase. The output of the DCNN was then fed to a Support Vector 

Machine (SVM) classifier which was then further trained with sub-images in the training set.

4.6.4. Evaluating the effect of window size on the DCNN—The segmentation 

accuracy of the DCNN+SMC model was determined in terms of ROC curves, generated 

across all the test images in D1 as a function of the window size.

The performance of the automated segmentation and classification approaches provided by 

different models is quantified in terms of measurements [22] shown in Table 1. The Receiver 

Operating Characteristic (ROC) curves are also drawn to assess the classification 

performance provided by the different models.

5. Experimental results and discussion

5.1. Qualitative results

The qualitative segmentation results of the DCNN (Fig. 3(c)–(h)) and color feature 

extraction based (Fig. 3(i)) models for a histological image in D1 (Fig. 3(a)) are shown in 

Fig. 3. In Fig. 3(b)–(i), green and red regions represent epithelial and stromal regions that 

were accurately segmented with respect to the pathologist determined ground truth (Fig. 

3(b)). The black areas in Fig. 3(b)–(i) were identified as background regions and hence not 

worth computationally interrogating. As the qualitative results in Fig. 3(c)–(h) suggest, the 

segmentation results from the SP-based methods are visually different from the SW-based 

methods which were prone to producing zigzag boundaries while the SP-based methods 

produced natural boundaries. Although SP-based methods produced erroneous boundaries as 

well, the errors appeared more subtle and less egregious, possibly since the superpixel based 

algorithms represent a natural partitioning of visual scenes. The results of pixel-wise 

classification on EP (Fig. 4(a)–(e)) and ST (Fig. 4(f)–(k)) patches in D2 are shown in Fig. 4. 

In Fig. 4(a)–(k), the colors in the heat map (i) correspond to the predicted confidence scores 

(red=EP with 100% and blue=ST with 100%). The results in Fig. 3 appear to suggest that 

DCNN based models outperform handcrafted feature extraction based models. Also, DCNN

+SMC appears to outperform DCNN+SVM.

5.2. Quantitative results

The quantitative performance for tissue segmentation and classification for the different 

models on D1 and D2 are shown in Table 4. The DCNN based approach yields a perfect 

result (100%) in terms of True Positive Rate (TPR), True Negative Rate (TNR), Positive 

Predictive Value (PPV), Negative Predictive Value (NPV), Accuracy (ACC), F1 Score (F1), 

and Matthews Correlation Coefficient (MCC) and outperforms the approaches described in 

[6] and [19] respectively. Fig. 5(a) and (b) shows the ROC curves corresponding to 

segmentation accuracy for DCNN-Ncut-SMC, DCNN-SLIC-SMC, DCNN-Ncut-SVM, 

DCNN-SLIC-SVM, DCNN-SW-SVM, Color-SW-SVM, Linda [19] on NKI (Fig. 5(a)) and 

VGH ((Fig. 5(b)) of D1. The AUC values suggest that the DCNN based models outperform 

the handcrafted feature based approaches (Color-SW-SVM model and approaches in [19]), 
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with the DCNN-Ncut-SVM is emerging as marginally better than the other models. Fig. 6 

shows the histogram for the DCNN-SW-SVM model for EP and ST patch based 

classification for D2. Fig. 6 is a plot of number of images (Y-axis) versus the confidence 

score (X-axis) for the SVM classifier. The two types of image patches appear to be well 

separated. Finally, in terms of the comparison between two different SP algorithms, Table 4 

shows that the performance of Ncut is slightly better than SLIC on D1. Additionally, the 

SVM classifier slightly outperforms SMC on D1.

5.3. Sensitivity analysis

Fig. 7 shows the sensitivity of window size (X-axis) on the segmentation accuracy (Y-axis) 

for the DCNN-SW-SVM model D1. Fig. 7 suggests that the DCNN-SW-SVM model 

achieves the best AUC value when the window size is around 50 × 50 pixels. As a result, we 

chose a window size of 50 × 50 for all our subsequent experiments.

