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Abstract

Purpose—Network analysis has become increasingly popular in epidemiologic research, but the 

accuracy of data key to constructing risk networks is largely unknown. Using network data from 

people who use drugs (PWUD), the study examined how accurately PWUD reported their network 

members’ (i.e., alters’) names and ages.

Methods—Data were collected from 2008 to 2010 from 503 PWUD residing in rural 

Appalachia. Network ties (n=897) involved recent (past 6 months) sex, drug co-usage, and/or 

social support. Participants provided alters’ names, ages, and relationship-level characteristics; 

these data were cross-referenced to that of other participants to identify participant-participant 

relationships and to determine the accuracy of reported ages (years) and names (binary).

Results—Participants gave alters’ exact names and ages within two years in 75% and 79% of 

relationships, respectively. Accurate name was more common in relationships that were 

reciprocally reported and those involving social support and male alters. Age was more accurate in 

reciprocal ties and those characterized by kinship, sexual partnership, recruitment referral, and 

financial support, and less accurate for ties with older alters.
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Conclusions—Most participants reported alters’ characteristics accurately, and name accuracy 

was not significantly different in relationships involving drug-related/sexual behavior compared to 

those not involving these behaviors.
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INTRODUCTION

Social network analysis (SNA) has become increasingly popular in epidemiologic research 

[1, 2], particularly in the study of HIV, hepatitis C (HCV), and sexually transmitted 

infections (STIs) [3–5]. Since the beginning of the HIV epidemic, researchers have 

attempted to map sexual connectivity of HIV-infected and high-risk individuals in an effort 

to understand, predict, and prevent transmission of HIV. Increasingly sophisticated 

procedures to map “risk potential networks” [6], where individuals are connected by ties that 

spread infection, have expanded beyond HIV research and have yielded insight into the 

dynamics of transmission that were previously unattainable through the analysis of 

individual-level behavioral data alone. Risk network analysis, a subset of SNA, contributes 

to the understanding of transmission [7–15] and risk behavior [7, 16, 17] and can highlight 

opportunities for network-based intervention [18, 19]. However, despite these contributions 

and network analysis’s increasing popularity, methodological challenges persist and warrant 

recognition.

In studies of “hard to reach” populations, such as people who use drugs (PWUD), 

constructing risk networks is challenging. In network studies in less sensitive contexts, 

participants (i.e., egos), can nominate network members (i.e., alters) from a roster of names 

representing all members of the target population. However, in studies of PWUD, exhaustive 

lists are not available and using a roster would violate participants’ privacy by disclosing 

their drug use. Thus, the standard protocol in network-based epidemiological research in 

PWUD involves asking participants to free-list the name and basic demographic information 

(e.g., gender, age) of their alters. Staff then cross-reference the names and characteristics of 

alters with those of participants to construct a sociometric network representing all direct 

and indirect connections among participants (i.e., to determine when two egos have named 

the same alter and/or when an ego has named another ego). This process, referred to as 

duplicate removal or entity resolution (ER), is often difficult due to discrepancies in reported 

demographic characteristics and names. Figure 1 provides a simplified example of the ER 

process and demonstrates that the accuracy of ER relies heavily on the accuracy of reported 

identifying characteristics, such as age and name. Thus, examining patterns in the accuracy 

of these reported characteristics is critical to informing more accurate sociometric network 

construction.

Existing methodological publications on SNA focus primarily on participants’ recall of 

alters [20–25], consistency of network recall [20, 22, 26–31], and the impact of different 

network elicitation techniques on reported network size and characteristics [22, 24, 29, 30, 
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32–40]. However, research on the accuracy of demographic data reported by participants 

about their alters is scarce [27, 41–44]. HIV-related studies in Sub-Saharan Africa have 

found that egos reports of alters’ genders [41] and ages were fairly accurate [41, 43], though 

another found that women under-estimate their partner’s age [44]. The present study extends 

extant research by involving network data from a larger community-based sample in which 

egos were not specifically asked to recruit their described alters. Further, using network data 

from a sample of PWUD, the current analysis examined the accuracy of egos’ report of their 

alters’ ages and names and identified individual- and relationship-level correlates of accurate 

name and age reporting.

