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Graphical abstract

Inflammation-triggered combination delivery of anti-PD-1 antibody (aPD1) and CpG 

oligodeoxynucleotides (CpG ODNs) has been demonstrated to prevent cancer relapse utilizing 

post-surgical inflammatory response. The controlled release of anti-PD1 antibodies and CpG ODN 

by CpG DNA-based “nano-cocoon” can induce considerable immune response, which in turn 
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significantly prolonged the survival time and complete response (CR) rate. This study provides a 

new strategy to reduce the risk of cancer relapse and metastasis after resection of the primary 

tumor.
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Surgical treatment is usually the most effective therapeutic method for solid tumors. 

However, many patients develop recurrent disease post-surgery, which can lead to significant 

morbidity as well as mortality for cancer patients.1, 2 There is also suggestion that the 

inflammatory processes during wound healing following tumor resection may promote 

cancer progression.3-6 Increasing amounts of evidence indicate that the perioperative 

inflammation induced by trauma may pose a high risk for the development of tumor 

reoccurrence, acceleration of local remaining tumor relapse as well as the promotion of 

tumor invasion and metastasis.7-11 Hence, there has been strong interest in the development 

of strategies to prevent cancer recurrence after surgery. Current approaches rely on 

established treatments including systemic chemotherapy and radiotherapy, which carry high 

toxicity profiles.12 Recent successes of cancer immunotherapy suggest that it can be utilized 

to prevent cancer recurrence.13-15 Immune regulatory checkpoint inhibitors, including anti-

CTLA-4 and anti-PD-1/PD-L1, have shown exciting results in treating various types of 

cancer, such as melanoma.16-23. Programmed cell death protein 1 (PD-1) is expressed on 

various immune cells including activated T and B lymphocytes.21 The interaction between 

the PD-1 and its ligand 1 and 2 (PD-L1/2) is a key pathway hijacked by tumors to suppress 

immune response. Therefore, inhibition of the interaction between PD-1 and PD-L1 by anti-

PD antibodies can boost the immune response against cancer cells.16-23

Despite the impressive clinical data of anti-PD immunotherapy, the objective response rate 

in metastatic melanoma remains potential to increase.24, 25 Besides, side effects, such as 

autoimmune disorders from these agents can be significant.20, 26-28 Therefore, how to 

improve the therapy efficacy with insignificant side effects is a central theme for the anti-

PD-based cancer immunotherapy. For example, checkpoint inhibition combined with other 

immunomodulators has demonstrated a synergistic increase of antitumor activity.29, 30 

Moreover, the limited efficacy may also due to the lack of co-stimulation tumor 

microenvironment in the setting where the antigen-presenting cells (APCs) encounter the 

tumor cells and T cells.31-33 Current clinical research are investigating whether utilizing 

cancer immunotherapy earlier in the disease course will be more effective as there is less 

tumor burden and heterogeneity of the tumor cells.34, 35 Therefore, further efforts are 
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demanded to improve the clinical benefits of these immunomodulatory therapies while 

avoiding their untoward side effects.36-39

To address these limitations, we propose to develop a new cancer immunotherapy agent for 

the prevention of post-surgical tumor relapse. Tumor burden is the lowest after cancer 

surgery. Moreover, the local pro-inflammatory environment is conducive to immunotherapy 

by converting quiescent precursor lymphocytes into activated lymphocytes required for 

tumor eradication. To accomplish this, we have developed an innovative delivery carrier for 

the controlled release of loaded aPD1 and CpG ODNs in response to inflammation 

conditions (Fig. 1A). CpG ODNs trigger cells that express Toll-like receptor 9, including 

human plasmacytoid dendritic cells (pDCs), have potent immunostimulatory effects and can 

enhance the anti-cancer activity of a variety of cancer treatments.40, 41 Through an 

enzymatic rolling circle amplification (RCA) method42-46 specifically based on a template 

encoded with the CpG sequence, the carrier (designated as DNA “nano-cocoons”, DNCs) is 

assembled by a long-chain single-stranded DNA (ssDNA).47 The DNA is repeatedly 

containing interval CpG sequences and cutting sites of restriction enzyme HhaI, which are 

capable of digesting DNCs and subsequently generating CpG ODN fragments. To make the 

release event bio-responsive, HhaI is caged into triglycerol monostearate (TGMS) 

nanoparticles (TGMS NPs) and attached to DNCs. TGMS is an amphiphile whose ester 

linkage enables cleavage by esterases and matrix metalloproteinases (MMPs) that are highly 

expressed at the wound sites for developmental tissue remodeling.48 Triggered by the 

inflammatory condition occurring in the wound site of the tumor resection incision (Fig. 

