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Abstract

Our understanding of gene expression has come far since the “one-gene one-polypeptide”
hypothesis proposed by Beadle and Tatum. This review addresses the gradual recognition that a
growing number of polycistronic genes, originally discovered in viruses, are being identified
within the mammalian genome, and that these may provide new insights into disease mechanisms
and treatment. We have carried out a systematic literature review identifying 13 mammalian genes
for which there is evidence for polycistronic expression via translation through an Internal
Ribosome Entry Site (IRES). Although the canonical mechanism of translation initiation has been
studied extensively, this review highlights a process of non-canonical translation, IRES-mediated
translation, that is a growing source of understanding complex inheritance, elucidation of disease
mechanisms, and discovery of novel therapeutic targets. Identification of additional polycistronic
genes may provide new insights into disease therapy and allow for new discoveries of translational
and disease mechanisms.
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One messenger RNA, multiple polypeptides

George Beadle and Edward Tatum first proposed the model of gene expression in which
individual genes encode single enzyme products, recast in subsequent years as the “one-gene
one-polypeptide” hypothesis [1, 2]. Since then, in addition to the characterization of
alternative splicing of transcripts to generate protein diversity, studies revealing a number of
non-canonical translational mechanisms have shown that one gene may code for more than
one functionally distinct polypeptide. One prominent example in viruses, protozoans, and
invertebrates is the existence of numerous genes bearing multiple open reading frames
(polycistronic) that encode two or more independently regulated proteins. Polycistronic
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genes in protozoans and invertebrates allow for translation initiation at two or more sites
along a single mRNA transcript as an efficient means of coordinated gene expression. This
expression strategy was not initially attributed to the vertebrate genome repertoire. Recently,
a small but growing number of genes have been identified in vertebrates with either tandem
or overlapping cistrons. Initiation of translation at a downstream or overlapping open
reading frame is usually achieved by capitalizing on a highly structured stem-loop RNA
element called an internal ribosome entry site (IRES) (see Glossary) in the primary
transcript where ribosomes may bind downstream of the canonical translation start site.
IRES function requires interaction with a distinct set of RNA binding proteins (translation
initiation factors and IRES trans-acting factors) which may allow differential, but
coordinated, control of gene expression relative to the upstream open reading frame.
Prominent mammalian polycistronic cellular genes appear to fall into at least four distinct
categories based on mRNA structure and function of gene products: 1. 7Two subunits of a
multi-subunit complex whose expression is coordinated in a single transcript, 2.
Functionally similar gene products that are differentially co-expressed; 3. Functionally
distinct gene products that have programmatically-related expression; 4. Signaling proteins
generated by stimulus-coupled protease cleavage or by cap-independent translation (Figure
1). Here we review our current understanding of mechanisms for bicistronic gene
translation, examples of prominent polycistronic genes, and some clinical implications of
genetic aberrations of these genes and therapeutic possibilities for treatment of resulting
disease symptoms.

Canonical protein synthesis in eukaryotes

Translation of mMRNA into protein involves three stages - initiation, elongation, and
termination. The predominant form of translation initiation in eukaryotes, known as cap-
dependent initiation, relies upon recognition of the m7GpppN(7-methylguanosine) “cap”
structure at the 5’ end of the mMRNA by a complex of canonical initiation factors (elFs,
eukaryotic initiation factors) termed elF4F. The elF4F complex, which is composed of
elF4A (a DEAD-box RNA helicase), elF4E (the cap binding protein), and elF4G (a multi-
domain scaffold protein), recognizes and binds the 5’-cap. The elFAF complex then recruits
the 40S ribosomal subunit along with a second complex, the ternary complex (GTP-bound
elF2 and charged methionine initiator tRNA), as part of the 43S initiation complex, to form
the 48S initiation complex. The 48S initiation complex then moves along the 5’-UTR
(untranslated region) of the mRNA using the helicase activity of elF4A to help unwind any
potentially inhibitory secondary structure until an AUG in favorable conditions is
encountered [3]. GTP is subsequently hydrolyzed to GDP in the presence of elF5, followed
by dissociation of some of the initiation factors. The 60S ribosomal subunit then joins the
small subunit, resulting in an elongation-competent 80S ribosome. At this point, translation
is initiated (Figure 3). The elongation phase of translation then proceeds until the ribosome
encounters a termination codon [4, 5].