MATERIAL AND METHODS

Data for this analysis were collected during the baseline assessment of the longitudinal 

Social Networks among Appalachian People (SNAP) study, which examined HIV, hepatitis 

C, and herpes risk among 503 PWUD in Appalachia. Participants were recruited using 

respondent-driven sampling (RDS), in which participants were given three coupons to 

recruit their network members, who if enrolled in the study, were given three coupons to 

distribute, and so on; this process was initiated by 108 seeds (57 of whom recruited no one) 

and proceeded through a maximum of 14 waves (details described elsewhere [45, 46]). Once 

enrolled, participants completed questionnaires administered by community-based 

interviewers who had received training in human subjects’ research ethics. Participants were 

asked to provide the first names and last initials, ages, and genders of alters with whom they 

had sexual contact, used drugs (excluding alcohol and marijuana), and/or relied on for social 

support during the past 6 months. Participants could name up to eight alters for each 

relationship type (24 people maximum). For each name listed, egos were asked to provide 

additional information about each alter and his/her relationship with each alter (described 

below). Interviewers entered responses into computer-assisted interviewing software. The 

protocol was approved by the University of Kentucky Institutional Review Board, and a 

Certificate of Confidentiality was obtained. Participants provided written informed consent 

and were compensated $50 for their time.

Entity resolution

To confirm reported ties, the SNAP community-based interviewers who collected the data, 

assisted the data analysts with ER by comparing the names and demographic information 

they previously collected from participants about their network members against a list of 

participants’ names and demographic information (also from the interviewer-administered 

questionnaires). This multi-step process is shown in Figure 2. First, Microsoft’s “Fuzzy 

Look-up Add-in” [47] was used to cross-reference the names of reported alters (n=2,634) 

with those of participants (n=503) to produce possible matches based on name similarity. 

The algorithm produces a name similarity score (range 0 to 1), based on Jaccard similarity 

coefficients with built-in transformations (i.e., recognizing that ‘Bob’ may match with 

‘Robert’). Using a minimum Jaccard coefficient of 0.6, the fuzzy search yielded 2,269 

possible matches for 1,379 of the named alters; no match was identified for 1,255 alters. 

Second, interviewers reviewed and confirmed/disconfirmed (through consensus) each 

possible match, as well as the names without a match. Of note, the interviewers confirmed/
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disconfirmed relationship presence, not type (i.e., drug, sex, social support). Similar to 

previous research [7, 48], interviewers’ decisions were informed by whether they had ever 

observed the participants in question interacting in the office or in public, and also through 

awareness of participants’ kinship, residential proximity, and presence of mutual friends. 

The interviewers confirmed a total of 897 relationships between participants; representing 

34% of all reported relationships (other relationships involved alters for whom no match to a 

study participant was identified). Of note, the interviewers were not privy to any information 

through ER that they did not already know from conducting the interviews. Thus, 

interviewers’ involvement in ER did not pose additional risks to participants’ privacy.

The relationship between the network data and RDS referrals is shown in Figure 3. Of note, 

only RDS ties that could be confirmed as social network ties (209 of the 397 RDS ties) were 

included in this analysis because when egos did not name as a network tie the person who 

recruited them or whom they recruited, name and age accuracy could not be measured. The 

imperfect overlap between the RDS and social network ties is consistent with other research 

in which only a small fraction of RDS ties were also listed in the social network inventory 

[49].

Dependent Variables: Name and Age Inaccuracy

For alters confirmed to be participants, their ages and names as reported by egos were 

compared with their self-reported ages and names to determine accuracy. In this analysis, 

two dependent variables, age inaccuracy (difference in years, continuous) and name 

inaccuracy (binary), were examined. An alter’s name reported by an ego was considered to 

be inaccurate if the ego-provided first name and last initial did not match the first name, 

middle name, or nickname and last initial provided by the alter about him/herself. Of note, 

to account for women’s maiden names, the reported last initial was considered accurate if it 

matched the first letter of the alter’s middle name.

