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Abstract

Background—The health effects of ambient volatile organic compounds (VOCs) have received 

less attention in epidemiologic studies than other commonly measured ambient pollutants. In this 

study, we estimated acute cardiorespiratory effects of ambient VOCs in an urban population.

Methods—Daily concentrations of 89 VOCs were measured at a centrally-located ambient 

monitoring site in Atlanta and daily counts of emergency department visits for cardiovascular 

diseases and asthma in the 5-county Atlanta area were obtained for the 1998–2008 period. To 

understand the health effects of the large number of species, we grouped these VOCs a priori by 

chemical structure and estimated the associations between VOC groups and daily counts of 

emergency department visits in a time-series framework using Poisson regression. We applied 

three analytic approaches to estimate the VOC group effects: an indicator pollutant approach, a 

joint effect analysis, and a random effect meta-analysis, each with different assumptions. We 

performed sensitivity analyses to evaluate co-pollutant confounding.

Results—Hydrocarbon groups, particularly alkenes and alkynes, were associated with 

emergency department visits for cardiovascular diseases, while the ketone group was associated 

with emergency department visits for asthma.

Conclusions—The associations observed between emergency department visits for 

cardiovascular diseases and alkenes and alkynes, may reflect the role of traffic exhaust, while the 

association between asthma visits and ketones may reflect the role of secondary organic 

compounds. The different patterns of associations we observed for cardiovascular diseases and 

asthma suggest different modes of action of these pollutants or the mixtures they represent.
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INTRODUCTION

Ambient air pollution is a complex mixture of particulate matter varying in size and 

composition and gaseous pollutants. Health effects of particulate matter, its constituents, and 

criteria gases have been frequently investigated.[1, 2] Other coexisting pollutants, for 

example volatile organic compounds (VOCs), have received less attention in epidemiologic 

studies.

Organic pollutants include a variety of compounds, such as hydrocarbons, halocarbons, and 

oxygenates. These compounds reside in the vapor phase, particle phase, or both, depending 

on organic equilibrium properties (e.g., vapor pressure) and particle surface composition 

(e.g., water content). There is a dynamic continuum among VOCs, semi-volatile organic 

compounds (SVOCs), and particle phase organics, and together they constitute total organic 

aerosol.[3, 4] There is increasing evidence for the health effects of organic aerosols. 

Epidemiologic studies have suggested cardiorespiratory effects of mixtures from fossil fuel 

combustion, which contain large fractions of organic pollutants.[4] Ambient fine particle 

organic carbon (PM2.5 OC) and its constituents have been associated with various 

cardiorespiratory health outcomes.[4–13] VOCs may also have an impact on health. Previous 

epidemiologic studies have suggested respiratory effects of indoor VOCs.[14] Controlled 

human exposure studies have suggested inflammatory effects of VOCs.[15, 16] However, 

epidemiologic evidence on cardiorespiratory effects of ambient VOCs is sparse.[17–25] Most 

previous studies considered only a limited number of species and are not representative of 

the wide range of compounds found in urban air.

To advance our understanding of the health relevance of ambient VOCs, we estimated their 

acute cardiorespiratory effects in the Atlanta, Georgia, metropolitan population. This 

analysis capitalizes on our ongoing Study of Particles and Health in Atlanta (SOPHIA), 

which has information on ambient air pollution, including a wide range of VOCs, and 

emergency department visits.[26–29] To seek coherence in understanding the health effects of 

a large number of VOCs, we grouped VOCs a priori by chemical structure and estimated the 

group effects. Grouping by chemical structure was motivated by several considerations: 1) as 

chemical structure determines the reactivity of a compound, pollutants sharing a common 

chemical structure may be similar in toxicity, so grouping by chemical structure may 

enhance the understanding of their health associations from a biological perspective; and 2) 

pollutants sharing a common chemical structure may be generated from common emission 

sources or atmospheric chemical processes, so grouping by chemical structure may suggest 

health effects of these sources or processes.

While we grouped these VOCs by shared characteristics, pollutants within a group may still 

differ in their health associations and be subject to different levels of measurement error. As 

there is little understanding of the nature of these variations, we applied three analytic 

approaches to estimate the group effects, each with different assumptions concerning the 

variations within a group.

Ye et al. Page 2

Epidemiology. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



METHODS

VOC measurements and formation of VOC groups

Daily 24-hour average concentrations of VOCs were measured at the Atlanta Jefferson 

Street ambient monitoring site during 8/14/1998-12/31/2008 as part of the Aerosol Research 

and Inhalation Epidemiology Study (ARIES). Sampling details were previously published 

by Hansen et al.[30] Briefly, 24-hour samples were collected in evacuated 6-L passivated 

stainless canisters and then analyzed via gas-chromatography with flame ionization 

detection. Data included daily concentrations of 89 identified individual species (77 

hydrocarbons and 12 oxygenates), total identified hydrocarbons, and total identified 

oxygenates (Supplement, eTable 1). Concentrations were reported in part per billion, as 

carbon (ppb-C), and the limit of detection (LOD) for all species was 0.1 ppb-C.

We grouped individual VOCs a priori by chemical structure. Groups among the 77 

hydrocarbons included alkanes, alkenes, alkynes, and aromatic hydrocarbons, and among the 

12 oxygenates included aldehydes, acids, ketones, and ethers. We further divided the alkanes 

into four groups (n-alkane, iso/anteiso-alkane, other branched alkane, cycloalkane) based on 

branching. For this analysis, we only included species with concentrations above the LOD 

on at least 90% of days. This left 46 species in seven hydrocarbon groups (n-alkane, iso/

anteiso-alkane, other branched alkane, cycloalkane, alkene, alkyne, and aromatic) and three 

oxygenate groups (aldehyde, acid, and ketone) (Table 1). Observations below LOD were 

replaced with half the detection limit (0.05 ppb-C).

