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Abstract

Background—Little is known about what factors modify the effect of long-term exposure to 

PM2.5 on mortality, in part because in most previous studies certain groups such as rural residents 

and individuals with lower socioeconomic status (SES) are under-represented.

Methods—We studied 13.1 million Medicare beneficiaries (age ≥65) residing in seven 

southeastern US states during 2000–2013 with 95 million person-years of follow-up. We predicted 

annual average of PM2.5 in each zip code tabulation area (ZCTA) using a hybrid spatiotemporal 

model. We fit Cox proportional hazards models to estimate the association between long-term 

PM2.5 and mortality. We tested effect modification by individual-level covariates (race, sex, 

eligibility for both Medicare and Medicaid, and medical history), neighborhood-level covariates 

(urbanicity, percentage below poverty level, lower education, median income, and median home 

value), mean summer temperature, and mass fraction of 11 PM2.5 components.

Results—The hazard ratio (HR) for death was 1.021 (95% confidence interval: 1.019–1.022) per 

one μg m-3 increase in annual PM2.5. The HR decreased with age. It was higher among males, 

non-whites, dual-eligible individuals, and beneficiaries with previous hospital admissions. It was 

higher in neighborhoods with lower SES or higher urbanicity. The HR increased with mean 

summer temperature. The risk associated with PM2.5 increased with relative concentration of 

elemental carbon, vanadium, copper, calcium, and iron and decreased with nitrate, organic carbon, 

and sulfate.

Conclusions—Associations between long-term PM2.5 exposure and death were modified by 

individual-level, neighborhood-level variables, temperature, and chemical compositions.
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Introduction

The association between long-term exposure to PM2.5 and increased risk of mortality has 

been well documented over the past two decades.1-6 The US Environmental Protection 

Agency (EPA) has revised the National Ambient Air Quality Standards (NAAQS) for the 

annual PM2.5 to 12 μg m-3 which helps reduce health risks related to the chronic effects of 

PM2.5.7 A number of studies have suggested that the effect estimate for long-term exposure 

to PM2.5 was heterogeneous across populations,6,8-10 to which individual susceptibility or 

differences in PM2.5 composition could potentially contribute. But there is still a lack of 

understanding of what factors modify the association. Identifying effect modifiers could add 

knowledge to future risk assessment studies and future revision of air quality emission 

standards to protect sensitive populations.

Although some studies have shown that individual-level and neighborhood-level covariates 

may change individual vulnerability to long-term PM2.5 exposure such as age, sex, and 

socio-economic status (SES),2,3,6,11-14 the results were mixed.8 First, to make use of PM2.5 

data, studies often restricted the study population to residents who live close to an air 

pollution monitoring site. Rural residents were often under-represented. Second, studies 

such as the Nurses' Health Study13 and the American Cancer Society2 recruited primarily 

individuals with high socio-economic status (SES), making it difficult to identify the 

difference in effect between high- and low-SES individuals by design. The exclusion of a 

large proportion of the general population reduced the statistical power to detect effect 

modification and limited the generalizability of the study. Additionally, there are also some 

individual characteristics that very few studies have tested. For example, individual medical 

history such as previous hospital admissions reflected the healthiness of an individual, which 

may also change individual sensitivity to air pollution but which was not clearly understood.

Moreover, PM2.5, coming from a variety of sources including soil, road dust, oil combustion, 

traffic emission, and power plants, has a range of chemical compositions and toxicity.16 

Although there are some studies looking at effect modification by chemical components for 

short-term PM2.5 exposure,17-19 there are few studies that examine the interaction of 

chemical components with long-term PM2.5 exposure.6,20 In addition, both mortality among 

the elderly and PM2.5 composition could be affected by climate.21-24 Little is known about 

the interaction between long-term temperature and long-term PM2.5 exposure on mortality.