Cap-independent translation in vertebrates

Based on their primary nucleotide sequences, many mRNAs undergo intramolecular base
pairing to produce highly ordered secondary structures capable of forming complex stem-
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loop conformations that facilitate binding of specific proteins with functional consequences.
For viral and eukaryotic mMRNAs, highly-structured IRES elements can form complexes with
ribosomes together with a subset of the canonical elFs and other RNA binding proteins
called IRES transacting factors (ITAFs) to allow for protein synthesis to initiate under
conditions not favorable to (or not requiring) cap-dependent initiation (Figure 3) [6-8].The
elF and ITAF requirements differ among IRESs. Interactions of elFs and ITAFs with
ribosomal subunits is thought to allow for correct positioning of the IRES-mediation
translation initiation codon at the ribosomal P-site [6]. However, extensive studies on
initiation complexes for the IRES region have not been conducted. Once thought to be a
property exclusive to viruses, many (~10-15%) vertebrate cellular mMRNAs are now believed
to be capable of undergoing internal ribosome entry-mediated protein synthesis based on the
presence of IRESs located within the 5 UTR downstream of the cap site [9]. One hundred
and fifteen genes containing cellular 5’UTR IRESs have been annotated, and a more recent
systematic study provides supporting evidence for known IRESs and suggests potentially
novel IRESs using oligonucleotides verified for cap-independent translation activity [10,
11].

Based on the functions of the genes studied to date, it appears that the 5’ IRES provides a
means of expression of certain key proteins under conditions of cell stress when cap-
dependent translation is inhibited. Alternative translation by cellular 5’UTR IRESs may also
occur during phases of angiogenesis, mitosis, and cell proliferation, particularly in genes that
have IRESs located in the 5’UTR region such as myc-family genes, cyclin-dependent kinase
11, and vascular endothelial growth factor (VEGF) [6]. The structures, elFs, and ITAFs have
been defined for only a small number of these cellular IRESs. However, in several cases
IRES activities appear to be dependent on ITAF expression levels and localization,
suggesting a strict regulation of polycistronic genes [6]. Unlike their viral counterparts that
comprise distinct families of structurally-related IRESs, cellular IRESs appear to be defined
by short motifs and ITAFs [8]. Thus, cellular IRESs have differentiated structures that
potentially allow for the diverse functions and localization of the protein products produced
under their control.

Polycistronic cellular genes

Nearly all positive-sense RNA viruses have genomic RNAs that encode multiple protein
products in the form of precursor polyproteins that are then processed to the functional
polypeptides used by the virus during infection. A subset of these viruses (e.g., human
rhinovirus, hepatitis C virus, cricket paralysis virus) contain at least one open reading frame
(ORF) preceded by IRES structures. However, there is growing evidence that some cellular
and vertebrate mRNAs also possess IRES-like structures further downstream of the 5’-UTR,
within or after the 5’ proximal ORF, enabling the expression of proteins from tandem or
overlapping ORFs. As with prokaryotic polycistronic genes, canonical translation typically
initiates near the 5’ends of mMRNAs of vertebrate bicistronic genes. However, in a few cases
it has been documented that the synthesis of a second protein is initiated via an IRES
element located downstream of or within the first open reading frame.
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Due to multiple mechanisms of alternative gene expression and translation in eukaryotic
cells, the identification of mMRNAs harboring bona fide IRES sequences requires a number of
stringent criteria that must be satisfied. Cryptic promoters in reporter plasmids and
alternative splicing events that can lead to distinct transcripts and secondary protein products
need to be ruled out [12, 13]. In addition, multiple mechanisms of secondary protein
translation including ribosomal scanning, re-initiation, stop codon read-through, or
translational frameshifting may be found in the same gene. Conclusive evidence for the
presence of an IRES requires exclusion of these mechanisms and several functional studies
(Figure 2).