Emergency department visits

We obtained daily counts of emergency department visits for cardiovascular diseases and 

asthma among patients living within the five-county Atlanta area (Clayton, Cobb, DeKalb, 

Fulton, and Gwinnett) during 8/14/1998-12/31/2008. Daily counts of emergency department 

visits were aggregated from individual-level billing records from metropolitan Atlanta 

hospitals as part of SOPHIA.[26–29] We identified emergency department visits for 

cardiovascular diseases as those with primary International Classification of Diseases, 9th 

Revision (ICD-9) diagnosis codes for ischemic heart disease (410–414), cardiac 

dysrhythmias (427), congestive heart failure (428), or peripheral vascular and 

cerebrovascular disease (433–437, 440, 443–445, 451–453). Asthma visits were identified as 

those with primary ICD-9 diagnosis codes for asthma (493) or wheeze (786.09, before 

10/1/1998; 786.07, after 10/1/1998). We used these emergency department data in 

accordance with agreements with the hospitals and the Georgia Hospital Association. This 

study was approved by the Emory University Institutional Review Board.

Analytic approaches

We first estimated the effects of total identified hydrocarbons and total identified 

oxygenates, and then estimated VOC group effects using three analytic approaches. All 

analyses were conducted in a time-series framework, in which we estimated the associations 

between daily levels of VOCs and daily counts of emergency department visits using 

Poisson regression accounting for over-dispersion. Based on our previous research on 

ambient air pollution and emergency department visits in Atlanta,[26–29] and studies on 
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ambient VOC health effects in other cities,[22, 24] we used same-day (lag 0) pollution levels 

in models predicting emergency department visits for cardiovascular diseases and 3-day 

moving average (of lags 0, 1, and 2) pollution levels in models predicting emergency 

department visits for asthma. All models included the same covariate control for temporal 

trends and meteorology: time splines with monthly knots, cubic function of same-day 

maximum temperature, cubic function of lag 1–2-day moving average minimum temperature 

(when using 3-day moving average pollution levels), cubic function of mean dew point 

temperature (same-day or 3-day moving average, matching the temporal metric of the 

pollution term), day of week, indicators for holidays, seasons, season-maximum temperature 

interaction, season-day of week interaction, and indicators for hospital participation periods. 

The estimated associations were reported as rate ratios per interquartile range (IQR) increase 

in pollutant concentrations.

Analyses of emergency department visits for cardiovascular diseases included all ages. For 

asthma visits, we performed analyses among all ages, and analyses stratified by age category 

(5–18 and 19+ years old), given our previous work suggesting that effects of air pollution on 

asthma may differ for children.[31]

Estimation of total VOC effects—We used single-pollutant models to estimate the 

effect of total identified hydrocarbons and total identified oxygenates, as follows:

Eq. 1

where Y was the daily count of emergency department visits for cardiovascular diseases or 

asthma, and total was the daily concentration of the total identified hydrocarbons or the total 

identified oxygenates.

Estimation of VOC group effects—We estimated VOC group effects using three 

analytic approaches: an indicator pollutant approach, a joint effect analysis, and a random 

effect meta-analysis.

1. Indicator pollutant approach: Pollutants in the same group may not be equally well 

measured. To minimize the impact of instrument measurement error on health effect 

estimation, we selected the pollutant with the highest median/LOD ratio as the indicator 

pollutant for each group, and considered the effect of the indicator pollutant as the group 

effect. This approach is based on the assumption that the pollutant with the concentration 

distribution furthest from the LOD is less prone to instrument-related measurement error. 

The effects of indicator pollutants were estimated using single-pollutant models as follows:

Eq 2.

where indicator pollutant of groupg was the concentration of the indicator pollutant for 

group g.
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2. Joint effect analysis: The effect of a given indicator pollutant may not fully represent the 

effect of its group if pollutant effects within a group differ. To capture the contribution of 

different pollutants within a group, we estimated a joint effect per IQR increase in all 

pollutants of a group as follows:

Eq 3.

where ng is the number of pollutants in group g, and pollutanti represented the concentration 

of each pollutant in group g. The estimated joint effect of group g was calculated as 

, where IQRi was the interquartile range of pollutanti in group g.[32]

3. Random effect meta-analysis: In the joint effect analysis, we considered the individual 

pollutant effects as fixed, and estimated a combined effect per increase in all pollutants in a 

group. In this random effect meta-analysis, we considered pollutant effects within a group as 

random (normally distributed) and estimated the group mean as the group effect. We applied 

a two-stage regression to estimate the group means and the within-group variance.[33–35]

In the first stage, we included all 46 VOCs in the Poisson model as follows:

Eq 4.

where pollutanti represented the concentration of each of the 46 VOCs. We obtained the 

estimated pollutant effects and their estimated variance-covariance matrix from the first 

stage model.

Let β̂ denote the vector of the estimated pollutant effects per IQR increase in pollutant 

concentrations, and let V̂ denote the corresponding variance–covariance matrix. In the 

second stage, we regressed the first stage estimates against indicator variables representing 

the groups:

Eq 5.

where Z is the design matrix indexing the grouping; α is a vector of the group means; θ is a 

vector of pollutant-specific deviation from its group mean with θ ~ N (0, τ2I), where τ2 is 

within group variance, and ε is the estimation error with ε ~ N (0, V̂).