Average PM2.5 concentrations from a nearby monitoring have been widely used to estimate 

the exposure in early studies.1,4 Residents living far away from monitoring sites were often 

excluded due to lack of exposure data. Another popular approach is land-use regression, 

which has been used, for example, in the European Study of Cohorts for Air Pollution 

Effects (ESCAPE) study and the Nurses' Health Study in the US.25,26 Land-use regression 

relies on extensive monitoring of pollutants in only a few years. The temporal resolution for 

the land-use regression was also often limited. Simulations have shown that point estimates 

and standard errors of the health effects may be biased if the exposure predictions relied 

solely on land use variables.27 Recently, remote sensing data (aerosol optical depth) was 

combined with land-use variables to predict PM2.5 concentrations in the US, which 

substantially improved the prediction ability. For example, Beckerman et al. (2013) used a 
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hybrid approach to predicting monthly PM2.5 in the US.28 This model has also been used in 

the American Cancer Society's Cancer Prevention Study II examining the associations 

between long-term exposure to PM2.5 and cardiovascular deaths.29 Kloog et al. (2014) and 

Lee et al. (2015) developed a hybrid approach combining land use regression and satellite 

remote sensing on aerosol optical depth to predict daily ground-level PM2.5 with high spatial 

resolution (1 × 1 km).30,31 Both models showed excellent prediction ability. The model for 

the northeast has been applied to estimate the causal effects of long-term PM2.5 exposure on 

mortality in New Jersey during 2004-2009.32 The present study made use of the hybrid 

PM2.5 predictions for the southeastern US to estimate the association between long-term 

exposure to PM2.5 and mortality among a large cohort of older adults (age ≥65) and test a 

wide range of effect modifiers including individual-level variables, neighborhood-level 

variables, seasonal temperature, and PM2.5 components.

Method

Study population

The study population comprised fee-for-service Medicare beneficiaries (aged 65 or above) 

from January 1st, 2000 to December 31st, 2013 residing in seven states in the southeastern 

U.S. (Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and 

Tennessee). From the enrollment record for each year, we extracted age, race, sex, zip code 

of residence, and dual eligibility (an individual that was eligible for both Medicare and 

Medicaid; dual eligible beneficiaries generally had a lower SES). From the Medicare 

Provider and Analysis Review (MedPAR) files, we obtained the number of days staying in 

coronary care unit (CCU) or intensive care unit (ICU) for each of the eligible beneficiaries 

as individual-level risk factors. We also used the International Classification of Diseases, 

Ninth Revision (ICD-9) code at discharge to extract data on if a Medicare beneficiary had 

ever been admitted, since the start of follow-up, due to primary admissions of congestive 

heart failure (CHF, ICD-9 code 428), primary admissions of myocardial infarction (MI, 

ICD-9 code 410), primary admissions of chronic obstructive pulmonary disease (COPD, 

ICD-9 code 490 – 492, 494 – 496), and primary and secondary admissions of diabetes (ICD 

code 250). Each individual was assigned to a zip code tabulation area (ZCTA) according to 

the location of the post office of each zip code and ZCTA 2010. The protocol of this study 

was approved by the Harvard T.H. Chan School of Public Health Human Subjects 

Committee.

PM2.5 exposure

We applied a three-stage hybrid model to predict daily PM2.5 concentration with a 1 × 1 km 

spatial resolution in the southeast of the US during 2000–2013. Briefly, at the first stage, we 

calibrated a mixed-effects model using daily ground-level PM2.5 monitoring data. The 

predictors of the model included the Moderate Resolution Imaging Spectroradiometer 

(MODIS) aerosol optical depth data with a 1 × 1 km spatial resolution, meteorological 

variables, normalized difference vegetation index, mixing height, and land-use covariates. 

