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Abstract

Purpose of review—Corin is a transmembrane protease that activates atrial natriuretic peptide 

(ANP), an important hormone in regulating salt-water balance and blood pressure. This review 

focuses on the regulation of corin function and potential roles of corin defects in hypertensive, 

heart, and renal diseases.

Recent findings—Proprotein convertase subtilisin/kexin-6 has been identified as a primary 

enzyme that converts zymogen corin to an active protease. Genetic variants that impair corin 

intracellular trafficking, cell surface expression, and zymogen activation have been found in 

patients with hypertension, cardiac hypertrophy, and pre-eclampsia. Reduced corin expression has 

been detected in animal models of cardiomyopathies and in human failing hearts. Low levels of 

circulating soluble corin have been reported in patients with heart disease and stroke. Corin, ANP 

and natriuretic peptide receptor-A mRNAs, and proteins have been colocalized in human renal 

segments, suggesting a corin-ANP autocrine function in the kidney.

Summary—Corin is a key enzyme in the natriuretic peptide system. The latest findings indicate 

that corin-mediated ANP production may act in a tissue-specific manner to regulate cardiovascular 

and renal function. Corin defects may contribute to major diseases such as hypertension, heart 

failure, pre-eclampsia, and kidney disease
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INTRODUCTION

The heart acts as a central pump in the circulatory system. The discovery of atrial natriuretic 

peptide (ANP), also called atrial natriuretic factor, in the 1980s revealed another heart 

function in maintaining cardiovascular homeostasis [1]. Upon sensing increased blood 

volume, cardiomyocytes release ANP as a natriuretic hormone to promote renal sodium 
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excretion and relaxes peripheral vessels. This cardiac endocrine function is important for 

sodium homeostasis and normal blood pressure [2,3]. Latest studies show that ANP is also 

involved in energy metabolism and cardiovascular responses to stress and inflammation 

[4■■,5–7].

Most peptide hormones are produced as prohormones, which are converted to mature forms 

by proteolytic cleavage. Such post-translational processing also is required for ANP 

generation. ANP is synthesized as prepro-ANP, consisting of a signal peptide, a propeptide, 

and a C-terminal mature peptide [8,9]. The signal peptide is removed by signal peptidase in 

the endoplasmic reticulum (ER) to yield pro-ANP that is stored in the dense granules. Upon 

secretion, pro-ANP is converted to mature ANP on the cell surface [10]. The enzyme 

responsible for pro-ANP processing was a target of intense investigation [11–14], but 

remained elusive for more than two decades before corin was discovered.

CORIN: A TRANSMEMBRANE SERINE PROTEASE

Corin was identified as a serine protease from human hearts [15]. It consists of 1042 amino 

acids and includes an N-terminal cytoplasmic tail, a trans-membrane domain, and an 

extracellular region with two frizzled domains, eight low-density lipoprotein (LDL) receptor 

repeats, a scavenger receptor domain, and a C-terminal protease domain (Fig. 1). Such an 

arrangement of diverse domain structures is unique among proteases. Corin is the only 

serine protease containing frizzled-like domains [16]. Between the scavenger receptor 

domain and the protease domain is an activation site (Fig. 1). Cleavage at this site converts 

zymogen corin to an active enzyme. Human corin has 19 N-glycosylation sites and is 

heavily glycosylated [17]. Alternatively spliced mRNAs may exist to encode corin isoforms 

with different cytoplasmic sequences [18].

The signature catalytic residues and substrate-binding pocket in the protease domain predict 

corin to be a trypsin-like protease [15]. As a transmembrane protease highly expressed in 

cardiomyocytes, corin is expected to cleave proteins or peptides in the heart. Indeed, 

biochemical studies showed that corin activated pro-ANP in a sequence-specific manner 

[19]. Blocking corin expression inhibited pro-ANP processing in cardiomyocytes [20]. In 

corin knockout mice, mature ANP was undetectable [21], and the mice had salt-sensitive 

hypertension and cardiac hypertrophy [21,22]. These results show that corin is the long-

sought physiological pro-ANP convertase that is essential for normal blood pressure.

Corin also cleaves pro-brain natriuretic peptide (pro-BNP) in vitro [23,24]. In corin 

knockout mice, however, pro-BNP processing was not abolished [25■■], indicating that 

corin-mediated pro-BNP cleavage is not essential in vivo. Furin is another pro-BNP 

processing enzyme [23,24], which may act as a primary pro-BNP convertase in vivo [26■]. 