We estimated the group means and within-group variance under a Bayesian framework using 

Markov chain Monte Carlo. Prior distributions for the group means and the within-group 

variance τ2 were normal with dispersed variance and inverse-gamma (0.001, 0.001), 

respectively.

Sensitivity analyses—We performed a series of sensitivity analyses for the indicator 

pollutant approach, using emergency department visits among all ages. First, we evaluated 
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model misspecification by estimating the associations between tomorrow’s pollutant levels 

(lag negative 1) and today’s emergency department visits, controlling for today’s pollutant 

and covariate levels. Tomorrow’s pollutant levels should not be associated with today’s 

emergency department visits in the absence of confounding, measurement error, or other 

model misspecification, as cause must precede effect.[36] Second, we evaluated potential 

confounding by VOCs, where we estimated the effect of each VOC group conditioning on 

others by including the 10 VOC indicator pollutants in one model. Third, we evaluated 

potential confounding by selected major pollutants by controlling for them one at a time in 

each VOC indicator pollutant model. The major pollutants considered in this analysis 

included 24-hour average PM2.5 OC, one-hour maximum carbon monoxide (CO), one-hour 

maximum nitrogen dioxide (NO2), and eight-hour maximum ozone (O3). These pollutants 

were also measured at the Atlanta Jefferson Street ambient monitor during the study 

period.[30]

RESULTS

Descriptive statistics and grouping information for the 46 VOCs included in the analysis are 

listed in Table 1, and their Pearson correlations are listed in Supplementary eTable 2. 

Hydrocarbons had moderate-to-strong positive correlations with one another (r from 0.48 to 

0.98, with mean of 0.82). Oxygenates had weak-to-moderate positive correlations with one 

another (r from 0.20 to 0.64, with mean of 0.42). Correlations between hydrocarbons and 

oxygenates were weak-to-moderate (r from −0.32 to 0.67, with mean of 0.28).

Descriptive statistics of the major pollutants (PM2.5 OC, CO, NO2, and O3) considered in 

the sensitivity analysis are listed in Table 1, and their correlations with the 46 VOCs are 

listed in the Supplement eTable 3. Hydrocarbons had moderate-to-strong positive 

correlations with PM2.5 OC, CO, and NO2 (r from 0.40 to 0.76, with mean of 0.60), while 

weak correlations with O3 (r from −0.26 to 0.23, with mean of 0.10). Oxygenates had weak-

to-moderate correlations with these major pollutants (r from −0.03 to 0.57, with mean of 

0.22).

During the study period, there were 251,030 emergency department visits for cardiovascular 

diseases- (66 per day) and 233,121 emergency department visits for asthma (61 per day 

overall; 18 per day among 5–18 year olds; and 27 per day among 19+ year olds).

Primary analysis—We first estimated associations between total VOCs and emergency 

department visits using single-pollutant models. For emergency department visits of 

cardiovascular diseases,  (95% CI) per IQR increase in total hydrocarbons and in total 

oxygenates were 1.005 (1.001, 1.009) and 1.004 (0.996, 1.013), respectively. For asthma 

visits among all ages, the association for total oxygenates was stronger than that for total 

hydrocarbons, with  (95% CI) of 1.008 (1.001, 1.015) and 1.024 (1.007, 1.041), 

respectively. We observed this pattern among 5–18 and 19+ year olds as well (Supplement, 

eTable 4).

We then estimated VOC group effects using the three analytic approaches (Table 2). Note 

that the alkyne, acid, and ketone groups included only one pollutant, and thus their joint 

effect estimates were the same as their indicator pollutant effect estimates. For emergency 
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department visits of cardiovascular diseases,  per IQR increase in hydrocarbon groups 

were generally similar to one another when estimated using the indicator pollutant approach 

and the joint effect analysis. However, in the random effect meta-analysis, only the alkyne 

group was associated with emergency department visits of cardiovascular diseases, with a 

 (95% CI) of 1.007 (1.001, 1.012). Among oxygenates, associations with cardiovascular 

diseases were generally consistent with the null except for the aldehyde group in the joint 

effects analysis (Table 2).

For asthma visits among all ages, the association with the ketone group was the largest, with 

 per IQR increase of 1.026 (1.004, 1.048) using the indicator pollutant approach, 1.026 

(1.004, 1.048) in the joint effect analysis, and 1.024 (1.000, 1.049) in the random effect 

meta-analysis. The association for the aldehyde group was also large in the joint effect 

analysis, with a  (95% CI) of 1.021 (1.004, 1.037). In comparison, the associations for 

hydrocarbon groups were weaker (Table 2). We observed this pattern of associations within 

the 5–18 and 19+ year age categories as well (Supplement, eTable 5). The biggest difference 

between these two age categories was that the association for the acid group was stronger 

among 5–18 than 19+ year olds.

Sensitivity analysis—We performed sensitivity analyses using emergency department 

visits among all ages. For the indicator pollutant approach, we found associations between 

emergency department visits of cardiovascular diseases and tomorrow’s levels for the acid 

and ketone groups, and between asthma visits and tomorrow’s levels for the alkyne group, 

suggesting possible model misspecification when estimating these associations. Other 

associations with tomorrow’s pollutant levels were consistent with the null, as expected 

under a well-specified model (Table 3).

We estimated the association for each VOC group conditioning on others by including the 

10 VOC indicator pollutants in one model. The estimated associations between emergency 

department visits of cardiovascular diseases and the alkene and alkyne groups had little 

change compared to those in the primary analysis using the indicator pollutant approach, 

while the estimated associations for other hydrocarbon groups were closer to the null (Table 

3). For asthma visits, results of this sensitivity analysis appeared to be unstable.