Regulation of cellular IRES activity

Although the mechanism of cellular IRES function is not well understood, there is
increasing interest in identifying cell-specific expression levels of ITAFs and structural
elements that define IRES activity. ITAFs have not been implicated in cap-dependent
mechanisms and have been suggested to be specific for cap-independent translation [14]. As
a result, ITAFs play an important role in determining the cell- or tissue-specific expression
of polycistronic transcripts with IRESs. For example, in me/oe, two IRESs code for T-cell
antigens that are selectively expressed in melanoma cells but are absent in melanocytes,
suggesting that ITAFs are silenced in normal melanocytes [15, 16]. In tissues that do not
express or sequester ITAFs critical for IRES function, it would be expected that the
polycistronic gene would function in a monocistronic manner, highly reliant on cap-
dependent translation. Therefore, polycistronic activity can alter gene expression diversity
merely through the availability of these IRES specific factors [6]. However, loss-of and gain-
of IRES-mediated translation may contribute to a pathophysiology in cases where disease
tissue changes the availability of ITAFs to abnormally promote or eliminate IRES activity.
LAMBI, for example, codes for the membrane glycoprotein Laminin B1 that plays a
significant role in cancer invasion via a 5’UTR IRES regulated by the ITAF La. La
expression, and subsequently IRES-mediated translation of Laminin B1 is decreased in
normal hepatocytes compared to hepatocytes after the epithelial-mesenchymal transition
(EMT), a critical step in acquisition of invasive properties by carcinoma cells [17].

In addition to expression levels, the subcellular localization of the ITAFs is important for
cellular IRES function [6, 14, 18]. A nuclear ITAF may sequester the mRNA until signaling
changes allow for translocation to the cytoplasm for translation. Unbound ITAFs may also
be compartmentalized until certain cues lead to translocation events necessary for translation
of the IRES (e.g. the movement of an inhibitory ITAF from the cytoplasm to the nucleus) [6,
14]. These hypotheses suggest that a separation of ITAFs from mRNA via subcellular
compartmentalization could be a critical regulatory mechanism for polycistronic mRNASs.

Lastly, the structural elements of the IRES are important for understanding their function
and role in disease. microRNA (miRNA), for example, have been shown to bind to a site in
the 3’UTR and act as regulators of IRES-mediated translation for vascular endothelial
growth factor A (VEGF) gene that contains two IRESs in its 5’UTR [19]. Moreover, cellular
IRESs have been categorized into those that depend on short motifs and those that require an
overall complex secondary or tertiary structure [11]. This categorization suggests that
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mutations that disrupt either short motifs or RNA structure would lead to a disruption in the
normal function of the IRES and could lead to disease.

Why polycistronic genes?

Cellular polycistronic genes have several potential advantages for coordinated gene
expression, organized here into four distinct categories that indicate expression mechanisms
of each polycistronic gene (Figure 1). Furthermore, while polycistronic gene organization
allows a unique and selective mechanism for control of protein expression, in the presence
of genetic mutations or dysregulation of the IRES this genetic strategy has several potential
adverse clinical outcomes. Distinct mutations of polycistronic genes lead to complex and
different phenotypes, possibly because of their effects on either ORF or the IRES sequence
itself. As a result, polycistronic genes could also open the door to novel therapies.