1B), TGMS can be enzymatically cleaved,48, 49 thereby disassembling the cage and 

releasing the HhaI, which can further sequentially convert DNCs to CpG ODNs and release 

aPD1 as well. The combination action of sustained released CpG ODNs and aPD1 (Fig. 1C) 

can synergistically facilitate induction of durable and specific anti-tumor T-cell responses in 

a melanoma model, with a potential to avoid the toxic peak level in the body.

As shown in Supplementary Fig. S1, the synthesized ssDNA self-assembled into the three-

dimensional “cocoon”-like structure50, 51 with an average particle size of 150 nm, as 

revealed by the transmission electron microscopy (TEM) and atomic force microscopy 

(AFM).- As expected, the obtained DNCs can be digested into small homogeneous 

fragments treated with HhaI (Supplementary Fig. S2). More importantly, these 

homogeneous fragments can synergistically induce TNF-α and IL6 production in 

RAW264.7 cells (Supplementary Fig. S2), indicating that the DNCs can be degraded into 

CpG ODNs after restriction enzyme treatment. Two different control DNCs (cDNC) with a 

non-specific sequence were synthesized (Table S1) to verify our design. As shown in 

agarose gels (Supplementary Fig. S3), without HhaI treatment, these cDNCs cannot migrate 

in the gel as DNCs. While being treated with HhaI, the cDNC (with cutting sites, without 

CpG sequence) could be readily fragmented. However, the fragments cannot induce TNF-α 
and IL6 production in RAW264.7 cells (Fig. S2), while the other cDNCs (with CpG, without 

cutting sites) were resistant to cleavage by HhaI.

Next, we found that the enzyme could be caged into TGMS NPs with a diameter about 30 

nm monodispersed in PBS (Supplementary Fig. S4), with a loading efficiency about 0.4%. 

We validated that the enzyme activity of HhaI was significantly inhibited when caged into 
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TGMS NPs (Supplementary Fig. S5). We further demonstrated that TGMS NPs can 

efficiently attach to DNA nano-cocoon to form monodispersed nanocomposites TGMS-

DNC NPs after mixing, as revealed by TEM and dynamic light scattering (DLS) (Fig. 2A-

B). Once attached with TGMS NPs, DNA nano-cocoon displayed an obvious increase in the 

DLS measured diameter, from 150 nm to 210 nm. The nanocomposites showed excellent 

stability in physiological solutions as determined by DLS data. The cell viability assay 

further suggested that the nanocomposites showed insignificant cytotoxicity (Fig. S6). In 

addition, it is found that the aPD1 could be loaded into TGMS-DNC NPs after 

ultrasonication and incubation overnight at 4 °C, probably due to the hydrophobic and 

electrostatic nonspecific-interaction when antibodies penetrated into DNCs. The maximal 

loading efficiency of aPD1 was about 5.8%, as determined by the ELISA assay 

(Supplementary Fig. S7).

We then studied their controlled release profiles in response to inflammation conditions in 
vitro. Proteolytic enzymes, such as MMPs, are significantly up-regulated under 

inflammatory conditions like perioperative trauma.52, 53 We identified and confirmed that 

TGMS NPs were quickly dissociated by MMP9 treatment, as visualized by TEM imaging 

(Supplementary Fig. S8). We next evaluated the ability of TGMS-DNCs to disassemble and 

release the loaded aPD1 in response to the proteolytic enzymes. TGMS-DNCs were 

incubated at 37°C with lipase (esterase) or MMP-9 enzyme (500 ng/mL) in PBS. The 

degradation of DNA nano-cocoon and release profile of aPD1 were quantified by the 

agarose gel electrophoresis and ELISA assay, respectively (Supplementary Fig. S9). The 

data suggest that DNA nano-cocoons were degraded into small DNA fragments upon the 

MMP-9 treatment as time increased. The cumulative release profiles of DNA and aPD1 

revealed that lipase and MMPs could trigger fragmentation of DNCs and subsequently 

release the loaded aPD1. Whereas TGMS-DNCs in the PBS control solution remained stable 

and release insignificant amount of the aPD1 over time (Supplementary Fig. S9). 

Furthermore, the DNCs after MMP-9 treatment can effectively induce IL-6 and TNF-α 
production in murine macrophage (RAW264.7) cells, indicating that DNCs were digested 

into CpG nucleotides (Supplementary Fig. S10).

