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Abstract

This paper elucidates the teixobactin pharmacophore by comparing the arginine analogue of 

teixobactin Arg10-teixobactin to seven homologues with varying structure and stereochemistry. 

The roles of the guanidinium group at position 10, the stereochemistry of the macrolactone ring, 

and the “tail” comprising residues 1–5 are investigated. The guanidinium group is not necessary 

for activity; Lys10-teixobactin is more active than Arg10-teixobactin against gram-positive bacteria 

in minimum inhibitory concentration (MIC) assays. The relative stereochemistry of the 

macrolactone ring is important; diastereomer L-Thr8,Arg10-teixobactin is inactive, and 

diastereomer D-allo-Ile11,Arg10-teixobactin is less active. The macrolactone ring is critical; seco-

Arg10-teixobactin is inactive. The absolute stereochemistry is not important; the enantiomer ent-
Arg10-teixobactin is comparable in activity. The hydrophobic N-terminal tail is important; 

truncation of residues 1–5 results in loss of activity, and replacement of residues 1–5 with a 

dodecanoyl group partially restores activity. These findings pave the way for developing simpler 

homologues of teixobactin with enhanced pharmacological properties.

At the beginning of 2015, a new antibiotic, teixobactin, was reported in Nature,1 with great 

attention in the scientific press2,3,4,5 and the popular press.6 Teixobactin is a non-ribosomal 

undecapeptide containing a macrocyclic depsipeptide group (Figure 1). It contains four D-

amino acids and seven L-amino acids, and the C-terminal Ile11 is cyclized onto the side chain 

of D-Thr8 to form a 13-membered lactone. Residue 10 of teixobactin is the non-

proteinogenic amino acid, L-allo-enduracididine (allo-End10), which is a cyclic analogue of 

arginine. Teixobactin acts against gram-positive bacteria by binding to the prenyl-

pyrophosphate-GlcNAc region of lipid II.1 This region is highly conserved in bacteria and 

cannot easily mutate to impart drug-resistance.7,8 It is thus an attractive antibiotic target.

Recently, Jad et al. and Parmar et al. reported syntheses of the arginine analogue of 

teixobactin Arg10-teixobactin.9,10 Both syntheses involve solid-phase peptide synthesis 

(SPPS) of a branched precursor on 2-chlorotrityl resin, followed by solution-phase 

macrolactamization to form the Ala9–Arg10 amide bond. The former synthesis requires both 

Fmoc and Alloc groups as orthogonal α-amino protecting groups; the latter requires Fmoc, 

Alloc, and trityl groups. Both syntheses introduce D-Thr8 without protecting the alcohol 

group and O-acylate it before completing the N-terminal tail. Both sets of authors reported 
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that Arg10-teixobactin is about an order of magnitude less active against gram-positive 

bacteria than teixobactin in minimum inhibitory concentration (MIC) assays.11,12,13

In the current study, we set out to elucidate the teixobactin pharmacophore by synthesizing 

and evaluating a series of teixobactin homologues. We examine the roles of the guanidinium 

group at position 10, the stereochemistry of the macrolactone ring, and the “tail” comprising 

residues 1–5. We also report a simpler synthesis of teixobactin analogues and a simpler 

homologue, which we term lipobactin 1.

We synthesized Arg10-teixobactin and other homologues by SPPS on 2-chlorotrityl resin, 

followed by solution-phase macrolactamization to form the Arg10–Ile11 amide bond 

(Scheme 1).14,15,16,17 We used only Fmoc protecting groups to construct all of the amide 

bonds and carried D-Thr8 through the entire synthesis without side chain protection. All 

homologues were prepared and studied as the trifluoroacetic acid (TFA) salts.

