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Abstract

After seminal papers over the period 2009 – 2011, the use of texture analysis of PET/CT images 

for quantification of intratumour uptake heterogeneity has received increasing attention in the last 

4 years. Results are difficult to compare due to the heterogeneity of studies and lack of 

standardization. There are also numerous challenges to address. In this review we provide critical 

insights into the recent development of texture analysis for quantifying the heterogeneity in 

PET/CT images, identify issues and challenges, and offer recommendations for the use of texture 

analysis in clinical research. Numerous potentially confounding issues have been identified, 

related to the complex workflow for the calculation of textural features, and the dependency of 

features on various factors such as acquisition, image reconstruction, preprocessing, functional 

volume segmentation, and methods of establishing and quantifying correspondences with genomic 

and clinical metrics of interest. A lack of understanding of what the features may represent in 

terms of the underlying pathophysiological processes and the variability of technical 

implementation practices makes comparing results in the literature challenging, if not impossible. 

Since progress as a field requires pooling results, there is an urgent need for standardization and 

recommendations/guidelines to enable the field to move forward. We provide a list of correct 

formulae for usual features and recommendations regarding implementation. Studies on larger 

cohorts with robust statistical analysis and machine learning approaches are promising directions 

to evaluate the potential of this approach.
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Introduction

Tumours are heterogeneous entities at all scales (macroscopic, physiological, microscopic, 

genetic) [1]. As a multimodal imaging modality, PET/CT is a promising tool for noninvasive 

exploration of intratumour heterogeneity at the macroscopic scale in both the anatomical and 

functional dimensions [2, 3]. The term heterogeneity usually conveys different meanings 

depending on the image modality. When considering the PET component, it refers to 

radiotracer uptake spatial distribution, which may reflect, depending on the radiotracer used, 

the combination of underlying biological processes such as metabolism, hypoxia, cellular 

proliferation, vascularization and necrosis [4–6]. Regarding the low-dose CT component of 

PET/CT, usually without contrast enhancement, heterogeneity refers to the variability in 

tissue density, which may result from spatially varying vascularization, necrosis or 

cellularity, as well as the proportions of fat, air and water [7]. With other modalities such as 

contrast-enhanced CT, as well as in MRI using various sequences (for example, T1, T2, 

FLAIR, DCE-MRI), heterogeneity can also include the spatial variability of vessel density, 

perfusion, proton density and physiological tissue characteristics [8–12].

The heterogeneity of image voxel intensities can be quantified by different image processing 

and analysis methods, including texture analysis (TA) [3], fractal analysis [13], shape 

models [14–16], intensity histogram analysis [15, 17] and filtering combined with statistical 

and frequency-based methods [18]. This critical review focuses on the use of TA in PET/CT 

images, although for completeness a section dedicated to alternative heterogeneity metrics 

can be found in Supplementary material section 1.

Systematically constructing higher-dimensional information from data falls under the 

general rubric of ‘-omics’, which includes genomics, proteomics and others [19]. Extracting 

a large number of features from images (including TA metrics, shape descriptors and other 

quantitative metrics) has become popular under the denomination radiomics [20, 21]. The 

potential of such an approach is to quantify properties of tissues and/or organs beyond the 

capability of visual interpretation or simple metrics. The use of TA has been widespread in 

MR and CT imaging since the early 1990s [22, 23] and more recently (end of the 2000s) for 

PET intratumour heterogeneity characterization [15, 24, 25]. PET images have a priori less-

favourable properties for TA than MRI or CT, due to a lower signal-to-noise ratio and spatial 

resolution, as well as poorer spatial sampling. In addition, reconstructed PET images are 

often smoothed in clinical practice for visual analysis by clinicians using filters which 

reduce the textural content of the image, such as the gaussian filter [26]. However, the 

fidelity and quantitative accuracy of PET imaging has substantially improved in the last 

decade, with the advent of PET/CT systems, time-of-flight (TOF) capabilities, improved 

sensitivity, and the incorporation of several quantitative corrections in the current clinical 

gold standard iterative reconstruction algorithms [27]. Note also that images from the low-

dose CT component of PET/CT have different characteristics from higher resolution 

dosimetry or diagnostic CT images.

In the last 4 years, dozens of studies investigating PET/CT uptake heterogeneity have been 

published and have mostly focused on the PET component. Unfortunately, especially for TA, 

the number of required preprocessing steps and the numerous implementation choices in the 
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involved workflow, have led to contradictory results and controversies, rendering impossible 

comparison of results across studies [28]. In addition, the tendency in the biomedical field 

for positive results to be published more easily than negative ones [29] may have led to over-

optimistic interpretation of the potential value of TA in PET. This should also be viewed in 

the context of current widespread concerns about reproducibility in biomedical research in 

general [30].