We estimated the association for each VOC indicator pollutant controlling for major 

pollutants one at a time in two-pollutant models. The estimated associations between 

emergency department visits for cardiovascular diseases and hydrocarbon groups were 

weaker when controlling for CO; the associations for CO were also weaker in two-pollutant 

models with the alkene or alkyne groups, compared to its estimated association in a single-

pollutant model (Table 4). The estimated associations between asthma visits and the 

oxygenate groups had little change when controlling for any of these major pollutants, and 

 per IQR increase in the ketone group were the largest ( from 1.025 to 1.027). The 

associations between asthma visits and hydrocarbon groups, on the other hand, were weaker 

when controlling for OC, CO, or NO2 (Table 5).
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DISCUSSION

In this study, we estimated acute cardiorespiratory effects of ambient VOCs by grouping 

these compounds based on chemical structure and estimating VOC group effects. Because 

few epidemiologic studies have examined the health effect of ambient VOCs, there is little 

understanding of the variation of pollutant effects and measurement error within a group, 

confounding by VOCs, and confounding by other fractions of air pollution. Because of these 

challenges, we applied multiple analytic approaches to estimate VOC group effects, and 

performed a range of sensitivity analyses.

We used the indicator pollutant approach as an attempt to minimize the instrument 

measurement error by using what we believed to be the best-measured pollutant. In the joint 

effect analysis, we considered individual pollutant effects as fixed and estimated a combined 

effect per increment of all pollutants in a group. In the random effect meta-analysis, we 

considered individual pollutant effects as random (normally distributed within a group) and 

estimated the group mean effect. Any inconsistency among group effect estimates using 

these approaches does not necessarily indicate that any of the estimates are wrong, but could 

reflect that these approaches define the group effects differently.

In our primary analysis of emergency department visits for cardiovascular diseases, we 

observed similar associations across hydrocarbon groups when using the indicator pollutant 

approach (Table 2). We performed a sensitivity analysis to estimate the effect of each group 

conditioning on others, and the results suggested that many of the hydrocarbon groups might 

be surrogates of the alkene and the alkyne groups (Table 3). The finding of alkynes being 

associated with cardiovascular diseases conditioning on other VOC groups agreed with the 

random effect meta-analysis results in the primary analysis, in which the estimated 

associations for each group were adjusted for others (Table 2).

However, it is also possible that these VOC groups are surrogates for other pollutants in the 

ambient air, and that the alkene and the alkyne groups in our analysis were merely better 

surrogates than other VOCs. To understand what the VOCs might be surrogates for, we 

performed an additional sensitivity analysis controlling for selected major pollutants one at a 

time in each VOC indicator pollutant model. When controlling for CO, the estimated 

associations between cardiovascular visits and the alkene and the alkyne groups were 

weaker, and the CO association was also weaker (Table 4). The alkene and the alkyne groups 

may be part of a causal mixture with CO, or, these pollutants could all be surrogates of other 

unmeasured pollutants in the causal mixture. Considering that pollutants in the alkene and 

alkyne groups are mainly generated from combustion, among which acetylene (the pollutant 

in the alkyne group) is a marker of automobile emissions, and CO is a classic traffic marker, 

their associations with cardiovascular diseases may reflect the effect of traffic exhaust.

In our primary analysis of asthma visits, we observed relatively strong associations with the 

ketone group among all ages (Table 2) and among specific age categories (Supplement, 

eTable 5). We performed sensitivity analyses on asthma visits of all ages, and found that the 

estimated associations for the ketone group had little change after controlling for any of the 

major pollutants (Table 5). While certain ketones are byproducts of ozone formation, and the 

pollutant in our ketone group is moderately correlated with ozone in this analysis, the 
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association between ketone and asthma visits had little change after controlling for ozone. 

The association between ketone and asthma visits could reflect something beyond the effect 

of ozone: perhaps, the effect of other secondary organic compounds that are also generated 

through atmospheric oxidation processes.

Overall, we found that hydrocarbon groups, particularly the alkene and alkyne groups, were 

associated with emergency department visits for cardiovascular diseases, while the ketone 

group was associated with asthma visits. Some hydrocarbon groups were associated with 

asthma visits, however, the magnitudes of their associations were smaller compared to the 

ketone group. The different patterns of associations we observed for the cardiovascular 

diseases and asthma suggest there could be different modes of action of these pollutants or 

the pollution mixtures they represent. The hydrocarbons included in our analysis are 

primarily emitted from traffic or other combustion sources, while oxygenates such as 

ketones are largely secondary. Previous studies of particle-phase pollutants have suggested 

that secondary organic compounds are more related to respiratory inflammation, as they are 

hydrophilic and thus more readily react with constituents in the respiratory tract,[6] while 

primary organic compounds are more related to systemic inflammation.[6, 7, 37] Our results 

on vapor-phase organics are consistent with these previous findings on particle-phase 

pollutants.

Previous epidemiologic studies reported positive associations between cardiovascular health 

outcomes and ambient hydrocarbons.[23, 25] Our finding of the alkyne group being 

associated with cardiovascular health outcomes has not been reported previously, although 

Suh et al. combined alkyne with other VOCs in a combustible category and reported its 

positive association with cardiovascular hospital admission.[35] Our findings on asthma and 

ambient VOCs are supported by existing evidence in general. Previous epidemiologic 

studies reported positive associations between respiratory health outcomes and ambient 

hydrocarbons, aldehydes, and ketones.[17–19, 21, 22, 24] Among them, Delfino et al. showed in 

a panel of asthmatic children that aldehyde (formaldehyde) and ketone (acetone) were 

associated with severe asthma symptoms with greater magnitudes compared to hydrocarbons 

(benzene, toluene, and xylenes),[19] similar to the pattern we observed here.