The mean out-of-sample R2 using ten-fold cross-validation was 0.70-0.81. At the second 

stage, we used the model to predict PM2.5 in grid cell on days when aerosol optical depth 

data were available. At the third stage, we built a model regressing PM2.5 on days when 
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aerosol optical depth was available against nearby monitoring data and used that model to 

predict PM2.5 when aerosol optical depth was missing.31 We obtained the annual average of 

PM2.5 for each of the 1 × 1 km grids, took the arithmetic mean of the annual average PM2.5 

across all grids in each of the ZCTAs, and assigned that exposure to each subject in that 

ZCTA for that year.

Temperature

Air temperature was estimated for each 1 × 1 km grid cell in the southeastern US by 

incorporating satellite remote sensing and land use variables. More details have been 

described elsewhere.33 The predicted air temperature was calibrated using the temperature 

measurements from weather stations. The model was unbiased and had excellent predictive 

performance. The yearly mean summer temperatures (over June, July, and August) in each 

year for each ZCTA were calculated and assigned to each individual.

Mass fraction of PM2.5 species

We obtained PM2.5 mass concentration and PM2.5 component data for the seven 

southeastern states and the surrounding states from the Environmental Protection Agency 

(EPA) and the Interagency Monitoring of Protected Visual Environment (IMPROVE) 

monitoring sites. We considered 11 chemical components of PM2.5: elemental carbon (EC), 

organic carbon (OC), sulfate, nitrate, aluminum, calcium, copper, iron, nickel, vanadium, 

and zinc. We calculated the mass fraction of each component to the total PM2.5 and took the 

annual average. Each ZCTA was assigned a mass fraction using Voronoi Tesselation 

according to the Euclidean distances between the centroids of that ZCTA and the monitoring 

sites.

Census variables and behavioral variables

We obtained the percentage of people below the poverty level, percentage of less educated 

people, median income, and median home value for each ZCTA from the US Census Bureau 

2000 Census Summary File 334 and the American Community Survey (ACS) five-year 

estimates of 2009-2013.35 To account for the time-varying nature of these variables, we 

assigned the Census 2000 variables to observations from 2000-2006 and assigned the ACS 

estimates to observations from 2007-2013. The rural areas were defined as areas with a 

population density below the first tertile of the population density in the seven states (51 per 

square mile) according to the Census 2000 data. We also obtained age adjusted yearly 

prevalence estimates of percentage of smokers and percentage of obesity from CDC 

Behavioral Risk Factor Surveillance System (BRFSS).36

Statistical methods

We conducted an open cohort study. Each of the eligible beneficiaries was followed up from 

January 1st of the year when the individual entered Medicare. We constructed a counting 

process survival dataset following the scheme proposed by Andersen and Gill.37 We fit Cox 

proportional hazards models to estimate the hazard ratio of annual average PM2.5 on 

mortality of older adults. The model was stratified by age groups (65-74, 75-84, and >84), 

sex, and race (white, black, and others), and adjusted for dummy variables for each year, any 
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previous admission due to CHF, COPD, MI, and diabetes, number of days spent in ICU and 

CCU, dual eligibility, dummy variables for each state, ZCTA-level percentage of the less 

educated, percentage below the poverty level, median income, median home value, 

urbanicity, mean summer temperature, and county-level percentage of smokers, and 

percentage of obesity.

We tested univariate effect modification of the association by age, sex, race, previous 

hospital admissions, number of days in ICU or CCU, dual eligibility, mean summer 

temperature, urbanicity, percentage of less educated, percentage of below poverty, median 

income, and median home value by adding into the model a cross-product term between the 

modifier and the exposure. In addition, we tested if the predicted mass fractions of PM2.5 

components modified the effects.

We subset the data to each of the sex and race group combinations, and fit simultaneous 

interaction models of PM2.5 with dual eligibility, hospital admissions, urbanicity, and mean 

summer temperature. The result of these models could be further used in risk assessments of 

long-term exposure to PM2.5 and identification of susceptible populations.

