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Abstract

For the purpose of improving recombinant protein production from mammalian cells, an unbiased,
high-throughput whole-genome RNA interference screen was conducted using human embryonic
kidney 293 (HEK 293) cells expressing firefly luciferase. 21,585 human genes were individually
silenced with three different siRNAs for each gene. The screen identified 56 genes that led to the
greatest improvement in luciferase expression. These genes were found to be included in several
pathways involved in spliceosome formation and mRNA processing, transcription, metabolic
processes, transport and protein folding. The 10 genes that most enhanced protein expression
when down regulated, were further confirmed by measuring the effect of their silencing on the
expression of three additional recombinant proteins.

Among the confirmed genes, OAZ1- the gene encoding the ornithine decarboxylase antizymel-
was selected for detailed investigation, since its silencing improved the reporter protein production
without affecting cell viability. Silencing OAZZ caused an increase of the ornithine decarboxylase
enzyme and the cellular levels of putrescine and spermidine; an indication that increased cellular
polyamines enhances luciferase expression without affecting its transcription. The study shows
that OAZ1 is a novel target for improving expression of recombinant proteins. The genome-scale
screening performed in this work can establish the foundation for targeted design of an efficient
mammalian cell platform for various biotechnological applications.
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Introduction

RNA interference (RNAI), first discovered as a natural biological process of eukaryotic cells
for protecting the genome against foreign nucleic acids (Napoli et al., 1990; van der Krol et
al., 1990), has been developed and utilized as a revolutionary tool in deducing gene
functions and in combating genetic defects, viral diseases, autoimmune disorders, and
cancers (Aagaard and Rossi, 2007). siRNAs are 21-25 nucleotide double-strand RNA
fragments with symmetric 2-nucleotides 3’-end overhangs (Hamilton and Baulcombe,
1999). The guide strand of siRNA can be incorporated into RNA-induced silencing complex
(RISC), which brings about sequence-specific degradation of the homologous single
stranded mMRNAs (Jinek and Doudna, 2009). In recent years, large-scale genetic screens have
been made possible by the availability of genome-wide siRNA libraries, as well as the
development of sophisticated new instrumentation and bioinformatics approaches for data
analysis (Conrad and Gerlich, 2010; Huang et al., 2009). They have been used to investigate
the biological functions of specific genes and pathways in various diseases (Seyhan and Rya,
2010) and important biological processes, including signal transduction, cell aging or death,
cell or organelle organization, protein localization and responses of host cells to pathogens
(Bard et al., 2006;.Brognard and Hunter, 2011; Cherry, 2008; Ni and Lee, 2010;0rvedahl et
al., 2011). However, there has been limited use of a genome-wide siRNA screen for
improving heterologous protein production (Bard et al., 2006; Simpson et al., 2012), an
important process intensively investigated by the pharmaceutical and biotechnology
industry.

In the current work, we performed a genome-wide siRNA screen to identify genes that may
influence recombinant protein production, using Photinus pyralis (firefly) luciferase as a
reporter protein. With a high-throughput format, 21,585 genes were individually silenced
with three different siRNAs, in HEK-CMV-Luc2-Hygro cells constitutively expressing
firefly luciferase. The viable cell number and the luciferase activity were measured
following the screening and the results were incorporated into genome-wide loss-of-function
data. Statistical data analyses were conducted, followed by a validation screen where ten
target genes (leading to greatest improvement of luciferase production) were confirmed.
Among these selected genes, OAZI the gene that encodes antizyme 1, an inhibitor of
ornithine decarboxylase (Pegg, 2006),was chosen for more detailed studies, since its
silencing caused minimal effect on cell viability.