Table 1 lists thirteen polycistronic genes identified through the literature. Genes were not
included that merely expressed truncated forms of the same protein with essentially the same
function. Genes for which a cap-independent expression mechanism had not been supported
experimentally were also excluded. In the next sections, we provide examples of the four
functional classes of polycistronic genes and the biology/gene expression patterns associated
with them.

1. Two subunits of a multi-subunit complex whose expression is coordinated in a single

transcript

TCP-BP—Tenocyclidine [1-(1-(2-Thienyl)cyclohexyl)piperidine, or TCP] binding protein
(TCP-BP) was identified as one of a complex of four proteins purified from rat brain
synaptic membranes that bind glutamate agonists. TCP-BP is comprised of two subunits,
PRO-1 and PRO-2, found to be co-expressed subunits encoded by two tandem ORFs within
a single bicistronic transcript. An IRES element preceding the second ORF that leads to
translation of the PRO-2 subunit was identified [20]. PRO-1 translation begins at an AUG at
the start of ORF1 present 160 base pairs downstream of the mRNA start site. PRO-2
translation occurs from ORF2, 400 base pairs downstream of ORF1 in the intergenic region
of the mRNA. Both PRO-1 and PRO-2 are expressed in neurons in brain and show a
tendency to form a complex required for TCP-binding. PRO-1 and PRO-2 are thus shown to
be formed through coordinately controlled, independent translation of two ORF regions via
both a cap-dependent mechanism (PRO-1) and an IRES element (PRO-2). This rat brain
gene reveals a potentially rare class of mammalian bicistronic genes in which two subunits
of a multiprotein complex are translated by different expression strategies. There have yet to
be any clinical associations with this bicistronic gene.

2. Functionally similar gene products that are differentially co-expressed

Two proteins with similar structure and function are differentially expressed in the same
biological system.

FFAR1: GPR40 and GPR41—GPR40 and GPR41 are encoded by a bicistronic transcript
with GPR40 expression driven by a cap-dependent mechanism whereas GPR41 expression

Trends Genet. Author manuscript; available in PMC 2018 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Karginov et al.

Page 6

is regulated via an IRES [21]. GPR40, a medium and long-chain fatty acid receptor, causes
increased Ga.g/11-mediated intracellular calcium levels that stimulate the release of insulin
in the presence of long-chain fatty acids [22]. GPR40 is expressed in a highly selective
pattern, primarily in pancreatic beta and gastrointestinal tract cells [23]. GPR41 is also
coupled to Gag/11, but is sensitive to short-chain fatty acids. Although its role in the
metabolic pathways of beta cells has not been fully characterized, GPR41 has been
implicated in energy homeostasis. Both proteins are also co-expressed in adipose tissue and
the peripheral nervous system [23, 24]. In beta cells, the expression of both receptors may be
necessary to affect metabolic pathways. Dysregulation of either or both of the cistrons may
affect the pathology of metabolic disease. It has been hypothesized that co-expression of
these fatty acid-activated receptors could sensitize beta cells to different types and levels of
fatty acids [21].

meloe: MELOE-1, MELOE-2, and MELOE-3—Cells of the melanocyte lineage express
two polypeptides of unknown function, MELOE-1 and MELOE-2, from tandem cistrons in
the meloe mRNA. Specific T cell clones recognize melanoma cells but not normal
melanocytes based on the expression of one of these melanoma antigens on the surface of
the melanoma cells [15, 25]. Therefore, MELOE-1 and MELOE-2 have been studied for
potential use in T cell immunotherapy in metastatic melanoma [15]. IRES sequences in the
meloe mRNA were found upstream of both ORFs and it was speculated that the different
translational mechanisms of 5 cap-dependent and IRES-mediated translation might be
responsible for the selective expression of MELOE-1 and MELOE-2 only in melanoma cells
[15]. Differential expression of ITAFs between normal melanocytes and melanoma cells
could also account for the activation of these antigens selectively in cancer cells [15].
Furthermore, an additional ORF was identified in the 5’ region of meloe coding for
MELOE-3, translated by a cap-dependent pathway [16]. MELOE-3 was found to have poor
immunogenicity, suggesting the importance of targeting the IRES-dependent proteins
MELOE-1 and MELOE-2 for immunotherapy of melanoma.