We also conducted an analysis to examine the effect of long-term PM2.5 at low concentration 

by restricting the follow-up to person-years with PM2.5 level below the current EPA standard 

for the annual average (12 μg m-3).38 If an individual's exposure exceeded the current 

standard, this follow-up year will be excluded from the analysis.

Sensitivity Analyses

We relaxed the proportionality assumptions for dual eligibility and dummy variables for 

each state and fitted a Cox model additionally stratified by state and dual eligibility. 

Moreover, we conducted a sensitivity analysis by restricting the study population to ZCTAs 

within 35 km from the monitoring sites.

Results

Characteristics of the study population and exposure

Within the modeling area of PM2.5, we studied 13.1 million older adults during the period of 

2000 – 2013 residing in seven southeastern US states (4185 ZCTAs) with 95.1 million 

person-years. 4.7 million (35%) beneficiaries died. This cohort represented the majority of 

adults 65 or older, compared to the older population in the seven states.39 The characteristics 

of the study population in year 2000, 2005, and 2010 are presented in Table 1. The number 

of beneficiaries increased over time with over 50% in age 65-74 and over 30% in age 75-84, 

over 80% whites and 13% blacks, 57%-59% females, and over 15% beneficiaries eligible for 

both Medicare and Medicaid. Around 5% of beneficiaries died in each year. The annual 

PM2.5 concentrations had a median of 10.7 μg m-3 and an interquartile range width of 3.8 μg 

m-3 (Table 2). The PM2.5 concentration had a decreasing trend from 2000 to 2013, and was 

lower in Florida than other states. All ZCTAs were included either in whole or in part in the 

restricted analysis at low concentration.
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Associations between long-term PM2.5 and mortality among older adults

After simultaneous adjustment for a variety of individual risk factors, neighborhood-level 

variables, county-level variables, and dummy variables for each state, the overall hazard 

ratio (HR) of mortality for each one μg m-3 increase in annual PM2.5 was 1.021 (95% 

confidence interval: 1.019–1.022). We found a higher HR, 1.033 (1.031 – 1.035), when the 

concentration was below current EPA standard (<12 μg m-3). A sensitivity analysis 

stratifying dual eligibility and dummy variable for each state showed a close HR, 1.025 

(95% confidence interval: 1.024–1.026), to the main analysis.

Effect modification by individual-level risk factors

The association of long-term PM2.5 exposure with mortality was modified by individual-

level variables (Figure 1). The HR was smaller for older adults. Females were less 

susceptible than males. The blacks and other race groups had higher HRs than the whites. A 

higher HR was found among beneficiaries that are eligible for both Medicare and Medicaid. 

Moreover, people with any previous admissions of CHF, MI, COPD, or diabetes, or ever 

staying in ICU or CCU were more susceptible to an increase in long-term PM2.5 exposure.

Effect modifications by neighborhood-level variables

The association of PM2.5 with mortality was also modified by neighborhood-level variables 

(Figure 2). Individuals living in a neighborhood with higher percentage of less educated 

people, higher percentage of people living below poverty level, higher urbanicity, lower 

median income, or higher home value were more susceptible to PM2.5.

Effect modification by mean summer temperature

The HR for long-term PM2.5 and mortality increased by 0.60% (0.57%-0.63%) for each 1°C 

increase in temperature.

Simultaneous interaction models with individual-level variables, urbanicity, and mean 
summer temperature

Figure 3 shows the simultaneous interaction models with individual-level variables, 

urbanicity, and mean summer temperature for each of the sex and race combinations.

Effect modification by mass fractions of PM2.5 components

PM2.5 with a higher concentration of sulfate, nitrate, and OC had a lower HR. An increase in 

Al, Ca, Cu, EC, Fe, or V was associated with an increased HR. Ni and Zn did not 

substantially change the HR (Figure 3). A sensitivity analysis restricting the observations to 

ZCTAs within 35 km from the monitoring sites (Supplementary eFigure 1) shows that the 

directions for each elemental ratio remained unchanged.