Materials and Methods

Cell culture

HEK-CMV-Luc2-Hygro cell line constitutively expressing £ pyralis luciferase (Progema)
and HEK- GPC3-hFc cell line constitutively secreting glypican-3 hFc-fusion protein (GPC3-
hFc)(Feng et al., 2013) (a gift from Dr. Mitchell Ho, NCI, National Institutes of Health)
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were maintained in DMEM containing 10% fetal bovine serum (FBS). The inducible T-Rex-
SERT-GFP cell line (Abdul-Hussein et al. 2013)and T-Rex-NTSR1-GFP cell line (Xiao et al.
2015) were maintained as an adherent culture in DMEM containing 10% certified FBS,
5ug/mL blasticidin and 200ug/mL zeocin (Invitrogen). All cells were maintained in a
humidified incubator set at 37°C and 5% CO»

High-throughput genome-wide screen for luciferase expression

The Silencer® Select Human genome siRNA library (Ambion), which targets 21,585 human
genes with 3 siRNAs per gene, was used for screening. Each siRNA is arrayed in an
individual well (Corning 3570, 384 well, white, solid bottom plates). The transfection was
done in duplicates: 0.8 pmol of each siRNA was spotted to a well of a 384-well plate
(Corning) and 20 uL of serum-free DMEM containing 0.07 pL of Lipofectamine RNAiMax
(Life Technologies) was then added to each well. This lipid-siRNA mixture was incubated at
ambient temperature for 30 minutes prior to addition of 4000 cells in 20 uL of DMEM
containing 20% FBS (Gibco). After incubating the transfected cells at 37°C in 5% CO for
72 hours, 20 uL of ONE-Glo™ Reagent (Promega) was added to one set of replicates for
‘overall luciferase yield’ quantification and 20 pL of Cell Titer-Glo™ Reagent (Promega)
was added to the second set of replicates for “viable cell density’ measurement. All plates
were incubated at room temperature for 20 minutes to stabilize the luminescent signal and
the signal was then measured with PerkinEImer Envision 2104 Multilabel plate reader. All
plates had a full column (16 wells) of Silencer Select Negative Control #2 (Life
Technologies) for data normalization and a full column of s/PLKZ (Ambion Silencer Select,
cat# s448) was also used as on-plate reference for transfection efficiency. Both controls were
also used in all validation transfections.

The 56 genes which got targeted by at least two independent siRNAs (out of three) resulting
in enhanced luciferase production with MAD-based z-score>3 from the primary screen were
subjected to validation screen using 3 additional Silencer® siRNAs (Ambion) with different
sequences from those used in the primary screen. Ten gene candidates were selected based
on the criteria that 3 out of 6 SiRNAs displayed a MAD-based z-score>3. The transfection
and assay processes were the same as in the primary genome-wide screen. Data visualization
was performed in R computational environment (https://www.R-project.org/) by using
‘hexbin’ and “‘ggplot2’ packages (R Core Team, 2015; Carr, 2015; Wickham, 2009).

Statistical analysis of primary screen data

The screen generated end-point data for ‘overall luciferase yield” and “viable cell density’ in
each well. For each plate, the median value of the negative control wells was set as 100%
and was used to normalize corresponding sample wells. The “overall luciferase yield” and
‘viable cell density’ were exported as % of negative control and the median absolute
deviation (MAD) - based z-score was calculated for each sample (Chung et al., 2008).

Gene ontology (GO) analysis

In order to get the maximum coverage of GO annotation data for 119 selected siRNA’s
targeting 56 genes, PANTHER classification system (http://www.pantherdb.org/) and
AmiGO 2 GO browser were used (Mi et al., 2013; Carbon et al., 2009). The construction of

Biotechnol Bioeng. Author manuscript; available in PMC 2017 January 31.


https://www.R-project.org/
http://www.pantherdb.org/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Xiao et al. Page 4

a heat map was accomplished using Partek® Genomics Suite® software, version 6.6
Copyright ©; 2015, Partek Inc., St. Louis, MO, USA.

Validation transfection

Ten targeted genes were selected and tested in four HEK 293 cell lines expressing different
reporter proteins, glycan-3 hFc-fusion protein (GPC3-hFc), neurotensin receptor type 1-GFP
(NTSR1-GFP) and serotonin transporter-GFP (SERT-GFP), using 1 representative SiRNA
for each gene. Transfection was performed in 12-well plate format. 500uL of serum-free
DMEM media containing siRNA and Lipofectamine RNAiMax was incubated in each well
for 20 min at ambient temperature and 500uL DMEM containing 20% FBS and cells was
then added for transfection. The final sSiRNA concentration in each well was 40nM.
Lipofectamine RNAiMax volumne and cell seeding number in each well have been
optimized for each cell line (Table S1).