3) Functionally distinct gene products that have programmatically-related expression

Two proteins with distinct functions are coupled for co-expression in the same biological
pathway

CdcL1/CdcL2 (PITSLRE genes): p110 and p58—PITSLRE/CDK11 duplicate genes
CdcL1and CdcL2each code for two cyclin-dependent protein kinase isoforms, p110 and
p58. The full length CdcL 1/ CdeL 2transcripts encode p110 proteins. p58 is produced from
an open reading frame at the C-terminal end of the main ORF via IRES-mediated translation
[26]. p110 is a known transcriptional regulator that regulates RNA-binding proteins and
elongation factors. Furthermore, p110 was detected in all phases of the cell cycle [26].
Meanwhile, p58 binds cyclin D3 in the G2/M phases of the cell cycle [26]. Since translation
of p58 is up-regulated during G2/M phases, the transcriptional activity of p110 during the
cell cycle is likely coupled with the selective expression of p58 in the G2/M phase. Thus,
these two PITSLRE genes code for functionally distinct proteins that are programmatically
related and may undergo coupled expression. Although no specific disease association has
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been found with CdcL1and CdcL2, cyclin-dependent protein kinases carry out critical
phosphorylation steps during the cell cycle that are crucial for proper cell function.

CACNA1A: alA and a1ACT—AL least one member of the family of genes encoding
voltage-gated Ca?* channels, CACNAIA, is bicistronic. CACNA1A encodes the pore-
forming calcium channel subunit, a1A, through canonical, cap-dependent translation and a
novel transcription factor, a 1ACT, through IRES-mediated translation from at least one
spliced form of the same CACNAZA mRNA [27, 28]. The a1A voltage-gated Ca2* channel
is highly expressed in axon terminals of neurons, particularly in the cerebellum where it
mediates calcium entry to facilitate vesicular neurotransmitter release. a1ACT translocates
to the nucleus and binds to enhancer sequences containing an AT-rich motif to increase
expression of several genes expressed in Purkinje cells. a1ACT expression enhances
Purkinje cell dendritic growth and cerebellar cortical development. The a1A mRNA bears a
CAG repeat encoding a polyglutamine (polyQ) tract that is expanded in the autosomal
dominant disease, spinocerebellar ataxia type 6 (SCA6). SCAG results from selective
degeneration of Purkinje cells. a1ACT bearing an expanded polyQ tract has reduced
transcription factor function and is toxic to neuronal cells [27]. Selective suppression of
alACT by targeting the IRES (e.g. via RNA interference with miRNA) in adults prior to
disease onset may be a therapeutic strategy for SCA6 [29].

MTPN: Myotrophin and MPD6—The gene, MTPN, expresses two proteins from a
tandem bicistronic transcript. Myotrophin is translated by canonical cap-dependent
translation, and MPD6 is produced from a second cistron via IRES-mediated translation. As
with CACNAIA, the functions of the two proteins encoded by M 7PN appear to be distinct,
but presumably programmatically related. The primary protein product, myotrophin,
functions in the dimerization of NFxB in cardiac tissue. MPD6 is an antigen upregulated in
response to interferon-a (IFN-a) [30]. As a result, MPD6 is implicated in the immune
response in a subset of polycythemia vera, chronic myelogenous leukemia, and prostate
cancer patients [30]. Due to the possibility of IFN-a selectively increasing IRES translation
and the implications for immunotherapy, this presents a striking similarity to selective
regulation of meloe IRESs in cancer cells. Different ITAF expression between melanocytes
and melanoma cells has been attributed to different cistron expression in meloe. In the case
of MPDB6, this differentiation appears attributable to a response to the production of IFN-a
by host cells. Thus, selective regulation of expression in the bicistronic gene presents a more
complex view of the role of M7PN in normal and abnormal cellular function.