Independent Variables: Relationship characteristics

Two dyadic measures of ego-alter demographic similarity were examined: gender (1=same 

gender, 0=different gender) and age difference in years (continuous). Three binary measures 

characterized relationship type in the past 6 months as drug co-usage, sex, and social support 

tie. For each named alter, respondents were asked the relationship duration (years), kinship 

(immediate and extended family relations) (binary), if they relied on him/her for financial 

support (binary), if they shared drugs (binary), frequency of communication (ordinal, 5-point 

scale), trust (10-point scale), and the shortest road-network distance (miles) between 

geocoded residences (computed using the network analyst extension in ArcMap 10.1 and 

data from the North America Detailed Streets Layer Package) [50]; on the latter three, 

increasing values represented more frequent communication, trust, and distance, 

respectively.

Analysis

A total of 897 confirmed network ties were included in dyadic analyses examining correlates 

to reporting accuracy; these ties involved 463 of the 503 participants, 40 participants were 

not involved in a relationship with another participant. Given potential autocorrelation 
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among dyads involving the same ego, negative binomial and log binomial generalized 

estimating equations, which accounted for clustering by ego, were used to determine 

correlates to age and name inaccuracy, respectively. Crude and adjusted rate ratios (RRs and 

ARRs) and prevalence ratios (PRs and APRs) were estimated from the negative binomial 

and log binomial regressions, respectively, with 95% confidence intervals (CIs). Models 

were estimated using PROC GENMOD (SAS v9.4), and collinearity was assessed. 

Covariates reaching p<0.05 in bivariate analyses were entered into multivariate models, and 

those with p<0.05 after adjustment were retained to derive the most parsimonious adjusted 

model. RDS referral and reciprocal reporting (i.e., ties in which ego named alter and alter 

named ego) were not included in the final multivariate models, as they represent 

substantively different types of variables and are artifacts of the study’s design. Unlike the 

other interpersonal characteristics examined, RDS-referral is influenced by study-specific 

factors such as number of coupons received and available recruits [51, 52]. Similarly, 

reciprocal reporting may not reflect reciprocity in the nature of the relationship and could 

also be influenced by data reporting (e.g., participant recall, censoring, and information bias, 

overlap in ego-alter recall periods). The associations between age and name accuracy and 

RDS referral and reciprocal reporting, adjusting for other variables that were significant in 

bivariate analysis, were examined and are reported in the results.

RESULTS

Sample demographic and behavioral characteristics are described in detail elsewhere [53]. 

Briefly, the majority were white (94%), male (57%), not married (74%), high school 

graduates (57%) and employed (58%). Median age was 31 years (interquartile range: 26–

38). Characteristics of reported relationships are described in Table 1. Of the 897 confirmed 

relationships, 90% involved drug co-usage and 33% involved sexual partnership. In 22% of 

relationships, egos reported that they injected with their alter, and in 64% of those 

relationships, they reported sharing injection equipment.

In 36% of relationships, alter ages were accurately reported by egos (i.e., age difference of 0 

years); reported ages were within one year or two years of alters’ actual ages in 32% and 

12% of relationships, respectively. The inaccuracy of reported age exceeded 5 years in only 

7% of relationships. Overall, a significantly greater proportion of egos over- rather than 

under-estimated their alters’ ages (35% and 29%, respectively; p=0.045).

Reported ages were significantly more inaccurate in relationships reported by older egos and 

those involving older alters (Table 2). Ages were also more inaccurate in relationships in 

which the ego and alter were the same gender, had a greater age difference between them, 

and who communicated less frequently. Reported ages were less inaccurate in relationships 

involving sexual partnership, drug co-usage and sexual partnership, social or financial 

support, kinship, and increased trust. Of note, gender similarity was collinear with sexual 

partnership (97% of sexual relationships involved opposite sex partners). Because gender 

similarity was not significantly associated with name inaccuracy after controlling for other 

variables in the multivariate model, sexual partnership was used in the final multivariate 

models. Because the variable representing sexual partnership and the one representing 

sexual partnership and drug co-usage were collinear, they could not be included in the same 
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model; therefore, two multivariate models were estimated (Models 1 and 2, Table 3) in 

addition to another (Model 3, Table 3) that used a combined drug/sex variable. In 

multivariate analyses, kinship, receipt of financial support, alter age, and age difference were 

significantly associated with age inaccuracy, as were sexual relationships and partnerships 

involving drug-co-usage and sex(compared to partnerships involving only drug co-usage or 

sex or neither).