Potential role of corin in activating pro-C-type natriuretic peptide (pro-CNP) has been 

examined in cell-based studies. The results indicate that furin, but not corin, is a primary 

pro-CNP convertase [27]. It remains unknown if corin has other physiological substrates, 

especially in tissues such as skin, brain, and chondrocytes in which corin is expressed.
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REGULATION OF CORIN EXPRESSION AND ACTIVITY

Proper regulation of protease activities is important in many physiological processes. Recent 

studies have shown that corin expression and activity can be regulated at different levels 

from gene transcription, intracellular trafficking, cell surface expression to post-translational 

modifications (Fig. 2), which are discussed in the following sections.

Transcription and mRNA stability

Corin is expressed most abundantly in the atrium [15,28]. GATA-4 is a major transcription 

factor that controls corin expression in cardiomyocytes [29] (Fig. 2). Under pathological 

conditions such as heart failure [30–32], diabetic cardiomyopathy [33■], and radiation-

induced heart injury [34], corin expression and/or activity may be reduced. In heart failure 

patients, unprocessed natriuretic peptides are abundant in their blood, an indication of 

limited corin activity in falling hearts. Inositol-requiring enzyme 1 (IRE1) is an ER-stress 

protein with an endoribonuclease activity. A recent study indicated that increased IRE1 

expression in falling hearts may enhance corin mRNA degradation, thereby contributing to 

corin deficiency [35].

Zymogen activation

Corin is synthesized as a zymogen. Proprotein convertase subtilisin/kexin-6 (PCSK6) has 

been identified as a primary corin activator [25■■]. In cells, PCSK6 and corin travel 

separately to the cell surface, wherein PCSK6 cleaves corin at the conserved activation site, 

converting zymogen corin to an active enzyme (Fig. 2). Blocking PCSK6 expression by 

small interfering RNAs (siRNAs) inhibits corin activation in cultured cells. PCSK6 

knockout mice have no detectable corin activity in the heart and develop salt-sensitive 

hypertension [25■■]. These results indicate a key role of PCSK6 in regulating corin activity 

and blood pressure. Among PCSK proteases, PCSK9 is involved in LDL receptor 

degradation [36]. PCSK9 inhibitors are used to treat patientswith high LDL cholesterol 

levels [37]. Thus, proteases of the PCSK family may play different roles in cardiovascular 

biology.

Cell surface targeting

Cell surface expression is essential for corin activation and function. Cytoplasmic sequences 

regulate corin intracellular trafficking and cell surface targeting [18,38,39]. N-glycosylation 

is also important for the intracellular trafficking of corin. Blocking N-glycosylation by 

tunicamycin inhibits corin surface expression and zymogen activation in cultured 

cardiomyocytes [17,40]. N-glycosylation at Asn-697 in the scavenger receptor domain and 

Asn-1022 in the protease domain have been shown to promote corin cell surface expression 

[41]. It remains unknown how N-glycans facilitate the trafficking of corin inside the cell.

Ectodomain shedding

Uncontrolled proteolytic activities can be detrimental. As a protection mechanism, many 

proteases are coevolved with their cognate inhibitors. Remarkably, corin remains active in 

the presence of human plasma [42], indicating that circulating protease inhibitors do not 

block corin activity. To date, no physiological corin inhibitors have been identified. How is 
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its activity controlled once corin is activated on the cell surface? In cultured cardiomyocytes, 

activated corin undergoes autocleavage and metalloproteinase-mediated shedding, which 

reduces corin protein and activity on the cell surface [43] (Fig. 2). These proteolytic events 

may serve as a regulatory mechanism to prevent excessive corin activity in the heart.

HUMAN CORIN VARIANTS IN HYPERTENSIVE DISEASES

ANP variants are associated withblood pressure levels and heart disease [6,44,45]. To date, 

corin variants have been reported in patients with hypertension and heart disease. Dries et al. 
[46] identified a corin variant allele (T555I and Q568P) in African Americans, which was 

associated with hypertension, cardiac hypertrophy, and reduced natriuretic peptide 

processing [47,48]. The T555I and Q568P substitutions are in the frizzled-2 domain (Fig. 3) 

and impair corin activation and function in vitro [25■■,49]. Transgenic mice expressing this 

variant allele had high levels of pro-ANP in the heart and developed salt-sensitive 

hypertension and cardiac hypertrophy [50]. These results indicate that the corin variant, 

which occurs in ~10%of African Americans, is defective in vivo and may contribute to 

cardiovascular disease in this high-risk population.

R539C is another corin variant identified in a hypertensive family [51] (Fig. 3). The amino 

acid change creates a mismatched disulfide bond that alters the frizzled-2 domain 

conformation and causes corin autocleavage and inactivation [51]. Zhang et al. [39] also 

reported an insertion variant, c.102_103insA, which occurs preferentially in hypertensive 

patients in China (Fig. 3). The insertion shortens the corin cytoplasmic tail and reduces corin 

trafficking in the Golgi and cell surface expression [39]. These results indicate that genetic 

variants that impair corin structure and function may contribute to hypertension and heart 

disease in general populations.