4) Signaling proteins generated by stimulus-coupled protease cleavage or by cap-
independent translation

The secondary protein normally coupled to expression and ligand binding of the first protein
has a constitutively active route for expression in physiological or pathological states.

NOTCH2: Notch2 and N2ICD—ANofchZ2 codes for one of four receptor genes (Notchi-4)
involved in the highly conserved ligand-receptor notch-signaling pathway. Interaction of
these cell surface receptors with extracellular notch ligand leads to protease cleavage of the
C terminal polypeptide known as notch intracellular domain (NICD). NICD translocates to
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the nucleus and induces transcription of target genes through interactions with co-repressors
and co-activators [31]. Apart from the canonical pathway used by Nofchi-4, Notch2-1CD
(N2ICD) is produced as an independent peptide through a cap-independent process
involving an IRES element present within the coding region of the NofchZ2 mRNA [32]. The
IRES-based expression of N2ICD provides an additional mode of notch signaling under
different regulation [32]. Additionally, this dual mechanism of expression might have
implications in understanding the various conditions associated with notch-signaling
dysregulation, especially given that widely different clinical conditions result from
mutations in different domains of Nofch2[33-37]

Her2: HER2 and HER2 CTF—HerZis part of the ErbB/Her family of receptor tyrosine
kinases implicated in cancers and neurodegenerative disease. HerZ2is a polycistronic gene
that codes for a full-length 185 kDa HER2 protein and several independent C-terminal
fragments (~ 70kD HER2 CTF) [38]. Two methionines, one at position 611 and the other at
687, act as initiators of translation for CTFs. The existence of these internal initiation sites
suggests the presence of an IRES within the coding region of HER2, although canonical
IRES identification methods have not been conducted. The HER2 protein is a tyrosine
kinase receptor known to act in secretory and endocytic pathways. The full length protein
also potentially localizes in the cell nucleoplasm. HER2 CTFs encompass the
transmembrane and cytoplasmic domains of HER2 and may be involved in gene expression.
Over-activation of Her2is implicated in hereditary breast cancer and cancer metastasis.
Therapeutic administration of antibodies to surface HER2 is a mainstay of immunotherapy
for breast cancer. However, HER2 CTFs expressed in the absence of HER2 surface receptors
were shown to be unresponsive to therapeutic antibodies. These tumor cells were only
sensitive to kinase inhibitors [38]. As a result, revelations in polycistronic regulation of Her2
cancer may allow for improved development and selection of cancer therapies.

Concluding Remarks

The organization and expression of specific proteins from mammalian polycistronic mMRNAs
appears to provide a similar layer of coordinated expression control to that used
constitutively by invertebrates and protozoans, adding to other expression controls believed
exclusive to mammals. Among the few examples of human polycistronic genes recognized,
the additional cistrons appear to allow for 1) co-expression of multiple subunits of a protein
that is part of a complex; 2) co-expression of similarly functioning proteins under slightly
different spatial or temporal patterns, 3) or co-production of novel, independently
functioning but programmatically related proteins. Although little is understood at present
about the cellular machinery involved in the regulation of these IRESs, or whether the
upstream cistron product may have a role in the function of the IRES or expression of the
second protein, these controls may have important implications in the understanding of
health and disease. ITAFs have been shown to both promote and inhibit the translation of
cellular IRESs, suggesting their dynamic role in regulating downstream cistron expression
[6, 39]. In addition, over-expression or depleted expression of ITAFs could cause a direct
dysregulation of the secondary protein that could potentially result in disease. A possible
therapeutic strategy could be to use genetic knockdown or drug intervention to restore the
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balance of ITAF expression [40]. Additionally, a disease state may result in alternative
localization or alternative cell-specificity of ITAFs and thereby change regulation of
secondary protein expression. This is a critical consideration to take into account when
developing therapeutics against diseases involving genes with functional IRESs [41].