In 75% of confirmed relationships, participants accurately reported partners’ names. Of 

these, 82% matched on the first name, 8% on the middle name, and 10% using a nickname. 

As shown in Table 2, name inaccuracy was significantly less common in relationships 

involving male alters, those in which the alter was providing social support to the ego, and in 

relationships involving sex but no drug co-usage. In multivariate analyses, alter gender 

(APR: 0.58, CI: 0.46, 0.72, p<0.001) and social support (APR: 0.75, CI: 0.59, 0.95, 

p=0.019) were negatively associated with name inaccuracy; relationship type (i.e., sex, but 

no drug co-usage) was not associated with name inaccuracy (APR: 1.86, CI: 0.82, 4.23, 

p=0.136; data not shown in table), controlling for social support and alter gender.

As described above, names were more likely to be accurate for relationships involving male 

alters than with female alters; the likelihood of inaccurate name reporting was 40% lower 

when the alter was male. This association remained significant (APR: 0.58, CI: 0.46, 0.72) 

after adjusting for social support and relationship type. Overall, 33% of the 365 relationships 

involving female alters did not match on name, compared to 20% of the 532 relationships 

with male alters. The increased name accuracy for male alters was attributable to middle 

name and nickname matching, as the first name matched for similar proportions of 

relationships involving male and female alters (61.5% and 60.8%, respectively). Among 

relationships with male alters, middle name and nickname matches accounted for 11% and 

12% of exact name matches, respectively, compared to 3% and 6% among relationships 

involving female alters.

Overall, 41% of ties were reciprocal and 34% involved RDS referral (i.e., a relationship in 

which ego had referred alter to the study or vice versa). Ages were less inaccurate in 

relationships that were reciprocally reported and involved RDS referral. Reciprocal reporting 

and RDS referral remained negatively associated with age inaccuracy after controlling for 

other variables that were significant in bivariate analyses (ARR: 0.51, CI: 0.50, 0.65, 

p<0.001 and ARR: 0.78, CI: 0.65, 0.95, p=0.013, respectively; data not shown in tables). As 

shown in Table 2, inaccurate name reporting was significantly less common in relationships 

that were reciprocally reported. Of note, reciprocal reporting was not significantly associated 

with name inaccuracy after adjusting for other variables that were significant in bivariate 

analyses (APR: 0.90, CI: 0.70, 1.15; data not shown in tables).

DISCUSSION

In this network-based study of rural PWUD, most participants reported the identifying 

characteristics of their alters accurately; in 75% of confirmed relationships, participants gave 

the exact name and last initial of their alter, and in 79% of relationships, participants 

reported the alter age within two years of their actual age. Notably, the accuracy of name and 
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age reporting was not significantly different in relationships involving illicit behavior (i.e., 

drug co-usage, drug sharing, injecting drugs together, injection equipment sharing) 

compared to those not involving these behaviors. Further, in sexual relationships, the 

accuracy of age reporting was greater than in relationships not involving sex.

The accuracy of name and age reporting among PWUD in this rural Appalachian setting is 

striking given the stigma surrounding drug use in this region [54], as well as the illegality of 

the behavior and criminal justice involvement of the sample (i.e., 80% had a history of 

incarceration). The accuracy of the reported information may be attributable to data 

protections afforded by a Federal Certificate of Confidentiality, which were described to 

participants during the informed consent process, and to the involvement of skilled, 

community-based research staff, which has been noted to be critical to network data quality 

in similar research [26]. Additional research is needed to determine if the same degree of 

reporting accuracy is observed in urban and suburban settings, including those in which drug 

networks have lesser overlap with kinship networks.