Pre-eclampsia is a major disease characterized by gestational hypertension and proteinuria. 

Reduced uteroplacental perfusion and placental hypoxia play a central role in the disease 

[52,53]. Corin expression was detected in human and mouse pregnant uteruses, suggesting a 

local corin function [54,55]. Pregnant corin and ANP knockout mice were found to have 

delayed trophoblast invasion and poorly remodeled uterine spiral arteries [54]. The mice 

developed gestational hypertension and proteinuria [54,56], a phenotype similar to that in 

pre-eclamptic women. These findings suggest that locally activated ANP by corin in the 

uterus may promote spiral artery remodeling and that defects in the uterine corin function 

may cause pre-eclampsia.

To date, two intronic single nucleotide polymorphisms (SNPs) in the corin gene have been 

identified that are associated with pre-eclampsia in Caucasian women [57]. These SNPs are 

located next to exon 9 that encodes the LDL receptor-4 repeat and may alter mRNA splicing 

[57]. Cui et al. [54] also found two corin mutations in pre-eclamptic women: K317E in LDL 

receptor-2 repeat and S472G in the frizzled-2 domain (Fig. 3). In functional studies, the 

K317E mutation was found to alter LDL receptor-2 conformation, impairing corin activation 

by PCSK6, whereas the S472G mutation was found to abolish a β-sheet in the frizzled-2 

domain, causing protein misfolding and ER retention [58]. These results indicate that 
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naturally occurring variants may impair corin function by affecting gene expression, protein 

folding, intracellular trafficking, and post-translational modifications.

PLASMA SOLUBLE CORIN IN HEART DISEASE AND STROKE

Soluble corin has been detected in human blood, indicating that corin fragments cleaved in 

tissues may enter into the circulation [59,60]. Decreased circulating corin levels have been 

reported in patients with cardiovascular diseases, including acute myocardial infarction 

(AMI) [61,62■,63■], coronary artery disease [64,65], heart failure [66,67,68■], and stroke 

[69■] (Table 1). In heart disease patients, reduced circulating corin levels often correlated 

with poor clinical outcomes, suggesting that corin deficiency may be an underlying 

contributing factor. Consistent with this hypothesis, reduced cardiac corin expression was 

found in animal models of dilated and diabetic cardiomyopathies [33■,70■]. Conversely, 

overexpression of corin improved cardiac function and survival in a mouse model of dilated 

cardiomyopathy [71].

Hypertension is a major risk factor for stroke. ANP variant rs5063 is associated with a high 

risk for stroke [72]. Compared with healthy controls, stroke patients were found to have 

lower serum corin levels [69■] (Table 1). In men and women, individuals with the lowest 

quartile corin levels had threefold to five-fold and 8.5–17.5-fold higher risks, respectively, of 

ischemic and hemorrhagic stroke, compared with individuals with corin levels in the top 

quartile [69■]. Low levels of serum corin were also associated with a high risk for major 

disability within 3 months after stroke [73]. Given the role of corin in regulating blood 

pressure, these new findings should encourage further investigations to understand the 

potential role of corin in stroke [74].

In addition to heart disease and stroke, altered circulating corin levels have been linked to 

other diseases. In a population study involving 2498 adults of more than 30 years old, 

increased serum corin levels were associated with hypertension [75], obesity [76], 

dyslipidemia [77], and hyperglycemia [78]. High levels of plasma corin were found in 

patients with atrial fibrillation [79]. In pregnant women, increased plasma corin levels were 

associated with gestational age and hypertension [54,80–82]. Khalil et al. [80] reported that 

plasma corin levels before 20 weeks of gestation were lower in one-third of pre-eclamptic 

women compared with normotensive controls, suggesting that reduced plasma corin may be 

a predictor for pre-eclampsia. At this time, the tissue-origin and activity of the circulating 

corin remain unclear, making it difficult to interpret the data. Recently, Yin et al. [83] 

developed an electrochemical assay that measures corin activity in human plasma. Studies 

with such an activity assay may help to understand the significance of the circulating corin 

in disease settings.

RENAL CORIN EXPRESSION AND FUNCTION

Corin was discovered as a cardiac protease [15]. Later studies detected corin expression in 

noncardiac tissues such as uterus, skin, and brain [54,55,84–86]. Corin is also expressed in 

mouse, rat, and human kidneys [15,87–89]. In rat models of kidney disease, reduced renal 

corin expression was reported [89]. Similar results of low renal and urinary corin levels were 
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found in patients with chronic kidney disease [87]. These data suggest a potential role of 

corin in kidney biology and disease.

Recently, Dong et al. [90■■] reported colocalization of corin, ANP and natriuretic peptide 

receptor-A mRNA, and protein expression in human renal segments. The highest expression 

levels were in the proximal convoluted tubules and the inner medullary connecting ducts. 

