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1. Introduction.-In a series of recent articles,'-4 we have severally attempted
to use coupled-oscillator theory in order to understand the optical activity of poly-
peptides. This approach, the development of which stems from Born5 and Kuhn,6
was first used in quantum mechanics by Kirkwood7 as the basis for his polarizability
theory of rotatory power. In recent months we have been clarifying the relation-
ship between our respective treatments, leaving out of account differences which
stem from the specific means by which we have attained tractability. As a result,
we have been able to show that a general formula, derived by Kirkwood7 under
special (nondegenerate) conditions which do not apply to polymers, has a wider
range of validity and may also be used in the present context. But, paradoxically
enough, we have thereby found an error in Moffitt's work,3 one of the purposes of
which was to acknowledge explicitly the degenerate nature of this problem.

In the following section, Kirkwood's formula is rederived under conditions apper-
taining to a sequence of identical residues. And in a final section this prescription
is more specifically applied to helices. Some discussion is given of the way in which
the result may be used. It appears that a particularly important factor (A,,) is
composed of two terms, one of which (A ,,M)) was correctly assessed by Moffitt,
whereas the other (A "(2)) was absent from his earlier derivation. The reason for
this omission is analyzed and shown to originate, somewhat unexpectedly, in the
failure of the Born-von Karman boundary conditions which he had used in the
course of his exciton treatment.
We are forced to conclude that the close agreement between the data presented

by Moffitt and Yang,8 and Moffitt's calculations for the a-helix,4 is illusory and
does not enable a definite screw sense to be assigned to these polypeptides. Moffitt's
calculations were based on certain A,,(') terms alone, and our estimates indicate
that the corresponding A,2) contributions are of the same order but of opposite
sign. However, since the qualitative form of the dispersion shown by the various
partial rotations was correctly described in his work, this quantitative failure in
no way vitiates the empirical correlations put forward by Moffitt and Yang; any
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reservations we may have on this score have already been enumerated by these
authors.

2. Degenerate Coupled-Oscillator Theory.-In this section we'shall rederive Kirk-
wood's formula in such a way as to include, explicitly, the case of identical residues.
It is convenient to use a modified form of the notation employed by Moffitt;3 thus
we adopt Section 2 of that paper, with only a change of phases (see below), and
those parts of Section 3 which precede the paragraph containing equation (24).
We shall avoid specifying the particular geometry of the polymer at this stage, so
that our results are equally valid for random coils and for helices.
Our polymer therefore consists of an array of N identical residues, each of which

is identified by a serial index m. The ground and excited states of the mth residue
are represented by the real functions Por and 1Pam, respectively.9 It is supposed
that the interaction between different residues is sufficiently weak-or that the
symmetry of the array is sufficiently high-that the respective excitation energies
fam = (a are the same for all residues.
The ground state of the polymer as a whole is represented, in zeroth-order, by the

simple product H '/'om(Tm), which we call 0); Tm symbolizes the co-ordinates of the
m

electrons associated with the mth residue. At first, its excited states are also repre-
sented by simple products; if only one residue is excited ("fundamentals"),

am) = l0) (4Pom)k'4'm; (1)

if two or more residues are excited ("overtones" and "combinations"),

romTn) = 0) (N`0m#0n) 4'ffm4P-rn
= -|unOm), (n ); (2)

and so on. Owing to the possibility of synchronizing the instantaneous charge
distributions in different residues, these functions must be combined linearly to
give the correct zeroth-order functions, namely,

| K) = E am) (am|IK),
uarK) = E E |amnTn) (amurnI auTU), (3)

m nOm

where the concomitant transformations are all unitary and serve to diagonalize
the Hamiltonian locally: typically,

(oKC uIK') = EUKSKK'. (4)

The stationary states of the polymer, correct to first-order terms, are now repre-
sented by

0) = 0) + ZZZ pTU) (p-U1|0),
u-K) = uTK) + Z -mL) (TLIIK) + Z 0u-TPW) (uTPWIIK), (5)

T~~a T ~pW

with similar expressions for the upper states of combinations bands. Here

(p UI0) = -(p UfI JC 0)/(f, + ET),
('rL uK) = -(TrLhC uK)/(E, - ed) (6)

(urpW uK) = -(u'rpW XC uK)/(c-p + ET),
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and it has been assumed that the numerators are first-order small quantities with
respect to the denominators.
We now compute, correct to first order, the matrix elements of a typical "one-

electron" operator (P, such as the linear or angular momentum, corresponding to
the excitation of a fundamental. Setting

VmnaT = (rnf 3CI amr),
(cam = (o0 (P a-rn) = (a-rn f| O)*, (7)

we find, after a little rearrangement, that

(o (| |K) = Z { (Yarm - E Vmn"(Pon*/2Eu
m n5m
- E Z VmnrT[(1PTn*/(ET ± Ea) + (YTn//(Er - E.) ]} (am- a-K). (8)