ELISA for determination of GPC3-hFc production

5 days after transfection, clarified cell culture supernatant was used for determination of
GPC3-hFc concentration by ELISA and cells were detached and counted by trypan blue
exclusion using a CEDEX cell quantification system (Roche, Mannheim, Germany).
AffiniPure F(ab’), Fragment Goat Anti-Human IgG (min X Bov, Ms, RbSrProt, Cat.
109-006-170, Jackson Immunology,5ug/mL in PBS) was used to coat a 96-well plate (50 uL
per well) at 4°C overnight. After blocking the plate with 2% BSA in PBS, 50ul of pre-
diluted cell culture supernatant was added, and the plate was incubated at room temperature
for 1 h to allow binding to occur. After the plate was washed twice with PBS containing
0.05% Tween 20, Peroxidase-conjugated AffiniPure Goat-anti-human IgG (Cat.
109-035-098, Jackson Immunology) was added at 1:4000 dilution (50uL/well). Following
incubation at room temperature for 1 hour, the plate was washed 4 times and signals were
detected with Peroxidase Substrate System (KPL).

Flow cytometry analysis for determination of NTSR1-GFP and SERT-GFP production

3 days after transfection, cells were induced with 1ug/mL tetracycline. 24 hours later, cells
from each well were detached with non-enzymatic cell dissociation buffer (Gibco, Cat. No.
13150-016) and washed twice with cold PBS. Cell densities were adjusted to 0.5 million
cells/fmL with PBS and then subjected to flow cytometry analysis. Green fluorescence was
measured with Guava Easycyte 5HT and Incyte software (Millipore). The green
fluorescence signal and cell gating were adjusted using uninduced T-REx-293-NTSR1-GFP
cells, with more than 99.5% of the cells in low fluorescence range (<100). The setting was
kept the same for all cell samples.

OAZ1 silencing studies

HEK-CMV-Luc2-Hygro cells in 6 well plates were transfected with Silencer siRNA for oaz1
gene (Catalog number: AM51331, assay ID: 46078). The transfection was done in 6-well
plate format: 0.12 nmol of each siRNA and 1.5mL of serum-free DMEM containing 11.25
uL of Lipofectamine RNAiMax (Life Technologies) was then added to each well. This lipid-
siRNA mixture was incubated at ambient temperature for 30 min prior to adding 2x10° cells

Biotechnol Bioeng. Author manuscript; available in PMC 2017 January 31.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Xiao et al.

Page 5

in 1.5mL of DMEM containing 20% FBS (Gibco). The transfected cells were incubated at
37°C in 5% CO, and were harvested after 24, 48, 72 and 96 hours. Luciferase activity was
determined using ONE-Glo™ Reagent (Promega) and aliquots of transfected cells.

Isolation of RNA and real-time gRT-PCR

Cells were trypsinized from 6-well plates, washed twice with cold PBS and cell pellets were
flash frozen on dry ice and stored at —80°C until extraction. RNA was extracted using the
RNeasy kit (Qiagen) and then treated with DNase using TURBO DNA-free™ Kit (Life
Technologies). cDNA was generated from the RNA using the Maxima Frist Strand cDNA
Synthesis Kit for qRT-PCR (Thermo Scientific). The real-time qPCR was performed using
Fast SYBR® Green Master Mix (Life Technologies) in 7900 HT Fast Real Time PCR
System (Applied Biosystems). The 2 AACt method was used for relative expression
analysis(Livak and Schmittgen, 2001) with GAPDH as the reference gene. Cells transfected
with negative control siRNA and harvested after 24hours were set as calibrator. Primers used
for each gene are: /uc (Promega), 5’-TCACGAAGGTGTACATGCTTTGG-3" and 5’-
GATCCTCAACGTGCAAAAGAAGC-3’; ODC1, 5’-TAAAGGAACAGACGGGCTCT-3’
and 5’- CCATAGACGCCATCATTCAC-3’; OAZI: 5’- GGAACCGTAGACTCGCTCAT-3’
and 5’-TCGGAGTGAGCGTTTATTTG-3’; GAPDH: 5’-
CATCAATGGAAATCCCATCA-3" and 5°- TTCTCCATGGTGGTGAAGAC-3’.