These results indicate that corin may produce ANP in the renal segments as an autocrine 

mechanism to regulate sodium reabsorption [90■■]. These results also point to the proximal 

convoluted tubule as a major ANP action site. ANP-mediated natriuretic response has been 

well established as a cardiac endocrine function [91]. The latest findings of corin and ANP 

coexpression in renal segments suggest that a corin-ANP autocrine function may exist in the 

kidney to regulate sodium homeostasis.

Sodium retention is common in kidney disease [92]. In rat kidney disease models, reduced 

renal corin expression contributed to sodium retention [89], indicating that an impaired 

corin-ANP autocrine function may be an underlying mechanism. The question remains how 

the renal corin-ANP autocrine function differs from the cardiac corin-ANP endocrine 

function in regulating sodium homeostasis. In nephrotic patients, sodium and water retention 

often occurs despite high levels of plasma ANP [93,94]. Is it possible that these patients 

have an impaired renal corin-ANP autocrine function that is not compensated by circulating 

ANP of the heart origin? Additional studies will be important to understand the role of corin 

in renal physiology and disease.

CONCLUSION

Corin is a type II transmembrane serine protease that converts pro-ANP to ANP, thereby 

regulating sodium homeostasis and blood pressure. Corin variants that impair corin function 

have been reported in patients with hypertension, heart disease, pre-eclampsia, and kidney 

disease. In addition to the heart, corin is expressed in non-cardiac tissues. The latest studies 

indicate that corin and ANP may act in a tissue-specific manner to regulate salt-water 

balance and cardiovascular homeostasis.
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KEY POINTS

• Corin is synthesized as a zymogen that is activated by PCSK6 on the cell 

surface.

• Genetic variants impairing corin intracellular trafficking, cell surface 

expression, and zymogen activation have been identified in hypertensive 

patients.

• Low levels of circulating soluble corin have been detected in patients with 

heart disease and stroke.

• Coexpression of corin, ANP, and natriuretic peptide receptor-A in human 

renal segments suggests a renal corin-ANP autocrine function that may differ 

from the cardiac corin-ANP endocrine function in regulating sodium and 

cardiovascular homeostasis.
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FIGURE 1. 
Corin protein domain structure. Human corin consists of an N-terminal cytoplasmic tail, a 

transmembrane domain (TM), and an extracellular region that contains two frizzled (Fz) 

domains, eight LDL receptor (LDLR) repeats, a scavenger receptor (SR) domain, and a C-

terminal serine protease domain. The catalytic residues His (H), Asp (D), and Ser (S) are 

shown. The activation cleavage site is located between the scavenger receptor domain and 

the protease domain. The predicted N-glycosylation sites are indicated by Y shaped 

symbols.
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FIGURE 2. 
Corin biosynthesis, intracellular trafficking, and post-translational modifications. The 

transcription factor GATA-4 regulates corin expression in cardiomyocytes. Newly 

synthesized corin and PCSK6 travel separately to the cell surface, wherein PCSK6 converts 

zymogen corin to an active enzyme. Protease-mediated shedding and inactivation remove 

corin from the cell surface and reduce corin activity.
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FIGURE 3. 
Corin variants associated with hypertension. The locations of corin variants that have been 

identified in hypertensive patients are indicated.
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Table 1

Plasma and serum soluble corin levels in heart disease and stroke

Disease Sample (n) Finding Reference

AMI (ST-elevation) Plasma (50) Correlated with myocardial necrotic markers and 4-month infarct size [61]

AMI Serum (856) Lower vs. healthy controls; inversely associated with STE/NSTEMI [62■]

AMI Plasma (1382) Low corin level as a predictor for MACE [63■]

CABG (with CPB) Plasma (99) Low corin associated with postoperative HF [64]

ACS (non-ST-elevation) Serum (152) Lower vs. healthy controls; a predictor for MACE [65]

CHF Plasma (291) Lower vs. healthy controls inversely associated with NYHA class [66]

ADHF Plasma (14) Lower vs. healthy controls [67]

CHF Plasma (1148) Low corin inversely associated with NYHA class; a predictor for MACE [68■]

Stroke Serum (597) Lower vs. healthy controls; a risk factor for ischemic and hemorrhagic stroke [69■]

ACS: acute coronary syndrome; ADHF: acute decompensated heart failure; AMI: acute myocardial infarction; CABG: coronary artery bypass 
graft; CHF: chronic heart failure; CPB: cardiopulmonary bypass; HF: heart failure; MACE: major adverse cardiac events; n: sample number; 
NYHA: New York Heart Association; STE/NSTEMI: ST-elevation and non-ST elevation myocardial infarction.
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