The objective of this review is to provide critical insights into the rapid development of the 

use of TA to characterize radiotracer uptake heterogeneity in PET/CT images, and identify 

the issues and challenges that are currently left to address. Finally, some recommendations 

for future research methodologies and reporting standards are discussed.

The past: clinical potential and underlying motivations

The underlying motivation arose in part from the recognition that standard metrics 

considered in clinical practice or research studies, i.e. maximum or mean standardized 

uptake value (SUVmax and SUVmean) or the metabolically active tumour volume (MATV), 

do not fully describe the properties of tumours [14]. Some of these properties, such as shape 

and uptake heterogeneity, may reflect different tumour profiles associated with their 

aggressiveness, metastatic potential, or degree of response to a specific treatment, and 

consequently prognosis [31, 32]. Quantifying these properties could provide indices with 

higher clinical value than the usual metrics in stratifying patients or identifying poor 

responders to treatment.

This proof-of-concept regarding the use of TA in the evaluation of PET images was first 

shown by El Naqa and colleagues in a seminal study in 9 patients with head and neck cancer 

and 14 patients with cervix cancer [15]. Only two other studies investigating TA in PET 

were published in the two following years. The first demonstrated the impact of parameters 

used in PET iterative image reconstruction algorithms on TA metrics, of which many were 

shown to be sensitive to the resulting varying characteristics of the reconstructed images 

[24]. This highlighted the need for standardization if such features were to be considered 

within the context of multicentre trials. Secondly, the extremely high variability (>100 %) 

observed for some features suggested that they should never be used, even in a single-site, 

single-scanner study. The second study investigated the predictive value of FDG uptake 

heterogeneity quantified using TA, in 41 patients with locally advanced oesophageal cancer 

receiving concomitant chemoradiotherapy, and showed that TA metrics have higher 

predictive value than SUV [25].

Several subsequent studies have shown significant correlations between the visual 

assessment of intratumour heterogeneity in PET images by experts and quantitative metrics 

including the area under the curve of the cumulative histogram [33], shape descriptors [34] 

(see Supplementary material section 1) and TA metrics [35]. However, the interpretation of 

the underlying biological meaning of PET image uptake heterogeneity and the explanation 

of why it may be potentially more powerful than other standard metrics is still largely based 

on assumptions linking it to differences in underlying metabolism, cellular proliferation, 

hypoxia and necrosis. This obviously depends on the radiotracer used. However, the vast 
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majority of studies to date have been carried out using FDG (and static SUV images), with 

only a few examples of the use of other radiotracers, such as FET [36], FLT [5, 37], and 

DBTZ [16].

By comparison in CT or MRI, there have been several studies linking image-derived TA 

features with underlying pathophysiological properties including at the level of genomics [7, 

11, 38–40], thus providing growing evidence of their relevance and a potential explanation 

for their observed clinical value. To the best of our knowledge, similar results currently 

available regarding TA applied to PET are very limited. A study established a correlation 

between perfusion CT-derived parameters (e.g. blood flow) and TA metrics from FDG PET 

in stage HI/TV colorectal tumours [41]. Regarding the relationship between PET TA 

features and data from underlying scales, preliminary results from a prospective study in 54 

patients with head and neck cancer have recently been presented, and demonstrate that some 

PET TA metrics could be linked to altered signalling pathways related, for example, to cell 

proliferation and apoptosis [42]. Such studies have the potential to help in understanding the 

observed higher clinical value of these metrics compared to standard quantitative 

parameters.

The present: an era of rapid expansion

Several dozen studies investigating the clinical value of PET uptake heterogeneity (using TA 

or other methods) in various tumour types (including oesophageal, lung, rectal, breast, head 

and neck, and brain cancer, and lymphoma) as well as more recently in neurodegenerative 

diseases with PET [16, 43] and DAT SPECT [44] have been published in the last 4 years 

alone. More recently, a few studies have also focused on extracting features from both the 

PET and CT components (see the section Promising clinical results below). For a more 

exhaustive list, we refer the reader to other recent reviews [2–4, 9, 45–49]. From a critical 

review of these studies, several common issues can be identified.