Western blotting

Transfected cells were lysed in buffer containing 50 mMTris-HCI, pH 7.4, 5 mM EDTA, 150
mM NaCl, 1% Nonidet P-40, and protease inhibitor mixture. Proteins (~20 ug) were
separated by SDS-PAGE (4-12% gel) in MES buffer and transferred to 0.2-um
nitrocellulose membrane for immunodetection using mouse anti-ODC (Sigma, catalog
number 01136) and mouse anti-p-actin (BD biosciences, catalogue humber 612657)
primary antibodies and HRP conjugated anti-mouse secondary antibodies (abCAM, catalog
number ab20043). Signals were detected with an ECL Plus chemiluminescence reagent.

Measurement of cellular polyamine concentration

Results

Cells in six-well plates were washed twice with PBS, harvested, and precipitated with 0.1mL
cold 10% trichloroacetic acid (TCA). A total of 50uL of the TCA supernatant was used for
polyamine analysis by an ion exchange chromatographic system (Biochrom). TCA
precipitates were dissolved in 0.1 N NaOH and aliquots were used for protein determination
by the Bradford method. Polyamine contents were estimated as nmol/mg protein.

1. Identification of genes whose silencing leads to enhanced luciferase expression

A human genome-wide siRNA screen was conducted in HEK-CMV-Luc2-Hygrocells by
using siRNA library targeting 21,585 human genes, with 3 independent arrayed siRNAs per
gene. The transfection was done in duplicate: one set of plates was used for measuring the
overall luciferase yield and the second set was used for the determination of viable cell
density, from which the per cell luciferase yield was calculated (Figure 1A). The distribution
of siRNA activity based on the overall luciferase yield is illustrated in the histogram shown
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in Figure 1B, where the red and blue colour circle indicates up and down regulation of
luciferase expression, respectively. Out of the 64,755 siRNA’s tested 1,681 significantly
enhanced luciferase expressions (MAD-based z-score > 3, or 40% to 178% higher than
negative control). From these 1,681 siRNAs, 56 genes with at least 2 siRNAs scoring > 3
MAD were selected and subjected to follow up evaluation with additional siRNAs.11,207
(17.3%) of the siRNAs tested, listed in Table S3, improved per cell luciferase expression by
more than 20% (Fig. 1C quadrant 1&I1), while only 254(0.4%) of the siRNAs tested, listed
in Table S2, achieved more than 20% enhancement in viable cell density (Fig. 1C quadrant
I&IV). The 168 siRNAs associated with the 56 selected genes are indicated by red or orange
circles, in which red was used as the colour for sSiRNAs with >3 MAD score,

2. ldentification of pathways affecting viable cell density and recombinant protein

productivity

To identify pathways that affect the reporter protein production, functional ontology
analyses were carried out using the 119 siRNAs (Table 3) against the 56 genes that
significantly improved the specific luciferase yield, using the PANTHER (http://
www.pantherdb.org/) (Mi et al., 2013) and AmiGO 2 GO browser (Carbon et al., 2009). The
heat map (Figure 2) shows that all the sSiRNAs enhanced per cell luciferase yield (pink to red
spectrum), but the majority negatively affected the cell viability (blue shades) which is
undesirable in recombinant protein production. The enhancer siRNAs were found to be
enriched in the following specific pathways: mRNA processing/spliceosome, transcription,
metabolic process, cation transport and protein folding.

3. Selection of ten genes whose silencing leads to enhanced luciferase expression

For selecting gene candidates for further work, three additional sSiRNAs were tested for each
of the 56 target genes identified from the primary screen. From the combined data of the
primary and the validation screen of the 56 genes, ten genes were selected, based on the
criteria that at least 3 out of the 6 siRNAs tested displayed a MAD-based z-scores higher
than 3.0 (Table 1). The viable cell number was also taken into consideration to remove
candidates with significant toxicity. The median value of the overall luciferase yield for each
selected gene calculated from the 6 SiRNAs was improved by 24% to 72% compared with
negative control, and the median of MAD-based z-scores ranged from 2.13 to 4.55.