To further mimic the conditions of inflammation in vitro, RAW 264.7 cells were activated by 

treatment with lipopolysaccharide (LPS) (Fig. 2C). After 24 hours, the cell culture medium 

from the activated macrophages was added to TGMS-DNCs and incubated at 37°C. The 

release of CpG nucleotides and aPD1 were quantified in medium at different time points 

(Fig. 2D-F). Plotting cumulative release versus time revealed that the medium from the LPS 

activated macrophages triggered TGMS-DNCs degradation, leading to the sustained release 

of the aPD1. Whereas the medium of the nonactivated macrophage cultures did not. 

Furthermore, the atomic force microscopy (AFM) image and DLS data suggested that the 

TGMS-DNCs complexes remained stable when treated with the nonactivated macrophage 

cultures; while a high degradation efficiency of TGMS-DNCs complexes was observed 

when treated with the medium from the LPS activated macrophages (Fig. 2G-J).

To evaluate anti-tumor relapse of the TGMS-DNCs complexes post-operative, we next used 

the B16F10 mouse melanoma incomplete tumor resection model (which mimics local and 

systemic recurrences arising post-surgically) (Supplementary Fig. S11).13 To verify the up-
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regulated expression of MMP-9 in the operative site, medium from wound tissues at day 1–4 

post operation were tested for MMP-9 activity by ELISA (Supplementary Fig. S12). 

Significantly increased levels of active MMP-9 were observed in the wounds cultured ex 
vivo, compared to the presurgery and unwounded tissue, thereby indicating that surgery 

promotes the MMP-9 secretion in the wound site. After incomplete operation to removal of 

the tumor, the mice were local injected with single dose of varying drug formulations to 

resection bed, including PBS control (Group 1 (G1)), HhaI-TGMS-DNCs (G2), HhaI-

TGMS-cDNCs (including cutting sites of HhaI without CpG sequence)-aPD1 (G3), free 

aPD1/free CpG nucleotides (G4) and HhaI-TGMS-DNCs-aPD1 (G5) (aPD1, 0.5mg/kg. 

DNA, 10mg/kg). Tumor growth was monitored by the bioluminescence signals of B16F10 

cells and the sizes of the tumor (Fig. 3A-C). We demonstrated that mice receiving HhaI-

TGMS-DNCs-aPD1 treatment showed the smallest relapsed tumor volumes. Of note, 40% 

of mice showed complete responses to our combination therapy. The remaining mice 

showed substantially delayed tumor growth (Fig. 3B). In other tested groups, free aPD1 and 

free CpG nucleotides co-administered mice showed a modest delay of tumor growth but did 

not prevent relapse. Furthermore, the prevention of tumor relapse in mice treated with HhaI-

TGMS-DNCs and HhaI-TGMS-cDNCs-aPD1 was not more successful than the controls. It 

was also observed that these antibodies alone, without CpG DNCs, had insignificant efficacy 

toward tumor regression, indicating that CpG was critical to enhance the anti-tumor immune 

response together with aPD1 treatment. In addition to the prevention of tumor relapse, tumor 

size in mice was correlated with their survival (Supplementary Fig. S13). Complete tumor 

regression and survival (40%) was observed 60 days after combination therapy. Co-

administered free aPD1 and free CpG nucleotides modestly increased average survival 

times. Also neither HhaI-TGMS-DNCs nor HhaI-TGMS-cDNCs-aPD1 treatment improved 

survival over PBS controls.

To investigate the immunologic mechanisms behind the synergistic therapeutic effects of our 

formulation, tumor-infiltrating lymphocytes (TILs) from relapsed tumors were harvested and 

analyzed by the flow cytometry and immunofluorescence 10 days after surgery. It was 

verified that HhaI-TGMS-DNCs-aPD1 combined treatment increased both the percentage 

and absolute numbers of activated CD8+ T cells (CD8+CD44+CD62L-) in the relapsed 

tumors (Fig. 3D-E). Immunofluorescence staining also revealed that the relapsed tumors in 

control group had limited T-cell infiltration (Fig. 3F & Fig. S14). In contrast, tumors from 

HhaI-TGMS-DNCs-aPD1 treated mice were remarkably infiltrated by both CD8+ and 

CD4+ T cells. When absolute cell numbers and the mass of the pooled tumors were 

accounted for in the analysis, the total CD8+ T cells per mg of tumor in HhaI-TGMS-DNCs-

aPD1 combination-treated mice increased 2-fold over free aPD1 / free CpG nucleotides and 

HhaI-TGMS-cDNCs-aPD1 treated mice, and 10-fold over HhaI-TGMS-DNCs treatment and 

PBS controls (Fig. 3G). Besides, the tumor-infiltrating CD4+ FoxP3+ T cells were also 

studied (Supplementary Fig. S15). Likewise, the effective CD4+ cells were increased in 

combination-treated tumors as well compared with control groups. Collectively, the 

combination treatment not only increased the ratio of CD8+ T cells to Tregs, but also 

increased effective CD4+ T cells to Tregs (Fig. 3H).