We began the synthesis by attaching Fmoc-Arg(Pbf)-OH to 2-chlorotrityl resin. Residues 9 

through 1 were then introduced by standard Fmoc-based SPPS using HCTU as the coupling 

reagent. D-Thr8 was introduced without a protecting group at the hydroxy position. No O-

acylation of D-Thr8 was observed in the subsequent rounds of SPPS. D-Thr8 was then O-

acylated with Fmoc-Ile-OH using DIC and DMAP.18,19,20 Fmoc-deprotection, followed by 

cleavage from the resin with 20% hexafluoroisopropanol (HFIP) in CH2Cl2 afforded the 

acyclic protected precursor. Macrolactamization with HBTU and HOBt, followed by global 

deprotection with trifluoroacetic acid (TFA) and RP-HPLC purification afforded Arg10-

teixobactin. We also prepared a series of homologues using similar procedures (Figure 2).

We investigated the antibiotic activity of Arg10-teixobactin and homologues in MIC assays 

against four types of gram-positive bacteria. We used the antibiotic vancomycin as a positive 

control and the gram-negative bacterium E. coli as a negative control. We selected non-

pathogenic strains of bacteria to facilitate the safe and rapid screening of Arg10-teixobactin 

and other homologues in a biosafety level 1 (BSL-1) environment.

To explore the role of a guanidinium group in residue 10, we compared the MIC of Arg10-

teixobactin to Lys10-teixobactin. The arginine residue serves as a surrogate for allo-

enduracididine, which is not commercially available and has only been prepared by 

cumbersome multistep syntheses.21,22,23,24,25 Arg10-teixobactin gave MIC values of 1–4 

µg/mL against the four gram-positive bacteria studied (Table 1). Although side-by-side 

comparison to an authentic sample of teixobactin was not possible, comparison to the 

original published values in related bacteria suggests that Arg10-teixobactin is about an order 

of magnitude less active (Table 1). Surprisingly, Lys10-teixobactin gave MIC values 2–4 

times lower than Arg10-teixobactin. While the MIC values for Lys10-teixobactin are slightly 

higher than those reported for teixobactin, they are comparable to those of vancomycin 

(Table 1). This interesting finding indicates that the guanidinium group at position 10 is not 

necessary for activity and lays the foundation for the future discovery of homologues that 

lack allo-enduracididine and are even more potent.

To investigate the role of the macrolactone ring stereochemistry, we compared the 

diastereomer L-Thr8,Arg10-teixobactin and D-allo-Ile11,Arg10-teixobactin to Arg10-
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teixobactin. The former proved inactive (MIC > 32 µg/mL) against the gram positive 

bacteria, while the latter proved half as active (Table 1). Collectively, these results suggest 

that the ring stereochemistry and the conformation are important in teixobactin activity. 

Seco-Arg10-teixobactin also proved inactive (MIC > 32 µg/mL), further supporting the 

importance of the cyclic depsipeptide structure (Table 1).

To further investigate the role of the macrolactone ring stereochemistry, we compared ent-
Arg10-teixobactin to Arg10-teixobactin. Ent-Arg10-teixobactin exhibits comparable activity 

to Arg10-teixobactin. This exciting finding supports a model in which the amide NH groups 

on macrolactone ring bind to the achiral pyrophosphate group of lipid II through hydrogen-

bonding interactions. This mode of binding has previously been reported in the NMR 

structure of the complex of nisin with lipid II (PDB 1WCO)26 and appears to occur for 

teixobactin as well.

To investigate the role of the N-terminal tail, we truncated residues 1–5. The resulting short-

Arg10-teixobactin also proved inactive (MIC > 32 µg/mL). To investigate the possibility that 

the hydrophobic residues N-Me-D-Phe, Ile, and D-allo-Ile at positions 1, 2, and 5 help to 

anchor teixobactin into the plasma membrane, we replaced residues 1–5 with a dodecanoyl 

group.27,28 The resulting homologue, lipobactin 1, proved only 2–4 times less active than 

Arg10-teixobactin (Table 1). This finding confirms the importance of the hydrophobicity of 

the N-terminal tail and paves the way for further developing simpler homologues of 

teixobactin with enhanced pharmacological properties.
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Figure 1. 
Structures of teixobactin and Arg10-teixobactin.

Yang et al. Page 6

ACS Chem Biol. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Structures of teixobactin homologues.
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Scheme 1. 
Synthesis of Arg10-teixobactin.
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