Nomenclature variability, formula and implementation issues

The variability in definitions of TA metrics and nomenclature, as well as errors in methods, 

published formulae and computational codes complicate any evaluation and comparison of 

published results. The use of the term “textural” can itself be confusing. In a recent study, 

the title and abstract refer to “textural parameters”, reporting a higher predictive value 

regarding response to therapy in a cohort of 27 patients with rectal cancer [50]. However, 

only first-order histogram-derived features (coefficient of variation, skewness and kurtosis) 

and none of the textural features of second-order or higher-order features (that actually take 

into account spatial distribution) were explored. In addition, since these metrics were 

compared in PET images obtained before, during and after therapy, their repeatability needs 

careful verification. Yet previous studies have shown a relatively low level of repeatability of 

these features, especially skewness [51, 52]. This challenge is not restricted to PET studies, 

as a recent study of the use of DCE MRI in lung cancer made exactly the same use of the 

term “textural”, although only first-order histogram-derived metrics were used [12]. Another 

example of potential nomenclature confusion is the use of the term “entropy” to mean 

“randomness” or “disorder” for the first-order metric, when it is actually the entropy of the 
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probability histogram [12]. Furthermore, we recommend using the terms “entropyGLCM” 

and “entropyHIST” in order to avoid confusion between the feature calculated in the co-

occurrence matrix and that calculated in the histogram, as an intuitive understanding of 

entropy may not apply to these metrics. Similarly, we recommend using the terms 

“contrastGLCM” and “contrastNGTDM” to avoid confusion.

Supplementary material section 3 contains a list of formulae for calculating TA metrics with 

detailed notes. Several software distributions have also been made available [53, 54], but 

there is a need to ensure that all feature calculations are accurately implemented before they 

can be reliably used for research. Supplementary material section 4 contains a list of several 

such codes with associated remarks.

Workflow complexity

One issue with TA is the very large number of parameters that can theoretically be 

calculated, in some cases over 100, as well as the number of ways they can be calculated. 

The recognized sources of variability (acquisition protocol, scanner type, quantitative 

corrections, type of reconstruction algorithm and parameters, postreconstruction image 

processing, region of interest definition, etc.) in the standard metrics (SUV, MATV) 

quantification may also have a similar impact on TA features. There are also additional steps 

and methodological choices that have a similar (if not higher) impact on the resulting TA 

metrics. Figure 1 illustrates the complexity of the TA workflow, with the different steps 

discussed in the following sections. Note than some upstream steps can also have an impact 

on these choices, such as the segmentation (see section PET tumour volume segmentation 

below).

First-order features estimate properties of individual voxel values, ignoring the spatial 

interaction between them (and as such cannot really be considered as “textural” features, 

because they do not differentiate spatial arrangements and patterns), whereas second-order 

and higher-order features estimate properties of two or more voxel values occurring at 

specific locations relative to each other. For these second-order and higher-order TA 

features, the first steps usually consist of resampling or interpolating the noncubic voxel 

grids into cubic voxels (seldom carried out) and performing quantization (systematically 

carried out, also called discretization, downsampling or resampling) of the original 

intensities (or SUV) into a discrete set of values. This number determines the size of the 

matrices that are built and in which TA metrics are subsequently calculated. Several methods 

have been proposed to perform this quantization (see Supplementary section 2) such as a 

linear distribution into a set number of bins (e.g. 32 or 64) [15, 25], the use of a clustering 

algorithm (Max-Lloyd) [55] or into bins of fixed width (e.g. 0.25 SUV [52] or 0.5 SUV [56, 

57]). The chosen quantization approach and value can have an important impact on the 

resulting TA metrics, as well as their relationship with tumour volume or SUVmax [51, 56, 

58–60], and it is thus an important factor that should not be overlooked, as illustrated in Fig. 

2.

The second step consists of building the texture matrices, of which several exist (e.g. grey-

level co-occurrence matrix, GLCM; neighbourhood grey tone difference matrix, NGTDM; 
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and grey level zone size matrix, GLZSM) and which can be built in different ways (see 

Supplementary material, section 3). For example, co-occurrence matrices quantify 

relationships between pairs of voxels. They are usually defined according to a given spatial 

direction and a given distance between the pairs of voxels. For a 3D analysis, 13 directions 

are often considered and one matrix is built per direction. The TA metric is then calculated 

in each of these matrices, and the 13 resulting values are averaged. Usually, the distance is 

set to one voxel. Modifying these choices (e.g. using only one matrix for all directions) can 

lead to different TA feature distributions (see Fig. 3), associated complementary value with 

other metrics, and as a consequence, overall clinical value [55, 60].