Our results are subject to spatial misalignment and instrument measurement error. The 

degree of these sources of error likely differs by VOC group, and thus the estimated group 

effects should be compared in light of these limitations. Compared to oxygenates, 

hydrocarbons as primary pollutants may be more subject to spatial misalignment, due to 

larger spatially heterogeneity. If this is the case, the estimated associations for hydrocarbon 

groups may be more biased towards the null compared to those for the oxygenate groups. 

Additionally, pollutants with a lower ambient concentration (e.g., the cycloalkane and 

aldehyde groups) may be more subject to instrument measurement error leading to 

underestimation of effects.

We chose to group pollutants based on a prior knowledge (chemical structure) rather than 

the statistical relationships among them (e.g., factor analysis, principle components analysis, 

etc). In doing so, the group definition is not specific to the data, and will allow for 

replication in future studies. Collinearity could be a concern when including multiple 
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correlated pollutants in the same model (eq. 3 and eq. 4). One consequence of collinearity is 

that it could lead to inflation of the variances for individual pollutant effect estimates. 

However, in our approaches where multiple pollutants were included in the same model, our 

interest was not in estimating individual pollutant effects, but rather, the group effects. 

Specifically, in the random effect meta-analysis, the second stage regression accounted for 

this variance inflation by estimating the group effect as a weighted-average of the first stage 

estimates, with the inverse variance-covariance matrix of the first stage estimates serving as 

the weights. In the joint effect analysis, the variance of the joint effect estimate incorporates 

negative co-variances between individual pollutant estimates, and thus could be more 

modest compared to the variances of individual pollutant estimates. In addition, our 

relatively long time-series (over 10 years) with relatively large counts of outcome events 

allow for a high degree of collinearity with less impact on the estimates than would be the 

case for a study with fewer observations.[32]

We grouped these VOCs by chemical structure with the idea that this grouping may enhance 

the understanding of their health associations from commonalities that are related to their 

structures, such as toxicity, source, and atmospheric process. However, pollutants sharing a 

common chemical structure may still differ in these factors, and the estimated group effect 

may not be easily generalized to pollutants that fall into the same group but are not included 

in our analysis. For example, alkenes included in our analysis were mainly anthropogenic, as 

biogenic alkenes measured at Jefferson St. were lower in concentration and thus excluded 

from the analysis due to >10% of measurements being below detection (Supplement, eTable 

1). Biogenic alkenes, such as isoprene, are important in the generation of ozone and 

secondary organics; these pollutants may exert health effects through pathways that are 

different from the anthropogenic alkenes included in this analysis.

Nonetheless, our approach allowed us to compare and understand the health associations of 

a large number of species in a coherent manner. Our findings further support the link 

between incomplete combustion and cardiovascular health, and the link between 

atmospheric oxidation products and respiratory health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Summary statistics of daily 24-hour average ambient air pollutants measured at the Atlanta Jefferson Street 

monitoring site during 8/14/1998–12/31/2008: total hydrocarbons, total oxygenates, 46 individual volatile 

organic compounds (VOCs) grouped by chemical structure, and four major pollutants that are included in 

analyses.a

VOC GROUPS INDIVIDUAL VOCs 50th (25th, 75th)
percentiles

TOTALHYDROCARBONSb 92.7 (63.2, 159.3)

TOTALOXYGENATESb 19.3 (11.8, 27.6)

HYDROCARBONS:

N-ALKANE Ethane 6.9 (4.9, 10.2)

Propanec 10.3 (6.5, 19.5)

n-Butane 6.2 (3.5, 11.0)

n-Pentane 3.2 (2.2, 5.4)

n-Hexane 1.5 (1.0, 2.6)

n-Heptane 0.9 (0.6, 1.5)

n-Octane 0.5 (0.3, 0.8)

n-Nonane 0.6 (0.4, 0.9)

n-Decane 0.7 (0.5, 1.3)

ISO/ANTEISO-ALKANE i-Butane 2.3 (1.4, 4.2)

i-Pentanec 6.7 (4.3, 12.4)

2-Methylpentane 1.9 (1.2, 3.4)

3-Methylpentane 1.2 (0.8, 2.1)

2-Methylhexane 0.8 (0.5, 1.5)

3-Methylhexane 1.1 (0.7, 1.9)

2-Methylheptane 0.3 (0.2, 0.6)

OTHER ALKANE 2,2-Dimethylbutane 0.5 (0.3, 1.0)

2,3-Dimethylbutane 0.6 (0.4, 1.1)

2,3-Dimethylpentane 0.5 (0.3, 1.0)

2,4-Dimethylpentane 0.3 (0.2, 0.7)

2,2,4-Trimethylpentanec 2.0 (1.2, 3.9)

2,3,4-Trimethylpentane 0.6 (0.3, 1.2)

3-Ethylhexane 0.3 (0.2, 0.6)

CYCLOALKANE Cyclopentane 0.3 (0.2, 0.5)

Methylcyclopentanec 0.8 (0.5, 1.4)

Methylcyclohexane 0.5 (0.3, 0.8)

ALKENE Ethylenec 3.1 (2.0, 5.4)

Propene 1.4 (0.9, 2.6)

ALKYNE Acetylenec 4.2 (2.7, 7.6)

AROMATIC Benzene 2.4 (1.8, 3.8)

Toluenec 7.1 (4.7, 12.5)
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VOC GROUPS INDIVIDUAL VOCs 50th (25th, 75th)
percentiles