Discussion

The present study examined a large cohort of 13.1 million older adults with 95.1 million 

person-years residing in seven southeastern US states in 2000-2013. We found that long-

term exposure to PM2.5 was associated with an increased risk of mortality. The HR was 

Wang et al. Page 6

Epidemiology. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



higher when PM2.5 concentration was below the current EPA standard for annual average 

PM2.5. The large number of follow-up years and deaths provided large statistical power 

which is partly reflected in the narrow confidence intervals. For example, by comparison, the 

NHS study recruited 0.066 million individuals with a follow-up of up to 10 years.26 More 

importantly, with sufficient power, we found that a variety of covariates modified the 

association of long-term PM2.5 with survival including individual-level risk factors, 

neighborhood-level census covariates, temperature, and PM2.5 components. Based on a 

general population, the results are more generalizable.

We found a higher HR for mortality in urban areas than in rural areas. The spatially- and 

temporally-resolved PM2.5 model produced PM2.5 estimates in those regions, and our 

population-based samples made it feasible and provided substantial power to detect the 

difference.

Association between PM2.5 and mortality increased if beneficiaries had previously been 

hospitalized due to COPD, MI, CHF, or diabetes, or had ever stayed in ICU or CCU. Some 

studies examined CHF, MI, and COPD as outcomes of PM2.5 exposure.12,13,40 Their role as 

an effect modifier was not well understood. A medical history of being admitted due to MI 

or diabetes had a larger impact on the effect of PM2.5 among all four previous 

hospitalizations than COPD and CHF. In the simultaneous interaction models (Figure 3), the 

effect modifications by MI and diabetes also had a consistent and larger impact than other 

modifiers. Consistently, there have been several studies showing increased apparent 

susceptibility among diabetic individuals and PM2.5 was associated with increased risk of 

hospitalizations due to diabetes.19,41,42 The number of days staying in ICU or CCU had a 

smaller effect, possibly because ICU or CCU stays are more related to the acute condition in 

the hospital and not a chronic increase in susceptibility following discharge.

We found that blacks and other non-white groups had a higher risk of death overall than 

whites. In the subgroup analyses, we also see that blacks had a stronger association between 

PM2.5 and mortality than whites. Whether other racial groups had a larger association was 

dependent upon sex. However, the confidence intervals became much larger in the subgroup 

analysis because there were few observations in the non-white, non-black subgroup. By 

comparison, a study of older adults in 207 US cities reported a higher HR of long-term 

PM2.5 as the percentage of black residents increased.11 A study in New Jersey also estimated 

that the effect increased with the percentage of black residents in each census tract.32 

However, they did not analyze race on an individual level and instead used the percentage of 

black residents as an ecologic surrogate.

In addition, the results suggested that people with lower SES showed a stronger association 

between PM2.5 and mortality. People with lower SES included dual-eligible beneficiaries 

(for both Medicare and Medicaid) or those who lived in a neighborhood with lower median 

income, more less educated individuals, or higher percentage of people living below poverty. 

A possible explanation is that people with a lower income had poorer baseline health or 

poorer access to health care services.11 Consistently, a recent study in New Jersey also found 

that the risks are higher among individuals living in a census tract with lower median 

income.32

Wang et al. Page 7

Epidemiology. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We observed that a higher mean summer temperature was associated with an increased HR. 

The relationship still holds in most of the subgroups. The results are consistent with a 

previous study on residents in US cities11 and a recent study in New Jersey.32 There is even 

less evidence regarding the potential mechanisms. An increase in temperature may 

potentially alter the chemical composition of PM2.5 and its toxicity by changing (1) the 

emission of precursor gases,43 (2) the rate of atmospheric reactions and the partitioning of 

semi-volatile organic compounds between gas and particle phase,24 and (3) the removal of 

aerosols.22

We found that the HR decreased with age. One possible explanation would be hazard ratio 

measures the association on multiplicative scale instead of additive scale. The baseline 

hazard is likely to increase substantially with age. Although the association may increase 

with age on additive scale, the hazard ratios may not be able to show this pattern due to the 

changes in baseline with age. Future studies estimating the additive effect directly would be 

helpful to address this issue. By comparison, the effect modification by age found in the 

ACS study was not substantial.2 The overall HR of males was greater than that for females. 