PET tumour volume segmentation

Numerous studies have used the least robust and/or accurate methods to define overall 

tumour volume, such as manual delineation or fixed thresholding. Single observer manual 

delineation suffers from high interobserver and intraobserver variability, whereas fixed 

thresholding significantly underestimates the true MATV extent by focusing on the tumour 

subvolume with the highest uptake [61, 62]. This in turn may bias the heterogeneity 

assessment and the associated ranking of intratumour heterogeneity levels. Another issue 

concerns the way the tumour volume is a priori considered in the analysis. More specifically 

one can define functional volume so that areas with low or no radiotracer uptake are 

included in the volume, or alternatively excluded from it. Excluding these areas would 

exclude necrotic regions but would also limit the risk of including nonpathological areas in 

the heterogeneity analysis. The choice of segmentation approach used may result in more or 

fewer constraints. For example, with a gradient-based tool [63, 64], the resulting contour is 

binary only and covers the entire tumour including areas without uptake (Fig. 4). On the 

contrary, with a method based on region growing or clustering paradigms [65, 66], the areas 

with uptake similar to the background uptake are usually excluded, although they could be 

included in the analysis with an additional step.

Statistical issues

In the vast majority of published studies no multivariate analysis including potential 

confounding factors was performed, nor a correction for multiple testing, and very rarely 

was robust machine learning with cross-validation used. Generally the patient cohorts 

considered have been very small with respect to the number of explored parameters and 

tested hypotheses. Ideally, these studies should be combined in a meta-analysis, but because 

of problems with how results have frequently been reported [21], such a meta-analysis is 

practically impossible. Finally, the study cohorts have often been heterogeneous in terms of 

staging or treatment modality, studies have most often been retrospective in nature, and the 

results have almost never been validated against external cohorts. A recent review of a 

selection of 15 studies (in both PET and CT) highlighted these issues, and showed that the 

majority of the studies suffered from at least some of these shortcomings. The review 

concluded that the clinical value of TA metrics extracted from CT or PET images remains to 

be demonstrated [28].
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Although the bias towards publishing positive results in the biomedical field is strong [29], 

one has to keep in mind that only a handful of studies have concluded that heterogeneity 

quantification does not bring any value regarding the clinical endpoint under consideration 

[67–69], with the overall trend being mostly positive. More specifically, in two studies in 

cervical cancer a metric based on a “volume versus threshold curve” was not able to predict 

outcome in 73 patients [67], contradicting a previous assessment in the same cohort [70]. 

Although other first-order features such as standard deviation, skewness and kurtosis were 

also included, it should be emphasized that this study essentially highlighted the fact that the 

metric based on the “volume versus threshold curve” is a surrogate for volume, not a 

measurement of heterogeneity (see also Supplementary material). The same authors further 

explored additional metrics (sphericity, extent, Shannon entropy and the accrued deviation 

from smoothest gradients, i.e. not TA metrics) in another group of 85 patients FIGO stage 

IIb cancer, with similar negative conclusions regarding the prediction of pelvic lymph node 

involvement [69]. Finally, in contradiction to the findings of these two studies, the same 

group also reported the results of another study in which TA metrics had predictive value of 

response to therapy in 20 patients with cervical cancer when considering their temporal 

evolution from baseline to week 2, week 4 and post-therapy PET scans [71]. It should also 

be noted that in all these studies MATV was delineated using a fixed threshold of 40% of 

SUVmax.

A recent study in breast cancer showed in a prospective homogeneous cohort of 171 women, 

that contrary to previous results obtained in a smaller cohort (n = 54) [72], none of the 

considered PET TA metrics were able to improve differentiation between the three main 

molecular subtypes of breast tumours beyond the standard clinical factors and SUV metrics 

[68].

Redundancy of features

The vast majority of studies were based on analysing a predetermined functional tumour 

volume, which is thus known prior to the heterogeneity characterization. Therefore a 

heterogeneity metric can only have complementary (or significantly higher) value if it is not 

highly correlated with the corresponding volume. The correlation between heterogeneity 

metrics and the MATV or another image-derived parameter (such as SUVmax, SUVmean or 

total lesion glycolysis = MATV × SUVmean [73]) can be explained by two different but 

complementary aspects: the mathematical/ algorithmic design of the parameter, and the fact 

that heterogeneity is intrinsically and biologically correlated with MATV. Indeed, the degree 

of uptake heterogeneity can be expected to be correlated with other tumour properties. In 