In cases where polycistronic activity is compromised through mutations in important regions
within the IRES, therapeutics could target the expression of the second protein independent
of the IRES (e.g. via adeno-associated virus injection of a cap-dependent form of the
secondary protein’s mRNA sequence) or possibly genetic editing to restore IRES function.
Additionally, if the secondary protein expression needs to be abrogated, the IRES may be
targeted directly through RNA. (i.e. miRNA) or small molecule inhibitors [29, 40]. For
example, selective inhibition of the function of an IRES may enable selective suppression of
a disease protein, as we have shown in animal model of SCAG, and could, in theory, be the
case with persistent expression of HER2 intracellular protein in treatment-resistant breast
tumors [29, 38]. Additionally, second cistron expression of an antigen exclusively in cancer
cells, such as in the case of meloe, presents an opportunity for immunotherapy [15, 25].
Thus, if the IRES-specific mechanisms governing the expression of the additional cistrons
are relatively unique they may be ideal drug targets. Furthermore, elucidating various IRES
control mechanisms such as elFs, ITAFs, microRNAs and other regulatory features may
provide insight into the mechanism of poly amino acid expression seen in diseases
associated with RAN translation [42, 43]. Finally, if the function of the upstream cistron-
encoded protein plays a role in the expression of the downstream protein, genetic aberrations
of this gene could in theory have pleiotropic consequences. For example, because
depolarization may affect the translocation of the CACNAIC calcium channel transcription
factor, CCAT, to the nucleus, gain or loss of function mutations of the calcium channel
portion of this gene may affect the entry of CCAT into the nucleus and expression of the
array of genes under its control [44]. Thus, a further understanding of the control of
polycistronic gene expression in vertebrate tissues should provide new insights into different
human genotype-phenotype correlations as well as treatments of human disease.
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elF4E-binding protein; binds elF4AE preventing interaction between elFAE and elF4AG and
thereby preventing cap-dependent translation initiation

5 UTR

5’ Untranslated Region; region within the mRNA upstream of start codon of coding
sequence often with complex secondary structures that may contain regulatory elements for
canonical translation or an IRES

CACNA1A
calcium voltage-gated channel subunit alphal A; encodes the alphal A subunit of a calcium
channel and the alphalACT transcription factor

CCAT
CACNAIC calcium channel associated transcription regulator; transcription factor produced
by the CACNAIC gene

CdcL1/CdcL2 (PITSLRE)
PITSLRE serine/threonine-protein kinases

Cx43
Connexin 43

Cx55.5
Connexin 55.5

elF
eukaryotic initiation factor

FFAR1
Free fatty acid receptor 1; encodes the G-protein coupled receptors GPR40 and GPR41

GDF1
Growth Differentiation Factor 1

Her2
human epidermal growth factor receptor 2

IRES
Internal Ribosome Entry Site; a specialized region within mRNA that can initiate translation
independent of a 5’ cap

ITAF
IRES trans-acting factor; a biomolecule involved in the regulation of the IRES

LASS1
Ceramide Synthase 1, also Longevity Assurance Gene 1 Protein Homolog 1

LAMB1
encodes Laminin B1, a membrane glycoprotein associated with cancer invasion
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meloe
melanoma-overexpressed antigen; encodes three antigens expressed in melanocytes and
overexpressed in melanomas

MTPN
Myotrophin; in addition to encoding myotrophin which functions to NFxB in cardiac tissue,
the gene expressed the antigen MPD6

NOTCH2
Neurogenic locus notch homolog protein

PABP
Poly(A)-binding protein; involved in the circularization of mMRNA through its interaction
with the poly(A) tail and elF4G

pVHL
\on Hippel-Lindau Tumor Suppressor

RAN translation
Repeat associated non-ATG translation; specialized, novel method of translation that appears
to require codon repeats for initiation