Tiff nom

With our phase choice, we may enumerate two particular forms which this expres-
sion may take, depending on whether (am is real or imaginary. If (P is to represent
the total linear momentum P = Z Pm (or, again, the total angular momentum

m
L), (am = Pam is imaginary and therefore
(o PI a-K) = Z {Pam + E PanVmnara/2E

m norm
- 2 VmnTPTnEa/(6,2 - f2)} (arm/a-K). (9)

ia$ npm

On the other hand, taking ( = Q = E qm, where qm is the sum of the position
m

vectors of all the electrons in residue m, we see that qfm is real, so that

(0o Qf a-K) = {qam- Z qdnVmn /2E6
m ngm

- 2 EZ VmnqTnEr/,(,E7 - -,f2)} (am/a-K). (10)
r,-a nom

Since Po0m, 4/am are the eigenfunctions of a self-consistent field operator 3cm,

Pam = (me/ih)Eaqqm1 (11)
where me is the electronic mass. Using this relation and the properties derived
above, it is now easily verified that, correct to the first order,

(oI PI o-K) = (me/ih)EK (oI Q a-K), (12)
where, for simplicity, we have taken as origin for the energy that of the ground state
in zeroth-order. Thus the internal consistency of our model allows us to use with
impunity either the dipole moment or the dipole velocity expressions relating to the
optical properties of the polymer.

It is a straightforward matter at this stage to write down, correct to first-order,
the rotational strength associated with any transition in the polymer. Since this
quantity is the scalar product of two vector matrix elements, namely, of Q and of
L, it is clear that, to our approximation, at least one of these elements must be non-
vanishing in zeroth-order. Accordingly, we may ignore the contributions from
overtones and combinations, confining ourselves to the fundamentals whose rota-
tional strengths are typified by
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RK = (e2/2mec)Irm[(OI QI crK).(aKI L 0)]. (13)

Since L is referred to a fixed origin, we write L = E k,,,, preferring to reserve the
m

symbol Im for the angular momentum of the electrons of the mth residue, referred
to an origin in that residue; we note that

kam _-(01Li m), (14)
like pam, is a pure imaginary vector. Accordingly,

R4K = (ie2/2mrec) Z, (amI a-K) (aKI am')
m mt

X {qam. kam,, + (2E,,)' [ZqEm. kan Vm'na - Ejfan.km, Vmna]Inom' npm
- 2 Aj (E2 - E) [ Z qm, krn (a VmlnUT + qn k m,,' ET Vmn T}. (15)

TrO~ff n~m' n~m
The partial rotation, per residue, due to this transition is therefore

[M,,K] (e2N'( 2R V2) (16)
e2 (V,,K2

where vaK = E.K/hc is expressed in wave numbers and we have set

48Noe2 In 2 2\
F, = IVc (17)

No being Avogadro's number and n, being the refractive index of the medium at
frequence v.

If the frequency of the incident light is not too close to v, = E,/hc, so that, for
all K, Iv<,-vI >> VK-v I, then the contribution to the residue rotation from
transitions to all states K in the exciton band ipo -0> is proportional to

v2 Z R,,K
K 2V2V,2 _E R,,,K(EU,,K - 'a/a

(A2 v_) (v,,2a2- '2) K

The summation in the first term reduces to

(ie2/2mrec)Z {1qK.kam - 2k Z(ew - (a ) Vmnr
m Tpo n~m

X (,64am* krn + ETqTmk*am)I}

and, dropping second-order terms, the summation in the second becomes

(ie2/2mrc)e,-1 A, qf -kam, Z (am|I aK) (aKjIC- oI o-K) (aKI am').
m m' K

Since 3C is locally diagonal, the last line is just

Z Z (am aK) (aK I 3C - aoK') (aK'I am') = (am- 3C - lI am') = Vmm°°
K K'

which vanishes if m, = mi'. Accordingly, the summation in the second term becomes

(ie2/2mrec) Z E 1E,'Vmn°q ,-kO..
m nOm

As a last transformation, we now put
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kam = lam + rm X Pam = lam + (miEg/ik)rm X qam, (18)
where ltm is the appropriate vector matrix element- of the angular momentum re-
ferred to a point rm, fixed in the mth residue.
The partial rotation [mg] may therefore be written as follows:

[mg] = [mgi] + [mag] + [mag] + [mgh'] + [mgj'], (19)

where

[mji] = (2 2 _2),_ qamfllm,

[mgj]~~=

)
~N (vg2n v2) m n,.dm Th (eT2 - eg2) Vm r - rn) (q X q ),2mN(N ,

2(^- v2)2mInd(0F. P2Pg
[mg'] IV1 _____ VgT TO)r (qgn X qgn),-(q~ )20

2NI (g2 -p2) m n2mm

[mg '] ( V) E2Pg2 E Eg ma qgm)gn,/ihF\~ VP,2 z z

[mgj']= (~")(~,2-v2E E (ET2 - ET )_VmnMeN (VT - v2) m nOM 706a
X (Egq gin1 n + Erqnflarm)

[mgi ] represents the intrinsic partial rotations of the individual residues, whose
electrons are subject to slightly asymmetric Hartree fields, arising from any asym-
metric centers they may possess or from their polymeric environment. If the
transition 4o 0#, is associated with a large change in magnetic moment, and there-
fore a small dipole moment,10 it is said to have a high dissymmetry factor;1' for such
bands, [m . ] dominates the partial rotation, and the remaining terms in [mg] may
safely be dropped. [mgj], which shows the same dispersive behavior as [mgJ], arises
from the first-order corrections, {f ) - I) }, due to the correlative interaction be-
tween states in different exciton bands. For strong electronic bands, this term can
be large; in general, it is of the same order as [mgi], though, in coupled-oscillator
theory, one is inclined to hope that it outweighs [mgi]. The third contribution,
namely, [magl, shows different dispersion and is a unique feature of the degenerate
case; it arises from the correlative interaction between different residues, within
the same exciton band. It was at this term that Moffitt attempted to direct
attention.' The last two terms [mad,] and [mgj,], are small with respect to their
imprimed counterparts, namely, [mah] and [mgj], by a factor d/ rm- rn, where
dg is the distance of rm from the partial optic axis of the transition #Om 46am.3
Following Kirkwood,7 we therefore drop both of these.

It may be noticed that, on summing over all exciton bands, the residue rotation
may now be written

[mi] = E [M.] = E [fml]

+ N Fv E E E E -2 2 ( 2 2)(rVi rm) (qgim X qrn) (21)N in n>m gor (Pg2 - V2) (PT2 - V2)n

where, by combining the [mgj] and [IMA] contributions, we have removed the re-
striction r a-a from the summation over r. Since Pg = PVTP = Ibsn forall ,n
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it will be recognized that this formula is identical with that obtained by Kirkwood.'
But, whereas the validity of the original derivation was confined to the nondegener-
ate case, we see that this restriction has been removed by the present treatment.
If Vmn" is replaced by an appropriate dipole-dipole approximation, the more par-
ticular results of the polarizability theory follow immediately.

3. Application to Helices.-Let us now specialize our discussion and suppose that
the successive residues are arranged to form a right-handed helix. The monomers
may then be located by the equivalent points rm in each, namely, by

rm = p cos am i + p sin amj+ mZk, (22)
where P is the number of residues per turn (and not necessarily integral), PZ is
the pitch of the helix, and am = 27rm/P. Similarly, we may put qam = q,! eum,
where efm is a unit vector whose radial, tangential, and vertical components, relative
to the circumscribed cylinder, are ear, et, and e v, respectively:

eam = (ear cos am -eat sin am)i + (er sin am + eot cos am)j + evk. (23)
We suppose the helix is sufficiently long that we may neglect end effects. To
simplify the discussion, we confine our attention to two transitions, Oo -0 #1 and
#0 -* #2, say, supposing that contributions from these dominate the residue rotation.
The optical rotatory dispersion is then described by

[in] {[mf + v2 lv2(Al2 + A21) ) 2+v(v12A_Lil] (vji2 -V2) (V22 -Vv2)~ (Vj2 -2

+{[v2V2vI(A21 + A12) }+ 2V22A22 (24)
+ Mi +-+ _ 24

-V2 ,2) (Pi2 -VP2)) (P22 - p2)2 (24

or, equivalently, by

[m] = [mliI + [m2J]
v2vI2All + 2v1v2(Al2 + A21) v2v22A22

+ &2- + _ -+ 2 ) (25)
t(Vj2 _ v2)2 (V12 -V2) (V2' - V2) (V22 - V2)2

where

Au7 = FV E Vmn"(rn - rm)* (q, X qin) (26)
n(>m)

In making a theoretical analysis of the "observed" dispersion curves for such an
idealized system, one may adopt several different viewpoints which it is as well to
enumerate.