most solid tumours larger volumes exhibit a wider range of heterogeneity patterns and 

intensity than smaller ones. This is due first to the fact that larger tumours have more 

potential to be composed of several different types of tissues and regions with variable 

uptake that can be resolved on PET images than smaller volumes, for which a similar 

heterogeneity may exist at the cellular and tissue levels but is blurred due to limited spatial 

resolution. On the other hand, a correlation between high heterogeneity and high SUV seems 

less logical, since small areas of homogeneous uptake can have high or low SUVmax, 

whereas both larger homogeneous or heterogeneous lesions can exhibit a wide range of 

maximum uptake.
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The challenge for future studies is therefore to identify which part of the correlation comes 

from biological reality, from imaging limitations and/or from the mathematical and 

algorithmic definition of the heterogeneity metrics. Another challenge is to identify the level 

of correlation above which a TA feature should be excluded from subsequent multivariate 

analysis since it is unlikely to provide complementary information. This is less trivial than it 

may sound, since the absolute level of correlation varies depending on the chosen 

coefficients. Pearson coefficients may significantly underestimate the correlation between 

two metrics when the correlation is not linear. Kendall and Spearman coefficients both 

provide rank correlation assessments, but Kendall coefficients are usually smaller than 

Spearman coefficients, as illustrated in Fig. 5. These would thus require different scales to 

distinguish strong, moderate and weak correlations (in the case presented in Fig. 5, the 

correlation is above 0.9 using the Spearman coefficient but is below 0.8 using the Kendall 

coefficient). Using simple correlation coefficients to select features to combine in a 

multiparametric model may be suboptimal, and we recommend using robust machine-

learning techniques to achieve better redundancy analysis and feature selection/ 

combination.

Although it should be recognized that the relationship between tumour volume and the 

spatial resolution of PET has an impact on derived metrics, there is an additional factor to 

take into account for TA metrics that quantify intensity and spatial relationships between 

pairs or groups of voxels. The correlation between a TA metric and the volume of interest in 

which it is calculated needs to be analysed not only in terms of absolute volume, but more 

importantly in terms of the number of voxels involved in the calculation. For example, if we 

consider a given tumour volume sampled on a 2 × 2 × 2 mm3 or 4 × 4 × 4 mm3 grid, the 

entropyGLCM metric will have a higher value for the 2 × 2 × 2 mm3 image than for the 4 × 4 

× 4 mm3 image, not because of a higher heterogeneity, but only because of a higher number 

of voxels involved in the calculation.

This “number of voxels confounding effect” has been demonstrated in a recent study 

showing that the matrix grid in the reconstruction has a strong impact on most TA metrics 

[74]. It is especially important to take this into account in a multicentre study where 

reconstructed matrix sizes vary across sites. Regarding the tumour volume confounding 

effect, the correlation between TA metrics and tumour volume has been investigated in 

several studies [59, 60, 75, 76], two of which were specifically focused on the issue. The 

first found that the minimal volume of interest that would be sufficiently large for the TA to 

differentiate between different levels of heterogeneity is 45 cm3 [76]. This study was based 

on the use of a single TA feature (entropyGLCM) with a uniform quantization (Q = 152 

bins), an analysis in 2D with two directions (horizontal and vertical), with one co-occurrence 

matrix used for each direction followed by averaging the resulting values, and without 

testing different configurations. Another study tackled the same issue by considering 555 

tumours of five different types [60]. The correlation between TA metrics and volume was 

highly variable among TA features, decreased as tumour volumes increased, and depended 

on the quantization value and design of the co-occurrence matrices. The study also showed 

that using the same set of parameters as in the previous study [76] led to a very high 

correlation (>0.9) between the volume and entropyGLCM, whereas using a different 

configuration (a smaller quantization value of 64 and only one cooccurrence matrix taking 
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into consideration all directions simultaneously instead of averaging the values obtained in 

different matrices) the correlation dropped below 0.5. With this calculation, entropyGLCM 

thus provided complementary information to volume (Fig. 3), which also translated into 

complementary prognostic value: combining the two parameters improved the stratification 

of 101 patients with non-small-cell lung cancer (NSCLC) in terms of overall survival [60]. 

These two studies clearly highlight the need to carefully consider interactions between 

tumour volume and heterogeneity quantitative metrics. The latter study also showed that the 

choices made in the calculation workflow can determine the efficacy of a metric.