6. Concluding remarks

In this paper we presented a new Deep Convolutional Neural Network (DCNN) based model 

for segmentation and classification of epithelial and stromal regions within Hematoxylin and 

Eosin (H & E) and Immunohistochemistry (IHC) images of breast and colon cancer. DCNN 

uses a deep architecture to learn complex features in a data-driven fashion and that has been 

shown in multiple applications outperform the classification accuracy obtained via 

handcrafted features. We compared the DCNN based models with extant handcrafted 

features and showed that for the task of separating stroma from epithelium, the DCNN based 

models consistently outperformed handcrafted features based models. Future work will 

entail evaluation of our approach on tissue partitioning for other types of cancers as well.
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Fig. 1. 
The architecture of the new DCNN employed in this work. The approach comprises of (a) 

two alternating convolutional layers (or -layers) with the convolutional operation (b) and 

max-pooling layers (or -layers) with the max-pooling operation, and (c) two full 

connection layers (or -layers), and an output layer.
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Fig. 2. 
The illustration of DCNN+SMC approach for Epithelial and Stromal segmentation and 

classification for H&E (a–f) and IHC (g–k) stained histologic images. The original H&E (a) 

and IHC (g) stained images are over-segmented into sub-images using a SLIC (b) and fixed-

size square window based approach (h), respectively. An exemplar patch (c) is resized into 

smaller 50 × 50 sub-images (d). The sub-images (d and i) are then fed to a DCNN (e and j) 

for segmentation and classification of epithelial and stromal regions, shown in panels (f) and 

(k), respectively. (For interpretation of the references to color in this figure caption, the 

reader is referred to the web version of this paper.)
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Fig. 3. 
Segmentation of epithelial (red) and stromal (green) regions on a tissue image (a) using the 

different segmentation approaches on D1. (b) The ground truth (a) annotations of stromal 

and epithelial regions by an expert pathologist. The classification results are shown for 

DCNN-Ncut-SVM (c), DCNN-Ncut-SMC (d), DCNN-SLIC-SVM (e), DCNN-SLIC-SMC 

(f), DCNN-SW-SVM (g), DCNN-SW-SMC (h), and Color-SW-SVM (i), respectively. (For 

interpretation of the references to color in this figure caption, the reader is referred to the 

web version of this paper.)
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Fig. 4. 
The probability maps rendered by the different DCNN based approaches (Columns 3 and 4) 

and [19] (in Column 2) for classifying EP ((a)–(e) in the left block, Column 1) and ST ((f)–

(k) in the right block, Column 1) patches on D2. The false-color (defined by the heat map 

(l)) of sub-images in Columns 2–4 reflect the confidence score in predicting them as EP/ST 

regions via Linda [19], DCNN+SVM, and DCNN+SMC, respectively. The various colors in 

the heat map (l) correspond to the predicted confidence scores (red=EP with 100% 

likelihood and blue=ST with 100% likelihood). (For interpretation of the references to color 

in this figure caption, the reader is referred to the web version of this paper.)

Xu et al. Page 19

Neurocomputing. Author manuscript; available in PMC 2017 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The ROC curves for the different models (see Table 3) for detecting EP and ST regions on 

NKI (a) and VGH (b) data cohorts within D1.
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Fig. 6. 
A plot of the score value on the X-axis versus the number of image patches on the Y-axis for 

the model DCNN-SW-SVM on dataset D2.
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Fig. 7. 
Plot of AUC versus window size for the DCNN-SW-SVM model on NKI and VGH datasets 

within D1.
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Table 1

Enumeration of the symbols used in the paper.

Symbol Description Symbol Description

DCNN Deep Convolutional Neural Networks SMC Softmax classifier

EP Epithelial region ST Stromal region

LBP Local Binary Patterns SVM Support Vector Machine

F1 F1 score ACC Accuracy

TP True Positive FP False positive

FN False Negative TN True negative

MCC Matthews Correlation Coefficient ROC Receiver Operating Characteristic

TMAs Tumor tissue microarrays IHC Immunohistochemistry

H&E Hematoxylin and Eosin DL Deep learning

SP Superpixel SW Sliding window

 layer
Convolutional layer

 layer
max-pooling layer

 layer
Full connection layer ROI Region of interest

D1 Dataset 1 D2 Dataset 2

NKI Netherlands Cancer Institute Dataset VGH Vancouver General Hospital Dataset

SLIC Simple Linear Iterative Clustering algorithm Ncut Normalized cuts algorithm

DCNN+SMC DCNN plus SMC DCNN+SVM DCNN plus SVM
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