In the subgroup analysis, this relationship is dependent on race. This might be related to 

differences in the distribution of other covariates between males and females. By 

comparison, the ACS study reported a slightly lower risk for women.2

The basic message from the subgroup analysis is the same as the individual interactions, 

with some new features. An MI or diabetes admission was consistently associated with an 

increased HR among all race and sex groups. COPD admission was consistent in most 

subgroups. A CHF admission increased risk in non-whites, possibly suggesting that access 

to adequate medical care for heart failure, which requires careful monitoring, is an issue. 

The association among dual-eligible people is consistent and robust. We found a larger 

difference among non-whites than whites between dual-eligible enrollees and non-dual-

eligible enrollees. We also observed a higher HR among blacks than whites in the subgroup 

analysis. However, two variables are unlikely to capture all differences in susceptibility 

between race groups. Some studies have suggested psychosocial stress is an important 

modifier, which is higher in the black community, but not measured in our study. The 

interactions with urbanicity were consistent among whites and blacks. These simultaneous 

interaction models suggested that the difference between urban and rural areas could not be 

completely explained by race, dual eligibility, sex, or medical records. Other variables that 

explained the difference between urban and rural areas, such as access to greenness, might 

be able to explain the difference. The results from these models could be used for further 

identification and protection of susceptible populations in future revisions of air quality 

standard.

For PM2.5 components, first, we found that an increase in the proportion of sulfate, OC, or 

nitrate was associated with a decreased HR for mortality. This result indicates that the 

secondary inorganic species were less toxic than others, although they represent an 

important but declining fraction over time of the mass concentration. This is consistent with 

the result that the HR was lower in rural areas. Second, calcium, from soil or road dust, 

increased associations with PM2.5, whereas we found little interaction with aluminum, 

which comes from similar sources. Third, nickel and vanadium are primarily generated from 
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oil combustion. Vanadium was associated with an increased association with PM2.5, whereas 

there was little interaction with nickel. Fourth, elements from industrial emissions (but also 

road dust due to tire and brake wear) such as copper and iron added toxicity of PM2.5. Fifth, 

we found that EC, which comes from traffic emissions, elevated toxicity. By comparison, a 

previous study in the US cities found null or negative interactions for crustal elements and 

positive interactions for nickel, vanadium, and EC,6 again suggesting traffic and oil 

combustion particles are more toxic. A European study did not find associations between 

long-term exposure to eight elemental components and cardiovascular mortality among 0.3 

million participants.20 In the present study, the measurement error for the mass fractions of 

PM2.5 components certainly limits the interpretations of our results on the interactions with 

the mass fractions. However, the sensitivity suggests the robustness of the directions of the 

interactions. The reason why the sensitivity analyses generally had a smaller HR is partly 

because the monitoring sites might not locate at representative positions for the whole 

southeast.

The HR of PM2.5 lower than 12 μg m-3, 1.033 (1.031 – 1.035), was larger than the average, 

suggesting that the concentration-response relationship was not linear with a larger slope at 

low concentration and a smaller slope at high concentration. Consistently, a study for the 

northeastern US also found that PM2.5 below the current US EPA standard was associated 

with increased mortality.38 Both results suggest the existence of effect below the current 

standard. If the dose–response relationship is steeper below concentrations of 12 μg m-3, this 

indicates that the health benefit of reducing PM2.5 concentrations, if shown to be causal, 

goes up as concentrations go down.