Beyond the relationships with tumour volume, TA provides the ability to calculate numerous 

parameters that also exhibit high levels of redundancy [59, 75]. It is therefore necessary to 

establish a method of selection amongst all calculated features (and amongst all ways of 

calculating them). The properties of an “ideal” heterogeneity metric as well as the 

recommended methodology to assess them are listed in Table 1.

Repeatability and reproducibility/robustness

Repeatability is a measure of precision under identical or near-identical conditions, e.g. 

double-baseline (also called test–retest) studies. Reproducibility, in contrast, is a measure of 

precision when location, measuring system or other factors differ [79]. In reproducibility 

studies, the objective is to measure the effects of different conditions on the performance of 

a quantitative imaging biomarker with the goal of demonstrating equivalent performance 

under less-restrictive study conditions. Repeatability has been studied for TA in PET, and it 

has been found that only a handful of metrics have repeatability limits similar to MATV and 

SUV measurements, and are therefore reliable enough to be considered further, especially in 

the context of therapy monitoring [51, 52, 57]. Regarding reproducibility or robustness, it 

has been shown that only a few features are robust with regard to variations in the type of 

image reconstruction algorithm [24, 52, 74, 80]. It has also shown that the effects of tumour 

segmentation [52, 57, 58, 75], postreconstruction smoothing [26], quantization [52, 58] and 

partial volume effect correction [75] vary among TA metrics.

More recently, the effects of respiratory motion have been investigated in two studies by 

comparing TA features on PET images of lung cancer patients with and without respiratory 

gating, and the studies showed that TA features may be affected in standard nongated 

acquisitions, particularly in the lower lung lobes [81, 82]. It has also been shown that the use 

of a respiration-averaged CT scan instead of a helical CT scan for attenuation correction of 

the PET data has a greater effect on SUV and total lesion glycolysis than on TA metrics 

[83]. Another study demonstrated that TA features calculated in parametric maps derived 

from dynamic PET acquisitions or from corresponding static SUV images are not 

significantly different, suggesting that heterogeneity quantification on parametric images 

using TA may not provide significant additional information compared to that provided by 

static SUV images [84]. Finally, it has also been shown that even basic stochastic effects of 

PET acquisitions can affect some TA metrics [85]. All these factors may affect not only the 

absolute values of calculated features, but also their correlation with volume. Figure 6 

illustrates this in a set of tumours reconstructed using two different voxel sizes (the only 

modified parameter in the reconstruction). Using either nearest-neighbour or B-spline 
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interpolation of the image with larger voxels exactly the same number of voxels was 

obtained as in the image with smaller voxels.

Promising clinical results

Demonstration of the clinical value of TA requires large cohorts of patients and rigorous 

statistical analysis. Although a number of studies have included only between 20 and 70 

patients [50, 71, 86–92], some of the most recent studies have included between 80 and 

more than 200 patients: 88 patients with oropharyngeal squamous cell carcinoma [93], 103 

with bone and soft tissue lesions [94], 101 with early-stage NSCLC [95], 112 with 

oesophageal cancer and 101 with NSCLC [60], 113 with glioma [36], 107 and 217 with 

oesophageal cancer [96, 97], 132 with lymph node involvement in lung cancer [98], 116, 

195 and 201 with NSCLC [99–101], 137 with pancreatic lesions [102], and 188 lesions in 

lymphoma patients [103]. Some of the most recent studies have also used more robust 

statistical analysis, compared to these recently reviewed [28], several of them using a 

machine-learning method, e.g. neural networks [96], support vector machines [94, 98, 103] 

or the least absolute shrinkage and selection operator (LASSO) [95, 101]. The majority of 

these recent studies have concluded that TA can provide useful quantitative metrics 

regarding patient management (prognosis, response to therapy, distant metastasis prediction) 

in different cancer models except one that showed more mixed results [104], whereas 

another concluded that the improvement, although significant, may not be sufficient to have 

a clinical impact [97].

A few recent studies have investigated the potential combination of image-derived features 

from both PET and the corresponding low-dose CT component of the PET/CT dataset [8, 

94, 98, 99, 103, 105], while in another recent study TA from PET and MRI were combined 

to predict lung metastases in soft-tissue sarcomas of the extremities [55]. A recent proof-of-

concept study (in two patients) has investigated the characterization of renal cell carcinoma 

in simultaneous 18F-FLT PET/MRI acquisitions (with images obtained before and during 

treatment) [106]. Finally, the combination of PET image-derived features and other 

contextual data may be considered. For example, in a recent study the combination of zone-

size nonuniformity extracted from pretreatment FDG PET and key immunohistochemistry 

metrics led to improved stratification in 113 patients with advanced stage oropharyngeal 

squamous cell carcinoma [107]. In another recent study, the combination of TA metrics 

extracted from both PET and low-dose CT components of PET/CT standard acquisitions led 

to higher prognostic stratification power than clinical staging [99].