Four out of the ten target genes, INTS1, INTSZ2, HNRNPC, and PRPF19, are involved in
mRNA splicing process; they encode important proteins for spliceosome formation, such as
integrator complex, heterogeneous nuclear ribonucleoprotein and pre-mRNA processing
factor 19. The remainder of the identified genes encodes proteins involved in a wide span of
biological functions, including cell growth and division, signal transduction, apoptosis,
regulation of cellular polyamine concentration and protein translation and folding.

4. Effects of silencing the ten target genes on secreted and membrane protein production

To examine the silencing effect of the 10 selected genes on the expression of other

recombinant proteins from HEK293 cells, three additional cell lines were tested: 1) HEK-
GPC3-hFc cell line, which constitutively secretes glypican —3 hFc-fusion protein (GPC3-
hFc) (Feng et al., 2013) as a representative of antibody secreting cell lines, 2) T-REx-293-
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NTSR1-GFP cell line constructed previously for the production of functional neurotensin
receptor type | (NTSR1)(Xiao et al., 2015) and 3) T-REx-293-SERT-GFP cell line (Abdul-
Hussein et al., 2013), an inducible cell line for high level expression of serotonin transporter
(SERT), a “hard-to-express” 12 transmembrane domain protein. Both NTRS1 and SERT
were fused with GFP at the C-terminus, allowing proximal protein quantification by flow
cytometry. As shown in Figure 3, the siRNAs against the ten selected genes exhibited
varying effects on the expression of the secreted and the membrane proteins. The silencing
of INTS1, HNRHPC, OAZ1 and PPPZR1A consistently improved the expression of all
reporter proteins tested. However, the silencing of /N7SZ and HNRNPC led to a
significantly reduced viable cell number, an indication that these genes may be essential for
cell survival or cell growth. Silencing of the OAZI and PPP2R1A genes showed minimal
negative effects on the viable cell number.

5. Effect of silencing OAZ1 on luciferase expression

Among the selected genes, the antizyme 1 (OAZZ) was chosen for follow-up studies since
its silencing consistently improved cytosolic, secreted and membrane protein expression and
caused minimal growth disadvantage in the four cell lines tested (Figure 3). Five of the six
OAZ1siRNAs tested (Table 2) enhanced luciferase production (luciferase activity (%)) by
28-74%, and OAZ1 siRNA5 was chosen for the rest of the study. Unlike OAZ1 siRNAs, the
siRNAs against antizyme isoforms OAZ2 (a minor isoform) and OAZ3 (a testis specific
form) caused no significant enhancement of luciferase production (Table 2).

As cells transfected with siOAZ1 showed significantly higher luciferase production for an
extended period of time (Figure 4A), the efficacies of silencing antizyme 1 was evaluated
with gRT-PCR (Figure 4B). The expression of OAZ1 mRNA in the 24-72 hour period
following the transfection of siRNA, was less than 3% compared with negative control
siRNA-transfected cells, confirming the silencing by the siRNA. Throughout the 96 hour
period luciferasem RNA levels did not increase and remained somewhat lower than those of
negative control cells (Figure 4C), an indication that the enhanced luciferase production is
the result of an increased translation.

6. Effect of silencing OAZ1 on ornithine decarboxylase (ODC) and cellular polyamines

OAZ1 is a negative regulator of the ODC, a rate-limiting enzyme in the polyamine
biosynthesis (Coffino, 2001; Kahana, 2009; Pegg, 2006). OAZ1 inactivates ODC by forming
heterodimers with the ODC monomer and by directing the protein to degradation by the 26S
proteasome (Miyazaki et al., 1992; Murakami et al., 1992). OAZ1 itself is regulated by
antizyme inhibitor (AZIN), an ODC-like protein that increase the ODC concentration as a
result of reducing OAZ (Scheme 1). As seen in Figure 5A, the silencing of OAZ1 with
SiRNA increased significantly the ODC level from 24 to 96 hours, as was expected from the
known inhibitory effect of OAZ1 on ODC. But at the same time little or no change in the
ODC level was observed in the un-transfected and in the negative controlled transfected
cells. The elevated ODC is obviously not the result of enhanced ODC transcription, since
gRT-PCR analysis shown consistent reduction of ODC mRNA levels after OAZZ silencing
(Figure 5B). As seen in Figure 5C, silencing OAZI caused changes in cellular polyamine
levels; the putrescine concentration was 10 fold higher compared with the negative control
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cells. Spermidine concentration was increased to a lesser extent, whereas spermine was
either unchanged or reduced.