We acknowledge that the study has limitations. First, hospital admissions over the period of 

follow-up may not reflect the actual comorbidity or whether one was admitted for these 

diseases before enrollment. Second, the dataset does not provide individual-level behavioral 

data such as smoking, obesity, diet, and alcohol consumption. These individual behavioral 

variables were not adjusted for in the model. Third, the exposure assessment may be less 

precise in rural areas than urban areas as there were fewer monitoring sites available in rural 

areas than urban areas to calibrate the prediction model. Fourth, although the 1 km satellite-

based exposure model substantially improved exposure assessment in air pollution 

epidemiology, future studies could consider to further improve the spatial resolution to 

capture the local variability of PM2.5.30

In conclusion, we observed increased risk of mortality for long-term PM2.5 exposure among 

older adults in the southeastern US. Sex, race, dual eligibility, medical history, and 

neighborhood-level variables modified the association between PM2.5 exposure and 

mortality. Oil combustion, traffic emission, and some crustal elements were associated with 

an increased HR. We found larger HRs at pollutant concentrations below current EPA 

standard for annual average PM2.5.
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Figure 1. 
Effect modification of the association of long-term PM2.5 exposure (hazard ratios for each 

one μg m-3 increase) with mortality among older adults using a univariate interaction model 

by individual-level covariates including age group, sex, race, dual eligibility, previous 

hospitalizations due to congestive heart failure (CHF), myocardial infarction (MI), chronic 

obstructive pulmonary disease (COPD), and diabetes, and number of days staying in 

intensive care unit (ICU) and coronary care unit (CCU) (one day versus zero day).
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Figure 2. 
Effect modification of the association of long-term PM2.5 exposure (hazard ratios for each 

one μg m-3 increase) with mortality among older adults by neighborhood-level covariates 

including percentage of less educated (20th percentile versus 80th percentile), percentage 

below the poverty level (20th percentile versus 80th percentile), urbanicity, median income, 

and median home value.
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Figure 3. 
Effect modification of the association of long-term PM2.5 exposure (HRs per one μg m-3 

increase) with mortality among older adults using simultaneous interaction models. The 

dataset was restricted to each of the sex and race combinations. Modifiers include 

individual-level covariates (dual eligibility, previous hospitalizations due to congestive heart 

failure (CHF), myocardial infarction (MI), chronic obstructive pulmonary disease (COPD), 

and diabetes), urbanicity, and mean summer temperature. The estimate labeled “average” 

shows the HR when all modifiers were set at their means. The hazard ratio (HR) for each 

modifier set that modifier at the corresponding value and set the remaining modifiers at their 

means.
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Figure 4. 
Effect modification of the association of long-term PM2.5 exposure with mortality among 

older adults by species-to-PM2.5 ratios covariates including aluminum (Al), calcium (Ca), 

copper (Cu), elemental carbon (EC), iron (Fe), nitrate, nickel (Ni), organic carbon (OC), 

sulfate, vanadium (V), and zinc (Zn). The hazard ratios (HR) for each one μg m-3 increase at 

the 20th and 80th percentile of the modifiers were compared.
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Table 1

Characteristics of the study population in year 2000, 2005, and 2010.

Variable Subgroup 2000 2005 2010

Number of beneficiaries (million) 6.0 6.5 7.3

Age group (% of total) 65-74 years 53.7 53.1 55.5

75-84 years 34.6 34.9 32.0

>84 years 11.7 12.0 12.5

Race (% of total) Whites 84.3 83.6 82.7

Blacks 13.1 13.4 13.7

Others 2.6 3.0 3.6

Sex (% of total) Females 59.0 58.0 56.8

Males 41.0 42.0 43.2

Dual eligibility (% of total) Yes 15.0 16.1 15.4

No 85.0 83.9 84.6

Death (% of total) Yes 5.2 5.1 4.7

No 94.8 94.9 95.3
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