When dealing with a large number of variables and cohorts of limited size, robust methods 

for feature selection combined with an appropriate classifier and testing with cross-

validation can provide tools with good performance. However, validation using an external 

cohort remains the gold standard, although it is still rarely performed in PET/CT studies. In 

a recent study, 31 of 101 patients were used for validation, and the first 70 for building the 

model [95]. Contrary to the field of PET/CT, the use of machine-learning techniques 

including robust feature selection, the combination of features within classifiers and cross-

validation or validation in an external cohort are well established in the fields of CT [7, 77, 

108, 109] and MR [110–114] radiomics.
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To date, only a limited number of clinical studies investigating TA in PET/CT have exploited 

up-to-date techniques from the field of machine learning. Recently, a more technical study 

showed that appropriate hierarchical forward selection of features combined with a support 

vector machine classifier can improve results [78]. A recent study focused on this topic and 

compared 14 feature selection methods and 12 classifiers using large CT datasets, ranking 

relative performance in terms of the accuracy and stability of each approach [77]. 

Interestingly, the performance was mostly affected by the choice of classifier (34 % of total 

variance). Although not yet performed on PET datasets, this work could nonetheless form 

the basis for selecting appropriate machine-learning methods for future studies investigating 

the value of TA in PET imaging.

Conclusions: a future for texture analysis in PET?

Although not impossible, it is challenging to compare the results from the numerous studies 

currently available and draw concrete conclusions as to the clinical value of TA in PET 

imaging. This is due to large variability in the implemented methodology associated with the 

workflow complexity involved in the calculation of features, in combination with the lack of 

technical details provided in most studies. In addition, numerous issues related to the 

statistical analysis and bias in publishing mostly positive results further increase the 

difficulty in drawing firm conclusions from the currently published literature. Keeping in 

mind these current limitations, it should nonetheless be emphasized that most currently 

published studies indicate that extracting more advanced image features from medical 

images, including PET/CT, provides complementary and additional value. Although the 

level of evidence is probably still insufficient, a positive trend can be observed. Thus the use 

of TA in PET/CT images should not be abandoned but rather reinforced by increasing the 

required level of conduct of the studies to enable the field to move forward. We suggest the 

following several objectives that we should consider as a community to achieve this:

1. Organize and develop a benchmark standard for TA metrics. This would include 

standardized physical and digital reference objects, open-source verified 

formulae and codes tested again reference objects, and expected values/results 

for comparison.

2. Generate and circulate draft recommendations on image preprocessing, analysis 

and standardization, especially within the context of multicentre studies. 

Convene consensus groups to review, revise and ratify.

3. Establish recommendations on methodological choices regarding the calculation 

of TA metrics and identify repeatable, reproducible and meaningful features (as 

well as their optimal calculation).

4. Share publicly available cohorts of patients with PET/CT images and associated 

clinical data, along with clinical endpoints (survival, response to therapy, tumour 

type classification, etc.) so that research groups can test/evaluate their workflow.

5. Support larger prospective multicentre studies and the use of robust statistical 

analysis by exploiting the methods from the field of machine learning.
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6. Adopt standards for publishing methods and results such as those promoted by 

the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) 

network [115].

7. Advocate for improved peer review, insisting on at least one “statistical 

reviewer” with knowledge of machine-learning methodologies.

Establishing a benchmark (objective 1) could start by providing users with tools to validate 

feature calculation codes. Test images with known and verified associated metrics values for 

a range of calculation methods and choices could be provided, so that users can validate 

their TA metric implementations [85].

The next step (objective 2) should consist of generating and circulating draft 

recommendations and guidelines regarding choices in preprocessing and segmentation steps, 

especially within the context of multicentre studies. Although variability inherent in merging 

results based on images from various devices and reconstructions algorithms from different 

vendors may be difficult to avoid, some recommendations can already be made based on 

current results. First, preprocess and resample images to a common voxel size, preferably 

isotropic [55]. This would allow major issues in comparing co-occurrence-derived metrics 

calculated with different spatial sampling to be avoided [55, 74]. Second, avoid 

postreconstruction smoothing altogether, or use appropriate edge-preserving filters [26]. 