SCAG6
spinocerebellar ataxia type 6; ataxia caused by a polyglutamine repeat expansion in the
voltage-gated Ca?* channel, CACNAIA

SNRPN
Small Nuclear Ribonucleoprotein Polypeptide N

SNURF
SNRPN Upstream Reading Frame

TCP-BP
Tenocyclidine [1-(1-(2-Thienyl)cyclohexyl)piperidine binding protein gene; a protein
comprised of two subunits that forms a complex of proteins that bind glutamate agonists
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Outstanding Questions Box

What additional polycistronic genes can be identified by candidate gene
approach or non-biased screens that are regulated by IRES-mediated
translation?

What are the molecular and cellular pathways that regulate these novel
IRESs?

What off-target effects could arise if small molecule inhibitors or
immunotherapy were used to target pathological secondary protein production
in polycistronic genes?

Insights into mechanisms of alternative-translation control of these IRESS,
such as initiation factors and ITAFs could reveal new sites for clinical
treatment, particularly in diseases associated with RAN translation.
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Trends Box

When compared to well-studied systems in viruses, protozoans, and
invertebrates, recently identified mammalian polycistronic genes appear to
maintain a similar level of coordinated expression control and offer a unique
strategy for temporal and spatial control of gene expression.

Studies done on IRES-translation in polycistronic mammalian genes
demonstrate multiple possible functions of the resulting proteins.

Mutations that affect the expression of multiple cistrons and therefore
different molecular pathways could explain some observations of genetic and
clinical complexity.

Newly discovered polycistronic genes demonstrate that targeting of secondary
proteins translated by IRES-mediated mechanisms could be a viable method
of disease treatment using miRNA targeting or immunotherapy.
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A. Category 1 B. Category 2
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Signal Transduction

Figure 1. Functional Organization of Bicistronic Genes
A. Two subunits of a multi-subunit complex whose expression is coordinated in a single

transcript: each Open Reading Frame (ORF) codes for a specific subunit of a larger protein
complex. B. Functionally similar gene products that are differentially co-expressed: a
primary protein is expressed through canonical cap-dependent translation while a secondary
and functionally similar protein is differentially expressed through a cap-independent
mechanism. C. Functionally distinct gene products that have programmatically-related
expression: expression of two differentially functioning proteins is coupled with their
operation in a particular biological pathway. Category 3 appears with both tandem and
overlapping reading frames. D. Signaling proteins generated by stimulus-coupled protease
cleavage or by cap-independent translation: two overlapping ORFs code for necessary
products for signal transduction, the primary product is a receptor that initiates signal
transduction upon ligand binding while the secondary product is a constitutively active
signal.
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JrFalse negative may occur if IRES requires factors found in a certain cell type or within a specific subcellular region such
as the nucleus.

Figure 2. Key Methodology for Identifying IRES-mediated Translation
Confirmation of IRES activity is done by either: 1) insertion of the putative IRES sequence

into a dual reporter vector; or 2) /n vitrotranscription and translation with excess cap analog.
Typical steps for exclusion of cryptic promoter activity or alternative splicing: 1)
promoterless vector assay 2) /in vitro transcription of a single mMRNA, and subsequent /n vitro
translation or cellular transfection 3) northern blotting and reverse transcription PCR
spanning the exons.
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Cap-Dependent Translation

PABP?
STOP == == == —— —— ——~

Figure 3. A Brief Overview of Cap-Dependent Translation and IRES-mediated, Cap-
Independent Translation

Mammalian cap-dependent translation functions through the use of all the canonical
initiation factors as well as circularization of the mRNA through the interaction of PABP and
elF4G. Key initiation factors are pictured here. Cap-independent IRES-mediated translation
is thought to require a subset of ITAFs, an unknown number canonical initiation factors, and
may require circularization.
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