A key finding is that reported names were significantly more accurate when a participant 

reported a male’s name compared to a female’s name. While understanding the sociocultural 

factors surrounding this phenomenon requires more research, it is worth comment that 

improved name matching for male alters was due largely to matching on middle names and 

nicknames. In total, 23% of exact name matches for male alters were due to matches on 

middle name or nickname compared to just 9% for female alters. Without information on 

participants’ middle names and nicknames, study staff may have incorrectly ruled out a 

sizeable proportion of ties and a different network structure may have resulted (i.e., the 

network may have appeared more fragmented, comparatively more male participants may 

have been represented as isolates). While the amount of identifying information that a study 

is able to collect about participants and their alters is contingent on various factors (i.e., 

confidentiality concerns, internal regulations, logistics), our data suggest that, when ethically 

appropriate, allowable, and deemed acceptable by the target population, investigators should 

consider asking participants for their middle names and/or nicknames and use these data 

during the ER process.

Finally, the data from this study demonstrate that the accuracy of key variables (i.e., name 

and age) used in the construction of sociometric networks can vary significantly by various 

individual- and relationship-level characteristics. Specifically, in multivariate analyses, age 

accuracy was greater in relationships involving sexual partnership, kinship, and receipt of 

financial support, while ages were more inaccurate in relationships involving older alters. 

Additionally, overestimation of age was significantly more common than underestimation, 

perhaps due to the impact of participants’ prolonged drug use on their physical appearance. 

Ages were also reported more accurately in reciprocally reported relationships and those in 

which ego referred alter to the study or vice versa. These findings indicate that ER 

algorithms imposing crude age accuracy criteria without accounting for relationship 

characteristics or tendency toward over-estimation may be suboptimal.

Conditional and more nuanced approaches to cross-referencing sociometric network data are 

needed. For example, an algorithm-driven approach to ER in the SNAP study may include 
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criteria that have more restrictive criteria for age accuracy in relationships that involve 

kinship, sexual partnership, RDS referral, and those that are reciprocally reported and less 

stringent criteria for age accuracy with increasing alter age. Likewise, in this study, criteria 

for name accuracy should be more restrictive for reciprocally reported relationships and/or 

those involving social support. These criteria may not be optimal in other settings, as factors 

related to name and age accuracy likely vary depending on the target population and study 

site. Thus, network-based epidemiologic studies should explore individual- and dyadic 

characteristics associated with reporting accuracy on the key variables used in ER to fine 

tune and improve the efficiency of their ER algorithms.

The study’s primary limitation is its reliance on interviewer-confirmation of network ties 

which may be subject to information and recall biases. To gain some indication of 

interviewers’ accuracy, we explored the percentage of RDS referral ties (n=397, including 

referrals and having been referred) in which interviewers confirmed a relationship (52.6%, 

n=209). Among the 188 RDS ties not confirmed as social network ties, 173 involved 

instances in which the participant recruited or was recruited by someone whom they did not 

name in their network and 11 in which the match between the RDS referral/referee and 

network member was highly unlikely (i.e., ages were drastically different and/or last initials 

were incorrect). Thus, of the 397 RDS referral ties, only four could be considered “missed” 

by interviewer confirmation. Of note, of the four ties that were missed by interviewers, three 

were also missed by the Excel-based fuzzy matching algorithm used to generate a list of 

possible matches based on name similarity (as measured by the Jaccard similarity 

coefficient). This finding demonstrates the need for future research to incorporate a variety 

of algorithms beyond the Jaccard similarity coefficient (e.g., Levenshtein distance, 

Hamming distance, Soundex,). Although we acknowledge that interviewer confirmation has 

limitations, consultation with field staff during ER in network-based research of PWUD is 

common [7, 26, 48, 55] and often offers the best and most comprehensive representation of 

the network available for comparison. In the present study, the only other available 

alternative (i.e., re-contact of participants to confirm network ties) would present ethical 

concerns, as re-contacting participants to verify the identity of individuals they named would 

violate the privacy of the individual in question by revealing to the participant that the 

named person was a study participant and thereby a person who uses drugs.