To further demonstrate the potency of this formulation, we tested it in a metastasis tumor 

model by challenging mice with i.v. injection of luciferase expressing B16F10 cells one day 
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before surgery. After incomplete surgery to remove the most primary tumor, the mice were 

peritumorally injected with single dose of different formulations as indicated. The systemic 

antitumor immune response generated by injection of HhaI-TGMS-DNCs-aPD1 after 

surgery was clearly observed (Fig. 4A-B). Both the primary tumor and the disseminated 

tumors showed significantly delayed growth, with 40% of mice surviving 40 days. In sharp 

contrast, the antitumor immune response generated by the control groups had little effect on 

the distant metastatic in multiple organs, and showed negligible improvement of survival 

compared to the untreated groups (Fig. 4C). We further examined splenocytes responses by 

measuring their production of IFN-γ. Splenocytes harvested from mice in the 30th day were 

treated with irradiated B16F10 cell for 16 h. It was shown that after HhaI-TGMS-DNCs-

aPD1 treatment, the proportion of IFN-γ-secreting CD8 T cells in the spleen increased 

approximately 2-3 fold in mice compared to the control groups (Fig. 4D-E). Moreover, 

enhanced cytotoxic responses were also observed when incubated the splenocytes to B16F10 

cancer cells in vitro (Fig. 4F). Taken together, the systemic antitumor efficacy can be 

achieved by locally injecting HhaI-TGMS-DNCs-aPD1 into the operative site, eradicating 

tumors in situ as well as disseminating metastasized tumors.

Furthermore, besides the experimental metastasis model, we further tested the aPD1 delivery 

system in the spontaneous metastasis animal model. After spontaneous metastasis to the 

lung, the most primary tumor was removed by surgery as described above. The mice were 

injected with a single dose of different formulations as indicated. We then conducted the 

systemic administration of aPD1 by intravenous (i.v.) injection as a positive control. On day 

22, lungs were harvested for analysis. Compared to the mice treated with aPD1 i.v. injection 

or co-administrated with free agents peritumorally injected, the mice treated with the CpG 

DNA-based aPD1 delivery system showed remarkably reduced relapsed tumor as well as 

lung metastasis, as evidenced by the bioluminescence signals of B16F10 cells, the weight of 

relapsed tumor and photos of the whole lungs with their Hematoxylin and Eosin (H&E) 

staining. Next, we studied the survival of mice treated with the CpG DNA-based aPD1 

delivery system. The survival time of treated mice was significantly increased compared 

with the control groups.

In summary, we have developed a local delivery system for cancer immunotherapy that can 

substantially improve the ability of the anticancer immune response to treat remaining or 

metastasis tumors after the resection of primary tumors. The novel CpG DNA-based carrier 

not only served as a therapeutic loading matrix for aPD1, but can also enhance treatment 

efficacy after fragmentation. The sustained release and synergistic action of aPD1 and CpG 

ODNs in tumor sites can be activated by the inflammatory microenvironment induced by 

operation. It was substantiated that the bio-responsive controlled release of CpG and aPD1 

was more effective than free CpG nucleotides and aPD1. The controlled release can also 

prevent the risk of toxic peak dosage of aPD1 in the body. Beyond its potential for cancer 

immunotherapy, this programmed combination delivery strategy may inspire new treatments 

that involve the localized and bio-responsive release of other therapeutics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustration of delivery of CpG and anti-PD1 antibody (aPD1) by DNA nano-

cocoon under an inflammation condition. (A) CpG-sequence containing DNA nano-cocoon 

(DNC) loaded with anti-PD1 antibody and caged restriction enzyme for inflammation-

trigged fragmentation of DNC for releasing both CpG DNA and aPD1. (B) A schematic 

representation of in vivo tumor immunotherapy after primary tumor resection, local injection 

and treatment of DNC-based delivery system. (C) Released CpG DNA activates dendritic 

cells (DCs) to drive T cell response with aPD1 for PD 1 blockade.
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Figure 2. 
Characterization of CpG DNCs loaded with aPD1 and caged enzyme and enzyme-

responsive drug release. (A) TEM imaging of HhaI-TGMS-DNCs-aPD1 nanocomposites 

(Scale bar: 500 nm). Inset: zoom-in image (Scale bar: 200 nm). (B) Dynamic light scattering 

characterization of HhaI-TGMS-DNCs-aPD1 nanocomposites. (C) Schematic of LPS 

activation of RAW264.7 macrophages for mimicking inflammatory conditions. (D) Gel 

electrophoresis of HhaI-TGMS-DNCs-aPD1 nanocomposites incubated with cell culture 

supernatant from the activated and non-activated macrophages at the difference time points 