Ethylbenzene 1.4 (0.9, 2.4)

n-Propylbenzene 0.4 (0.2, 0.7)

m-Xylene & p-Xylene 3.7 (2.2, 6.9)

o-Xylene 1.5 (0.9, 2.8)

m-Ethyltoluene 0.6 (0.3, 1.0)

p-Ethyltoluene 1.3 (0.8, 2.2)

1,2,4-Trimethylbenzened 1.7 (1.0, 3.0)

1,3,5-Trimethylbenzene 0.7 (0.4, 1.2)

OXYGENATES:

ALDEHYDE Hexanal 0.8 (0.5, 1.1)

Heptanal 0.6 (0.4, 0.8)

Octanal 1.2 (0.7, 1.8)

Decanal 0.7 (0.4, 1.1)

Benzaldehydec 1.7 (1.2, 2.5)

ACID Acetic Acidc 3.6 (1.5, 7.2)

KETONE 2-Butanonec 1.7 (1.0, 2.9)

MAJOR POLLUTANTS 50th (25th, 75th)
percentiles

24-hr PM2.5 OC (µg/m3) 3.6 (2.6, 5.0)

1-hr max CO (ppm) 0.69 (0.43, 1.27)

1-hr max NO2 (ppb) 39.3 (29.5, 50.0)

8-hr max O3 (ppb) 39.5 (25.7, 56.7)

a
There were 3793 days during 08/14/1998–12/31/2008. Measurements of hydrocarbons were available for 3233 of these days, while measurements 

of oxygenates were available for 3231 of these days. The unit is ppb-C and the limit of detection (LOD) is 0.1 ppb-C for all VOCs. VOC 
concentrations below 0.1 ppb-C were replaced with 0.05 ppb-C in all analyses.

b
Total hydrocarbons denotes total identified non-methane hydrocarbons. Total oxygenates denotes total identified oxygenated hydrocarbons.

c
Species in bold text are the indicator pollutants for each VOC group.

d
1,2,4-Trimethylbenzene & sec-Butylbenzene
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Table 2

Estimated associations between VOC groups and cardiovascular and asthma emergency department (ED) 

visits using three analytic approaches.a

VOC GROUPS INDICATOR POLLUTANT
APPROACHb

JOINT EFFECT
ANALYSISc

RANDOM EFFECT
META-ANALYSISd

CARDIOVASCULAR ED VISITS AMONG ALL AGES

HYDROCARBONS

N-ALKANE 1.002 (1.000, 1.005) 1.006 (1.001, 1.011) 0.999 (0.997, 1.001)

ISO/ANTEISO-ALKANE 1.004 (1.001, 1.008) 1.005 (1.000, 1.010) 1.000 (0.997, 1.003)

OTHER ALKANE 1.005 (1.001, 1.008) 1.006 (1.001, 1.011) 1.000 (0.997, 1.002)

CYCLOALKANE 1.005 (1.001, 1.009) 1.005 (1.001, 1.010) 1.002 (0.997, 1.007)

ALKENE 1.006 (1.002, 1.009) 1.006 (1.002, 1.009) 1.001 (0.997, 1.006)

ALKYNE 1.006 (1.003, 1.010) 1.006 (1.003, 1.010) 1.007 (1.001, 1.012)

AROMATIC 1.006 (1.002, 1.010) 0.998 (0.992, 1.005) 1.000 (0.999, 1.001)

OXYGENATES

ALDEHYDE 1.001 (0.998, 1.004) 1.008 (1.000, 1.016) 1.000 (0.998, 1.002)

ACID 1.002 (0.995, 1.010) 1.002 (0.995, 1.010) 1.001 (0.993, 1.009)

KETONE 1.005 (0.995, 1.014) 1.005 (0.995, 1.014) 1.003 (0.993, 1.013)

ASTHMA ED VISITS AMONG ALL AGES

HYDROCARBONS

N-ALKANE 1.004 (1.000, 1.009) 1.005 (0.995, 1.014) 0.999 (0.994, 1.003)

ISO/ANTEISO-ALKANE 1.006 (1.000, 1.013) 1.010 (1.000, 1.019) 1.006 (0.999, 1.013)

OTHER ALKANE 1.006 (1.000, 1.013) 1.007 (0.999, 1.016) 0.999 (0.993, 1.004)

CYCLOALKANE 1.009 (1.002, 1.016) 1.009 (1.002, 1.016) 0.995 (0.986, 1.007)

ALKENE 1.005 (0.998, 1.011) 1.005 (0.998, 1.011) 0.992 (0.983, 1.003)

ALKYNE 1.006 (0.999, 1.012) 1.006 (0.999, 1.012) 1.000 (0.987, 1.014)

AROMATIC 1.009 (1.002, 1.017) 1.008 (0.995, 1.021) 1.002 (0.998, 1.005)

OXYGENATES

ALDEHYDE 0.998 (0.991, 1.005) 1.021 (1.004, 1.037) 1.000 (0.995, 1.006)

ACID 1.008 (0.991, 1.026) 1.008 (0.991, 1.026) 1.003 (0.983, 1.021)

KETONE 1.026 (1.004, 1.048) 1.026 (1.004, 1.048) 1.024 (1.000, 1.049)

a
This analysis included 3224 days on which all VOCs were available during 8/14/1998–12/31/2008. VOC concentrations below the limit of 

detection (LOD) of 0.1 ppb-C were replaced with 0.05 ppb-C in all analyses. We used same-day (lag 0) pollution levels in models predicting 
cardiovascular ED visits and 3-day moving average (of lags 0, 1, and 2) pollution levels in models predicting asthma ED visits. All methods 
included the same covariate control for temporal trends and meteorology: time splines with monthly knots, cubic function of same-day maximum 
temperature, cubic function of lag 1–2-day moving average minimum temperature (when using 3-day moving average pollution levels), cubic 
function of mean dew point temperature (same-day or 3-day moving average, matching the temporal metric of the pollution term), day of week, 
indicators for holidays, seasons, season-maximum temperature interaction, season-day of week interaction, and indicators for hospital participation 
periods. The estimated associations are expressed as rate ratios (95% confidence interval) per interquartile range (IQR) increase in pollutant 
concentrations (listed in Table 1).