7. Effects of exogenous polyamines on luciferase protein expression

Increased cellular polyamines in OAZZ-silenced cells are most likely responsible for the
enhanced cellular production of the reporter proteins. To further verify this, the impacts of
exogenously added polyamines on luciferase expression level and viable cell number were
determined. As can be seen in Figure 6A, up to 40% increase of luciferase expression was
observed when putrescine was added to medium at 100 uM and 10% enhanced growth was
observed with putrescine addition at 50 uM. Higher concentrations did not lead to further
enhancement of luciferase production. The spermidine effect is seen in Figure 6B; 36%
increase in luciferase expression was observed at 20 UM, and 24% increase in cell growth
was achieved at 10 pM. In case of spermine addition, only 16% increase in luciferase
expression was observed at 10 uM and higher concentrations caused reduction in both
luciferase expression and viable cell(Figure 6C). The inhibitory effects of spermidine (>100
uUM) and spermine (>20 uM) are probably due to generation of the toxic oxidation products
by ruminant serum oxidases present in the culture medium (Pegg, 2013).

Discussion

Cultured mammalian cells are the dominant vehicle for production of recombinant proteins
for bio-therapeutics and structural studies. As a result, continuous effort has been directed
toward improving cellular production capabilities. Previous work (Xiao et al., 2014)
demonstrated the ability to improve recombinant protein expression based primarily on
knowledge of specific genes and pathways, yet there is a need for discovering novel genes
and pathways for further improvement of production. Genome-wide screening using SIRNA
has emerged as a powerful tool for probing gene functions and for target discovery in
various diseases (Bard et al., 2006; Brognard and Hunter, 2011; Cherry, 2008; Ni and Lee,
2010; Orvedahl et al., 2011). However, it has rarely been used to identify targets for
enhanced recombinant protein production (Bard et al., 2006; Simpson et al., 2012).The
purpose of the present study was is to discover new candidates suitable for improving
recombinant protein production from HEK 293 cells, by performing high throughput RNA
interference screen.

An HEK293 cell line expressing the luciferase reporter was subjected to interference with
64,755 siRNAs targeting 21,585 human genes. 1,681 siRNAs (2.6% of the library) improved
the luciferase expression with an MAD-based z-score >3. To eliminate the introduction of
“false positives’ due to off-target effects, gene hits were considered “true positives’ only if
more than two single siRNAs targeting the gene passed the MAD-based z-score >3. As a
result, fifty six genes were selected and validated with 3 additional siRNAs for each gene.
From the data generated by the six siRNAs for each of the 56 genes, ten genes were selected
for further analysis. These genes showed an increase in luciferase yield of 3 MAD-based z-
scores by 3 or more siRNAs, corresponding to a 40% increase in luciferase activity.

The effects of the siRNAs targeting the ten identified genes on recombinant protein
expression from the HEK cells were assessed further by measuring the expression of three
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additional recombinant proteins: a secreted protein (GPC3-hFc) and two “hard-to-express”
membrane proteins (neurotensin receptor type | and serotonin transporter). Silencing of the
INTS1, HNRHPC, OAZ1, and PPP2R1A genes consistently improved production of all the
tested proteins. Of these four genes, silencing /N7S1 or HNRHPC affected cell viability of
the other two genes that only slightly affected the cell, OAZZ was chosen for follow-up
studies.