Third, automated segmentation approaches with robustness against heterogeneous 

distributions should be used [61, 66]. Alternatively, if only fixed or adaptive thresholding 

methods are available, manual/visual checking and editing should be mandatory to avoid 

under-segmentation of areas of heterogeneous uptake.

Objective 3 could be achieved by establishing recommendations as to which features should 

preferably be used and which excluded (e.g. features that have been identified as having very 

poor repeatability and robustness), and recommendations for workflow choices to obtain 

features with the lowest redundancy and highest clinical value. In this regard, we provide in 

the Supplementary material a list of verified formulae for the usual features, as well as 

comments, corrections and implementation recommendations to avoid common mistakes 

and misconceptions. We also recommend that preferably features that have been 

demonstrated as robust and repeatable be relied upon [51, 52, 57, 58, 75].

Finally, beyond providing test images, objects, and open-source codes and formulae to 

improve standardization between research groups (objective 1), it would be beneficial to 

make available a benchmark containing publicly available clinical datasets of PET/CT 

images along with clinical end-point information (prognosis, response to therapy, tumour 

type, etc.) and other clinical data (objective 4). This would allow any research group to test 

its own workflow (image preprocessing, tumour segmentation, TA metric calculation, 

machine-learning feature selection and classifiers, etc.) and then compare its results with 

those of other groups. The Cancer Imaging Archive (TCIA) could support such efforts, as it 

already contains several publicly available cohorts of patients with images from various 

modalities and the associated clinical data.
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Further efforts along these lines could be organized within task groups of the EANM, QIBA, 

QIN, SNMMI and AAPM and this should be pursued as soon as possible if TA (and 

radiomics in general) are to have any future in PET/CT imaging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Workflow involved in the calculation and selection of texture analysis from a reconstructed 

PET image
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Fig. 2. 
Distributions with respect to (a) MATV and (b) SUVmax of four ► TA features (correlation 

and entropyGLCM from GLCM, complexity from NGTDM and zone size percentage from 

GLZSM) calculated after either quantization into a set number of bins (here 64) or into bins 

of fixed width (here 0.5 SUV). Note that correlation is not affected, compared to the three 

other metrics. Also, note the inverted correlation with MATV and SUVmax, when changing 

the quantization approach
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Fig. 3. 
Distribution of heterogeneity as measured with entropyGLCM with respect to MATV for 555 

lesions in five tumour types, according to four different configurations: with quantization of 

either 64 or 128 grey levels (uniformly distributed) and using either one single co-

occurrence matrix (without averaging) or 13 matrices followed by averaging
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Fig. 4. 
Trade-offs in segmentation results using (a) a contour-based approach (PETedge from 

MIMVista software, white external contour) or (b) a clustering-based approach (the FLAB 

algorithm, black countours). In a the light grey contour inside the tumour corresponds to a 

fixed threshold. In b the various areas with different uptake levels are automatically 

determined and may be included or excluded from the heterogeneity analysis at the cost of 

higher complexity
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Fig. 5. 
Relationship between a textural feature and the corresponding MATV in 116 patients with 

non-small-cell lung cancer (a linear scale, b log scale) and the resulting quantification of the 

correlation according to Pearson coefficients and different rank coefficients (Spearman and 

Kendall)
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Fig. 6. 
Distributions of heterogeneity (entropyGLCM) with respect to MATV for a set of 25 tumours 

reconstructed with either 4 × 4 × 4 mm3 voxels (a, b) or 2 × 2 × 2 mm3 voxels (c). The 

image with 4 × 4 × 4 mm3 voxels was upsampled to 2 × 2 × 2 mm3 voxels using either 

nearest neighbour interpolation (a) or B-spline interpolation (b)
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Table 1

Properties of an ideal heterogeneity metric

Property Recommended methodology for evaluation

Repeatable Compare metrics calculated on test-retest PET/CT images [51, 57]
using, for example, the Bland-Airman method

Reproducible/robust Compare metrics calculated through various analysis pipelines
(with/without preprocessing such as denoising or partial volume
effect correction, various segmentation approaches…) [57, 75]

Least redundant with other TA metrics
(and other variables)

Quantify and rank statistical correlations between features [59, 60, 75].
Use machine-learning techniques to select features and combine
them with other variables [77, 78]

Offers value in regard to a given
clinical endpoint

Quantify correlation with response to treatment, diagnosis, survival,
differentiation of tumour types using robust machine-learning
techniques for classification, logistic regression and multivariate
analysis, and learning/testing in separate cohorts (at least considering
leave-one-out cross-validation) [28, 77, 78]
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