b
The “indicator pollutant approach” estimated the effect of each indicator pollutant increasing by its IQR in single-pollutant models.

c
The “joint effect analysis” estimated the effect of all pollutants in a group jointly increasing by their IQRs in multi-pollutant models that included 

all pollutants of the group. The joint effect estimates for VOC groups comprised of only one pollutant were the same as the estimates obtained from 
the indicator pollutant approach.
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d
The “random effect meta-analysis” estimated the mean effect of any of the pollutants in a group increasing by its IQR in a two-stage regression, 

where the 46 individual pollutant effects were estimated simultaneously in the Poisson model in the first stage, and the mean of each group was 
estimated under a Bayesian framework using Markov chain Monte Carlo in the second stage. The estimated rate ratio (95% CI) for the random 

effect meta-analysis is median (2.5th, 97.5th percentiles) from the posterior distribution.
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Table 3

Sensitivity analyses evaluating model misspecification and confounding by VOCs.a

VOC GROUPS PRIMARY ANALYSISb LAG NEGATIVE 1 c CONTROL FOR
OTHER VOC GROUPSd

CARDIOVASCULAR ED VISITS AMONG ALL AGES

HYDROCARBONS

N-ALKANE 1.002 (1.000, 1.005) 1.002 (0.999, 1.005) 1.000 (0.997, 1.003)

ISO/ANTEISO-ALKANE 1.004 (1.001, 1.008) 1.003 (0.999, 1.007) 0.996 (0.985, 1.008)

OTHER ALKANE 1.005 (1.001, 1.008) 1.002 (0.998, 1.006) 0.994 (0.981, 1.007)

CYCLOALKANE 1.005 (1.001, 1.009) 1.003 (0.999, 1.007) 1.002 (0.988, 1.016)

ALKENE 1.006 (1.002, 1.009) 1.002 (0.998, 1.005) 1.005 (0.998, 1.011)

ALKYNE 1.006 (1.003, 1.010) 1.002 (0.998, 1.006) 1.005 (1.000, 1.011)

AROMATIC 1.006 (1.002, 1.010) 1.002 (0.997, 1.006) 1.005 (0.988, 1.021)

OXYGENATES

ALDEHYDE 1.001 (0.998, 1.004) 0.999 (0.996, 1.002) 1.000 (0.997, 1.003)

ACID 1.002 (0.995, 1.010) 1.010 (1.002, 1.018) 1.001 (0.993, 1.009)

KETONE 1.005 (0.995, 1.014) 1.012 (1.002, 1.021) 1.003 (0.993, 1.013)

ASTHMA ED VISITS AMONG ALL AGES

HYDROCARBONS

N-ALKANE 1.004 (1.000, 1.009) 1.000 (0.997, 1.003) 1.001 (0.995, 1.007)

ISO/ANTEISO-ALKANE 1.006 (1.000, 1.013) 1.000 (0.996, 1.005) 0.986 (0.963, 1.010)

OTHER ALKANE 1.006 (1.000, 1.013) 1.002 (0.998, 1.007) 0.985 (0.961, 1.009)

CYCLOALKANE 1.009 (1.002, 1.016) 1.001 (0.996, 1.006) 1.027 (0.999, 1.056)

ALKENE 1.005 (0.998, 1.011) 1.002 (0.998, 1.007) 0.993 (0.979, 1.006)

ALKYNE 1.006 (0.999, 1.012) 1.004 (1.000, 1.008) 1.001 (0.990, 1.013)

AROMATIC 1.009 (1.002, 1.017) 1.002 (0.997, 1.007) 1.019 (0.987, 1.052)

OXYGENATES

ALDEHYDE 0.998 (0.991, 1.005) 1.002 (0.998, 1.006) 0.994 (0.987, 1.001)

ACID 1.008 (0.991, 1.026) 0.998 (0.987, 1.010) 1.001 (0.984, 1.020)

KETONE 1.026 (1.004, 1.048) 1.003 (0.990, 1.017) 1.027 (1.003, 1.050)

VOC indicates volatile organic compounds, LOD limit of detection, ED emergency department.

a
These analyses included 3224 days on which all VOCs were available during 8/14/1998–12/31/2008. VOC concentrations below the limit of 

detection (LOD) of 0.1 ppb-C were replaced with 0.05 ppb-C in all analyses. We used same-day (lag 0) pollution levels in models predicting 
cardiovascular ED visits and 3-day moving average (of lags 0, 1, and 2) pollution levels in models predicting asthma ED visits. All methods 
included the same covariate control for temporal trends and meteorology: time splines with monthly knots, cubic function of same-day maximum 
temperature, cubic function of lag 1–2-day moving average minimum temperature (when using 3-day moving average pollution levels), cubic 
function of mean dew point temperature (same-day or 3-day moving average, matching the temporal metric of the pollution term), day of week, 
indicators for holidays, seasons, season-maximum temperature interaction, season-day of week interaction, and indicators for hospital participation 
periods. The estimated associations are expressed as rate ratios (95% confidence interval) per interquartile range (IQR) increase in pollutant 
concentrations (listed in Table 1).