CONCLUSION

Most participants reported their alters’ names and ages accurately. Notably, the accuracy of 

name and age reporting was not significantly different in relationships involving drug-

related/sexual behavior vs. those not involving these behaviors. Although these findings may 

not be generalized to other settings, they do provide preliminary evidence that the 

identifying information (i.e., name and age) most often used to construct risk networks 

among PWUD can be accurate. These analyses also demonstrate that the accuracy of key 

variables used in the construction of sociometric networks can vary significantly by various 

individual- and relationship-level characteristics and that more sophisticated, conditional 

algorithms for cross-referencing sociometric network data and accounting for uncertainties 

in the analyses, such as those used in probabilistic record linkage [56, 57], are needed. Semi-

automated tools [58] that are currently in development for ER in network data will facilitate 
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the integration of sophisticated algorithms and permit greater analytic capabilities, such as 

the ability to examine how network structure is impacted by variations in ER criteria.
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Figure 1. Hypothetical Scenario Requiring Entity Resolution
Figure 1 provides a simplified example of the entity resolution (ER) process, with three egos 

(dark gray), their alters (gray), and the gender and age of each in brackets. In this example, 

two participants, Sam J and Esther Q, report one and two alters, respectively. To construct 

the sociometric network, the researcher must determine if Esther’s partner, Samuel J (age 

34) is the study participant, Sam J who self-reported being age 32. The researcher must also 

determine if Esther’s partner, Bill Jr. F (age 36), is the study participant William Jr. F (age 

36). If the researcher determines that the alters and egos meet the criteria for being 

considered the same individuals, the researcher resolves the duplicates as being the same 

entities within the network. Three different network structures (shown in the inset box) 

could result depending on the decisions made; as shown, these decisions rely heavily on the 

accuracy of the reported demographic characteristics. This illustration demonstrates the 

importance of reporting accuracy to conclusions drawn about the overall network structure.
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Figure 2. Entity resolution process involving fuzzy matching and consultation with community-
based interviewers
1The number of possible matches exceeds the number of named alters because some alters’ 

names were similar to multiple participants’ names and generated multiple possible matches.
2These were instances in which matches identified by the fuzzy matching process based on 

name similarity were rejected by the interviewers and the interviewers were able to identify 

matches manually.
3These were instances in which matches were NOT identified by the fuzzy matching process 

based on name similarity, but interviewers were able to identify matches manually (i.e., 

matches were missed by the fuzzy matching process).
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Figure 3. Relationship between RDS peer-referral data and network data generated through 
interviewer-administered questionnaires
Panel A shows an example of two RDS recruitment “chains” in which seeds (circles) 

recruited peers, some of whom recruited additional peers. Of note, each was eligible to 

recruit three peers, but some did not do so. Panel B overlays the RDS referral ties (solid 

lines) with relationships with network members that each participant named in their 

interviewer-administered questionnaires (dotted lines). Through a process called “entity 

resolution,” the information that individuals give about their network members is cross-

referenced against characteristics of the other participants to determine when participants 

have named each other or named the same network member. Panel C shows situations in 

which named network members resemble that of other participants. These entities are 

resolved as duplicates in the network and a linkages among participants are made. Panel D 
shows the resulting network relationships used for analyses (i.e., relationships confirmed 

during entity resolution). As can be seen from comparing Panel D to Panel A, some but not 

all of the network ties involved RDS referral.
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Table 1

Descriptive Characteristics of Relationships (n=897)

Characteristic Total n (%)

Characteristics of Ego

 Male gender 510 (56.9)

 Age – median (IQR) 31 (26 – 38)

 Number of alters – median (IQR) 3 (2 – 4)

Characteristics of Alter

 Male gender 532 (59.3)

 Age 30 (25 – 37)

Ego-Alter Demographic Similarity

 Gender 419 (46.7)

 Age difference (years) – median (IQR) 5 (2 – 10)

Ego-Alter Relationship Characteristics

 Kinship 290 (32.3)

 Duration (years) of relationship – median (IQR) 10 (4 – 23)

 Frequency of communication

  A few times a year or less 14 (1.6)

  About once a month 19 (2.1)

  A few times a month 56 (6.2)

  A few times a week 247 (27.5)

  Everyday 561 (62.5)

 Trust – median (IQR) 8 (5 – 10)

 Distance (miles) between residences – median (IQR) (n=837)a 2.62 (0.17 – 7.88)

 Receipt of any social supportb 380 (42.4)

 Receipt of financial supportb 242 (27.0)

Risk Behavior in Relationships

 Drug co-usage 806 (89.9)

 Sex 295 (32.9)