It should be recognized, first of all, that the calculation of terms involving A,,
presents a very different problem from that of computing the [m,,]'s. The so-
called one-electron theory11 is primarily concerned with the latter task, whereas
the coupled-oscillator theory is best suited to the former. For the present, we
cannot attempt to assess the intrinsic rotatory parameters and are forced to regard
these as outside the scope of our work. We are therefore faced with two alterna-
tives.
On the one hand, we may hope that the [m,j's are appreciably smaller than the

coupled-oscillator terms. In this case, we attribute the main part of the optical
rotation to those terms of equation (25) which have been inclosed in braces. We
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then base our calculations on the polarizability theory or make some other use of
the optical properties of the individual residues in particular, of their absorption
spectra. This approach has been adopted by Fitts and Kirkwood in their work on
polypeptides." 2

Alternatively, we may observe that [mj] shows the same frequency dependence,
namely, V2/(vI2 - 02), as the term accompanying it in braces in equation (24); and
similarly for [m2J]. The other two terms, which involve All and A22, show an un-
usual dispersive behavior, however. We may therefore hope, on the basis of the
observed frequency dependence, to distinguish between these two different sets of
dispersive terms. Adopting this approach, we attempt empirically to separate
contributions to the rotation due to the terms in braces from those due to the re-
mainder of equation (24). The latter are amenable to calculation, and we are
enabled to avoid the [mer] difficulty without having to neglect it. This avenue
has been explored by Moffitt and Yang8 in the present context.

It should perhaps be added that neither method is very satisfactory. Thus
it may be questioned whether the existing data actually succeed in separating the
abnormally dispersing terms from their normal counterparts. And, again, it is
by no means clear that the [mqi]'s make a negligible contribution to the observed
rotation. However, while making these reservations, we continue to pursue such
work, since it is unlikely that progress is to be made in any other way.

Returning to the helical problem, we evaluate A,, by using equations (22) and
(23). It is found that

A =A () + Affa (2),
Aa() = - 4F q I2peateav E Vmna sin2 [r(n -m)/P],n(>m)
Aa(2) - F o2Z(Cr2 + eat2) Z (n - m)VmnU sin [27r(n - m)/P]. (27)

n(>m)

This expression for A,, should be compared with that derived by Moffitt,3 under the
same assumptions. (It will be recalled that this term arises from correlative inter-
actions within the same exciton band and is therefore directly related to the correct
zeroth-order functions oK).) He found only the term A,,('), so that his analysis
is in error. Since his mistake is rather interesting, we shall conclude by showing
how it arose.

Moffitt considered the helix as a one-dimensional crystal and employed exciton
theory. By this method, the coefficients (acm/uK) of equation (3), which deter-
mine the correct zeroth-order functions, are evaluated by adopting the Born-
von Kairman cyclic condition, which leads to

(amrm K) = N-'I' exp (27rimK/N), (28)
where K runs from 1 to N, the total number of residues. The procedure is standard
in the treatment of the optical properties of molecular crystals, as well as in almost
all of crystal physics. It is not, however, quite correct, when the crystal is not
in fact re-entrant.

It is easy to see that the error incurred in the calculation of (01 QI oK) by adopt-
ing this boundary condition is of order N-1/2, although the main part of this term is
of order N21' and correctly given. In computing oscillator strengths per residue,
which are proportional to N 1- (0 QI aK) 2, the error is therefore of order N-1,
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which is indeed negligible. However, in the present context, we wish to compute
rotational strengths per residue, which are proportional to N-I(O QI aK) (aK L 00) .
Now (aK LI 0) involves the moments of the electronic displacements about some
fixed (but arbitrary) point in the molecule; it therefore contains terms of order
N SI' as well as of order N'1'. (The former were innocuously symbolized by N"'Ia,
N'1'j3 in Moffitt's equations [48],3 although, since the difficulty was not foreseen,
they were not explicitly evaluated.) The scalar product of the N"'2 terms of
(O-K LI 0) taken with the N'1' terms of (OI Q aK) vanishes identically-as, clearly,
it must, because the residue rotation is not proportional to the number of residues.
The predominant N1"' terms of (01 Q aK) and the N'1' terms of (o-K LI 0) yield
a contribution to the residue rotation of order unity, namely, the term involving
A But the scalar product of the N-'1' errors of the former taken with the
N""2 terms of the latter does not vanish and is therefore of order N; this again leads
to a contribution of order unity to the residue rotation, namely, the neglected term
Aar 2). It may be noticed that the N'1' terms of (aKI LI 0) can involve only per-
pendicularly polarized components of q,, whose cylindrical direction cosines are
ear and eat. These large moments are also perpendicularly directed, so that the
neglected term cannot involve the vertical component en,. Looking at equations
(27), it is therefore clear why A, (l) was correctly assessed but A, (2) was missing.
We may conclude that whereas the application of the Born-von KarmAn bound-

ary conditions leads to a correct picture of the spectra of molecular crystals, they
may not be used with impunity. In particular, they fail to give an accurate
account of the optical rotatory properties of long helices.
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