b
The “primary analysis” is the indicator pollutant approach in the primary analysis. It estimated the effect of each indicator pollutant increasing by 

its IQR in single-pollutant models.
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c
The “lag negative 1” is based on indicator pollutant approach. It estimated the associations between tomorrow’s indicator pollutant level (lag 

negative 1) and today’s ED visits, controlling for today’s indicator pollutant and covariate levels. We reported the estimates of the lag negative 1 
pollutant levels in this column.

d
The “control for other VOC groups” included all indicator pollutants in one model simultaneously.
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Table 5

Sensitivity analysis controlling for selected major pollutants one at a time in each VOC indicator pollutant 

model predicting asthma ED visits among all ages.a

PM2.5 OC CO NO2 O3

SINGLE-POLLUTANT MODELS OF
MAJOR POLLUTANTS: →

1.019 (1.007, 1.030) 1.018 (1.007, 1.030) 1.031 (1.014, 1.049) 1.037 (1.009, 1.066)

SINGLE-POLLUTANT MODELS OF
VOC INDICATOR POLLUTANTS: ↓

TWO-POLLUTANT MODELS: MAJOR POLLUTANT (TOP OF CELL).
VOC INDICATOR POLLUTANT (BOTTOM OF CELL).

1.015 (1.002, 1.028) 1.015 (1.001, 1.029) 1.027 (1.009, 1.046) 1.033 (1.004, 1.062)

N-ALKANE 1.006 (1.001,1.011) 1.003 (0.998, 1.009) 1.003 (0.997, 1.009) 1.004 (0.998, 1.009) 1.005 (1.000, 1.010)

1.012 (0.997, 1.028) 1.012 (0.994, 1.030) 1.024 (1.005, 1.044) 1.030 (1.001, 1.059)

ISO/ANTEISO-ALKANE 1.012 (1.004, 1.020) 1.007 (0.996, 1.017) 1.006 (0.994, 1.018) 1.007 (0.998, 1.016) 1.010 (1.002, 1.018)

1.014 (0.999, 1.030) 1.015 (0.997, 1.034) 1.026 (1.007, 1.046) 1.030 (1.002, 1.060)

OTHER ALKANE 1.011 (1.003, 1.020) 1.005 (0.994, 1.016) 1.003 (0.990, 1.016) 1.006 (0.997, 1.015) 1.010 (1.001, 1.018)

1.010 (0.994, 1.025) 1.008 (0.990, 1.026) 1.023 (1.003, 1.042) 1.029 (1.001, 1.058)

CYCLOALKANE 1.014 (1.006, 1.022) 1.009 (0.999, 1.020) 1.009 (0.997, 1.022) 1.009 (1.000, 1.018) 1.012 (1.004, 1.021)

1.019 (1.003, 1.034) 1.021 (1.004, 1.039) 1.029 (1.010, 1.048) 1.034 (1.005, 1.063)

ALKENE 1.008 (1.000, 1.015) 1.000 (0.990, 1.010) 0.998 (0.987, 1.009) 1.003 (0.995, 1.011) 1.007 (0.999, 1.014)

1.015 (1.001, 1.030) 1.017 (1.000, 1.035) 1.027 (1.008, 1.046) 1.033 (1.005, 1.063)

ALKYNE 1.009 (1.002, 1.016) 1.003 (0.994, 1.012) 1.001 (0.990, 1.012) 1.005 (0.997, 1.012) 1.008 (1.001, 1.015)

1.012 (0.996, 1.028) 1.012 (0.994, 1.031) 1.024 (1.005, 1.044) 1.030 (1.002, 1.059)

AROMATIC 1.013 (1.004, 1.022) 1.007 (0.995, 1.019) 1.006 (0.992, 1.020) 1.007 (0.998, 1.017) 1.011 (1.003, 1.020)

1.019 (1.007, 1.032) 1.019 (1.007, 1.031) 1.032 (1.014, 1.050) 1.037 (1.009, 1.066)

ALDEHYDE 1.000 (0.993, 1.007) 0.997 (0.990, 1.004) 0.998 (0.991, 1.005) 0.998 (0.991, 1.005) 0.999 (0.992, 1.006)

1.018 (1.006, 1.030) 1.018 (1.006, 1.030) 1.031 (1.013, 1.049) 1.036 (1.007, 1.065)

ACID 1.011 (0.990, 1.032) 1.009 (0.989, 1.030) 1.009 (0.988, 1.030) 1.008 (0.988, 1.029) 1.008 (0.987, 1.029)

1.017 (1.005, 1.029) 1.017 (1.005, 1.028) 1.029 (1.011, 1.047) 1.033 (1.004, 1.062)

KETONE 1.030 (1.007, 1.054) 1.025 (1.001, 1.049) 1.025 (1.001, 1.050) 1.025 (1.001, 1.049) 1.027 (1.003, 1.051)

a
This analysis included 2997 days during 8/14/1998–12/31/2008 for which both data on major pollutants and VOCs were available. VOC 

concentrations below the limit of detection (LOD) of 0.1 ppb-C were replaced with 0.05 ppb-C in all analyses. We used 3-day moving average (of 
lags 0, 1, and 2) pollution levels in models predicting asthma ED visits. All methods included the same covariate control for temporal trends and 
meteorology: time splines with monthly knots, cubic function of same-day maximum temperature, cubic function of lag 1–2-day moving average 
minimum temperature, cubic function of mean dew point temperature (3-day moving average), day of week, indicators for holidays, seasons, 
season-maximum temperature interaction, season-day of week interaction, and indicators for hospital participation periods. The estimated 
associations are expressed as rate ratios (95% confidence interval) per interquartile range (IQR) increase in pollutant concentrations (listed in Table 
1).
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