 Overlap between drug co-usage and sex

  Drug co-usage and sex 244 (27.2)

  Drug co-usage, no sex 562 (62.7)

  Sex, no drug co-usage 51 (5.7)

  No sex or drug co-usage 40 (4.5)

 Drug sharing 798 (89.0)

 Inject drugs together 197 (22.0)

 Share injection equipment 127 (14.2)

Other

 Reciprocally reportedc 366 (40.8)

 RDS referral 305 (34.0)

IQR: interquartile range; RDS: respondent driven sampling
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a
Fifteen addresses were not able to be geocoded; therefore, distances between 30 pairs could not be computed.

b
Ego reported receipt of support from alter.

c
Ego named alter and alter named ego.
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Table 2

Unadjusted Analysis of Name and Age Inaccuracy (n=897)

Inaccurate Name Age Inaccuracy (years)

Characteristic PR 95% CI RR 95% CI

Characteristics of Ego

 Male gender 1.07 0.85, 1.36 1.21 0.99, 1.48

 Age 1.00 0.99, 1.02 1.02 1.01, 1.03

 Number of alters 1.07 0.99, 1.15 1.03 0.99, 1.08

Characteristics of Alter

 Male gender 0.60 0.48, 0.75 1.16 0.96, 1.40

 Age 1.01 1.00, 1.02 1.03 1.02, 1.04

Ego-Alter Demographic Similarity

 Gender 0.90 0.72, 1.13 1.35 1.11, 1.63

 Age difference (years) 1.01 0.99, 1.03 1.04 1.03, 1.06

Relationship Characteristics

 Kinship 0.99 0.77, 1.29 0.67 0.54, 0.84

 Duration of relationship 1.00 0.98, 1.01 1.00 0.99, 1.01

 Frequency of communication

  A few times a year or less 0.55 0.18, 1.70 1.38 0.97, 1.97

  About once a month 0.81 0.34, 1.92 2.03 1.27, 3.27

  A few times a month 0.49 0.24, 0.98 1.59 1.20, 2.12

  A few times a week 1.08 0.84, 1.40 1.51 1.23, 1.86

  Every day (reference) – – – –

 Trust 1.02 0.98, 1.06 0.96 0.93, 0.99

 Distance (miles) between residences (n=837) 1.00 0.99, 1.01 1.01 1.00, 1.01

 Receipt of any social supporta 0.74 0.58, 0.94 0.75 0.61, 0.92

 Receipt of financial supporta 0.97 0.73, 1.29 0.52 0.40, 0.68

Risk Behavior in Relationships

 Drug co-usage (ref: relationships not involving drug co-usage) 0.91 0.65, 1.28 0.95 0.71, 1.27

 Sex (ref: relationships not involving sex) 1.03 0.80, 1.31 0.61 0.48, 0.78

 Drug co-usage and sex (ref: relationships involving drug co-usage or sex, or neither) 0.89 0.68, 1.17 0.58 0.44, 0.77

 Overlap between drug co-usage and sex

  Drug co-usage and sex 1.55 0.73, 3.30 0.53 0.32, 0.89

  Drug co-usage, no sex 1.72 0.82, 3.61 0.93 0.60, 1.43

  Sex, no drug co-usage 2.49 1.09, 5.67 0.73 0.43, 1.26

  No sex or drug co-usage ref ref ref ref

 Drug sharing 1.01 0.73, 1.39 0.90 0.70, 1.16

 Inject drugs togetherb 0.89 0.68, 1.18 0.84 0.64, 1.11

 Share injection equipmenb 1.01 0.74, 1.36 0.75 0.55, 1.03

Other

 Reciprocally reportedc 0.75 0.58, 0.96 0.41 0.33, 0.50
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Inaccurate Name Age Inaccuracy (years)

Characteristic PR 95% CI RR 95% CI

 RDS referral 0.85 0.66, 1.09 0.56 0.46, 0.68

PR: prevalence ratio, CI: confidence interval, RR: Rate ratio, RDS: respondent driven sampling

a
Ego reported receipt of support from alter

b
Analysis restricted to relationships in which the ego and alter had ever injected drugs (n=616).

c
Ego named alter and alter named ego.
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