The identification of OAZ1 as a gene whose silencing can enhance recombinant protein
production is an indication that this gene normally suppresses protein synthesis. This is
compatible with the known function of theOAZ1 as a negative regulator of polyamine
homeostasis, cell proliferation and transformation (Bercovich et al., 2011; Coffino, 2001;
Kahana, 2009; Pegg, 2006). OAZ1 is a negative regulator of ODC, a rate-limiting enzyme in
polyamine biosynthesis. OAZ1 itself is known to be regulated by AZIN, an ODC-like
protein that increases the ODC concentration as a result of reducing OAZ1 concentration
(Scheme 1). Silencing of OAZ1 was also associated with increased cellular levels of
putrescine and spermidine, and addition of external putercine and spermidine caused
increased protein expression in the control cells. The observation that increasing the
concentration of cellular putrescine and spermidine increases the biosynthesis of reporter
proteins without increasing their transcription provides new insights into the primary
function of polyamines in the regulation of translation. Consistent with this observation is
published information (Mandal et al., 2013) that depleting cellular spermidine and spermine
by over-expressing spermidine/spermine N1 -acetyltransferase 1(SSAT1) led to suppression
of protein biosynthesis without inhibiting DNA and RNA biosynthesis. We believe that this
report is the first to identify polyamine pathways as promising targets for improved
recombinant protein production.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Genome-wide human siRNA library screen with HEK-CM V-luc2-Hygro cell line
(A) Workflow of the primary screen; (B) Distribution of siRNA effect on improved overall

luciferase expression, The 119 siRNAs corresponding to 56 identified genes with strong
enhancer MAD z-score (>3) are indicated as black circles. (C)Relative per cell luciferase
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SiRNAs associated with top 56 genes with a MAD-z score>3 are indicated as red circles and
those with MAD-z-score < 3 as orange circles.
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Scheme 1. Schematic diagram of polyamine pathway and regulation of ornithine decarboxylase
(ODC) by antizyme (OAZ) and antizymeinhibitor (AZIN)

Simplified pathway of polyamine synthesis from ornithine is indicated by solid arrows and
polyamine catabolism by broken arrows. ODC is regulated by OAZ whose translation is
turned on by +1 ribosomal frame shifting at a high concentration of polyamines. OAZ is in

turn regulated by AZIN, which is an ODC-like protein, but devoid of the enzyme activity.
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Table 2

The list of siRNASs targeting the polyamine pathway genes, OAZ1, OAZ2, OAZ3, ODC and AZIN1 and their
effects on luciferase activity, cell viability and per cell luciferase yield. The data are from the primary siRNA
screen, except for the last three additional siRNAs against OAZ1

Gene Symbol siRNA sequence Luciferase Viable cell Per cell
activity (%) number (%) luciferase
yield (%)
GCCUUGCUCCGAACCUUCALtt 161.1 94.8 169.9
GAUUAUCCUUGUACUUUGALt 144.5 101.9 141.8
GGCUGAAUGUAACAGAGGALt 127.6 94.9 134.5
oAzt CCGUAGACUCGCUCAUCUCtt 174.4 85.4 204.2
GCUAACUUAUUCUACUCCGtt 171.1 110.6 154.7
GGGAAUAGUCAGAGGGAUCHt 92.8 102.7 90.4
ACAUCGUCCACUUCCAGUALt 97.4 96.3 101.1
OAZ2 GGACCUCCCUGUGAAUGAULt 95.4 86.0 110.9
CAGAUGGAUUAUUAGCUGALt 94.9 105.4 90.0
CCGGGAAAGUUUGACUGCALt 101.5 75.8 133.9
OAZ3 CCACGACCAGCUUAAAGAALt 90.5 95.76 94.5
GACUUUCACUUCCGCCUUALt 74.3 87.7 84.7
GAUGACUUUUGAUAGUGAALt 18.0 56.1 321
ODC1 GCAUGUAUCUGCUUGAUAULtt 20.0 50.7 39.4
GCUUGCAGUUAAUAUCAUULt 28.4 60.8 46.7
CACUCGCAGUUAAUAUCAULt 25.2 64.6 39.0
AZIN1 CGAUGAACAUGUUAGACAULt 30.4 72.1 422
GCCCUCUGUUGGAUAUCUALt 45.6 72.1 63.2
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