(Lane 0, 0min; Lane 1, 30min; Lane 2, 1h; Lane 3, 2h; Lane 4, 4h; Lane 5, 6h; Lane M, 

DNA ladder). (E-F) Percentage of DNA and aPD1 released from TGMS-DNC 

nanocomposites when incubated with cell culture supernatant from activated and non-

activated macrophages at different time points. (G-H) AFM images and hydrodynamic size 

of HhaI-TGMS-DNCs-aPD1 nanocomposites when incubated with cell culture supernatant 

from non-activated macrophages. (I-J) AFM images and hydrodynamic size of HhaI-TGMS-

DNCs-aPD1 nanocomposites when incubated with cell culture supernatant from activated 

macrophages (Scale bar: 500 nm). The error bars are based on the standard deviations (SD) 

of triplicated samples.
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Figure 3. 
In vivo tumor therapy to reduce post-surgical tumor relapse via CpG DNC delivery system. 

(A) In vivo bioluminescence imaging of the B16F10 tumors of the different groups after 

removal of primary tumor. (Group 1, PBS control; G2, HhaI-TGMS-DNCs; G3, HhaI-

TGMS-cDNCs-aPD1; G4, free aPD1/free CpG nucleotides; G5, HhaI-TGMS-DNCs-aPD1) 

(B) Quantified tumor signals and (C) mean tumor growth of different groups of mice after 

various treatments indicated. Pie chart shows percent CR rate (orange) (n=10). The black 

arrow indicates the surgery time. (D) Representative plots of T cells in relapsed tumors 

analyzed by the flow cytometry. (Gated on CD3+ T cells). (E) Representative plots of 

activated CD8 T cells (CD44+CD62L-) in relapsed tumors analyzed by the flow cytometry 

(gated on CD8+ T cells). (F) Immunofluorescence of relapsed tumors showed CD4+ T cells 

and CD8+ T cells infiltration (Scale bar: 100 μm). (G) Absolute number of the activated 

CD8 cells present in tumors for the study shown in C&D. (H) Ratios of the tumor-

infiltrating CD8+ T cells and effective CD4+ T cells over regulatory T cells in the relapsed 

tumors upon various treatments. Statistical significance was calculated by 2-way ANOVA 

using the Tukey post-test. P value: *, P<0.05; **, P<0.01; ***P<0.005.
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Figure 4. 
Systemic antitumor efficacy could be obtained by the local injection of DNC delivery 

system at the surgical site. (A) In vivo bioluminescence imaging of the B16F10 metastasis of 

different groups after removing of primary tumors at different time points. (G1, PBS control; 

G2, HhaI-TGMS-DNCs; G3, HhaI-TGMS-cDNCs-aPD1; G4, free aPD1 / free CpG 

nucleotides; G5, HhaI-TGMS-DNCs-aPD1). (B) Quantified tumor signals according to A. 

Every line represents one animal and each dot shows the whole animal photon count (n=3). 

(C) Kaplan Meier survival curves for treated and control mice. Shown are ten mice per 

treatment group. (D) IFN-γ CD8 CTLs T-cell in splenocytes of mice with various treatments 

indicated in A. (E) Quantified IFN-γ CD8 CTL T-cell in splenocytes from three independent 

experiments. (F) CTL-mediated immune responses measured by incubating restimulated 

splenocytes with B16 tumor cells. The error bars are based on the standard error of the mean 

(SEM) of three mice.
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Figure 5. 
Antitumor efficacy by the local injection of DNC delivery system in spontaneous metastasis 

model. (A) In vivo bioluminescence imaging at different time points of the B16F10 

metastasis of different groups after removal of primary tumors. (G1: PBS control, G2: aPD1 

i.v. Inj., G3: aPD1+CpG local Inj., G4: HhaI-TGMS-DNCs-aPD1) (B) Representative lung 

photographs and H&E-stained lung slices collected from mice post different treatments 

indicated (Scale bar: 150 μm). (C) Average weights of relapsed tumors collected from mice 

in the end of various treatments indicated. (D) Quantification of lung metastasis nodules 

after different treatments. (E) Quantified tumor signals according to A. (F) Kaplan Meier 

survival curves of mice in after various treatments indicated. Shown are ten mice per 

treatment group. P value: *, P<0.05.
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