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Abstract

In mammalian cells, early defenses against infection by pathogens are mounted through a complex 

network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. 

As obligate parasites, the survival of viruses is dependent upon the evolutionary acquisition of 

mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune 

responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA 

genomes are able to circumvent activation of cellular immunity. We start by discussing viral 

manipulation of host defense protein levels by either transcriptional regulation or protein 

degradation. We next review viral strategies used to repurpose or inhibit these cellular immune 

factors by molecular hijacking or by regulating their post-translational modification status. 

Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral 

replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the 

acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. 

In closing, we present a perspective on how characterizing these viral evasion tactics both 

broadens the understanding of virus-host interactions and reveals essential functions of the 

immune system at the molecular level. This knowledge is critical in understanding the sources of 

viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments.
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Introduction

Interactions between hosts and pathogens involve intricate processes of adaptation and co-

evolution. While host cells have acquired core mechanisms of defense, viruses have evolved 

effective means to subvert or inhibit these defense mechanisms. One class of prominent 
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human pathogens is that of DNA viruses. These viruses include poxviruses, herpesviruses, 

adenoviruses, polyomaviruses and papilloma viruses, and are connected with a diverse range 

of human diseases and even with increased mortality. The progression and spread of an 

infection depends on the “chess game”-like battle between host cell defenses and DNA virus 

evasion mechanisms.

The ability of a cell to elicit intrinsic and innate immune responses against DNA viruses is 

an essential component of host defense, acting immediately upon infection with these 

viruses. These host defenses act to inhibit viral infection, as well as to prime the adaptive 

immune responses and promote a global antiviral state within the host organism. As such, 

the function of these immune processes is essential for the survival of the host and the 

maintenance of a healthy system. The misregulation of immune responses is linked to the 

development of devastating autoimmune diseases, including type I diabetes, multiple 

sclerosis, and lupus erythematosus (reviewed in).

Intrinsic immune responses during viral infection utilize host cell transcriptional machinery 

to inhibit viral gene expression. Specialized proteins that bridge intrinsic and innate 

immunity are pattern recognition receptors (PRRs). These proteins are responsible for the 

early detection of the virus by recognizing specific viral molecular moieties, including 

nucleic acids, proteins, and lipids (reviewed in (Thompson et al., 2011)). This recognition 

elicits a temporal cascade of immune signaling pathways. For example, recognition of viral 

DNA by cellular DNA sensors triggers the signaling cascade that leads to the production of 

type I interferons (IFNs), usually IFNβ. This expression further induces the amplification of 

IFNs and interferon-stimulated genes (ISGs), which occurs several steps after the initial 

sensing event (reviewed in (Haller, Kochs, and Weber, 2006). The presence of viral DNA 

can be recognized by PRRs in multiple subcellular compartments, including the cytosol, 

endosomes, and the nucleus (as reviewed in (Crow, Javitt, and Cristea, 2015)). This sensing 

event signals through adaptor molecules in a sensor-dependent manner and leads to one of 

several outcomes—either transcription of type I and type II interferons or other cytokines 

(through translocation of IRFs and NF-κB), or cleavage of cytokines to produce their mature 

forms as exemplified by the function of inflammasomes (reviewed in (Crow, Javitt, and 

Cristea, 2015)). Cell death that occurs prematurely, e.g. before viral particle packaging and 

egress, limits the ability of the virus to spread. Therefore, another host defense mechanism 

utilizes cell death pathways as a mean to inhibit virus infection.

In response to these diverse mechanisms of host defense, viruses have evolved a plethora of 

tactics to ensure their replication and spread. The co-evolution of viruses with their hosts is 

in fact reflected by the sophisticated mechanisms of counter-defense to host antiviral 

strategies. Here, we review the current knowledge of the mechanisms DNA viruses use to 

inhibit or evade early host defense responses (Figure 1). Specifically, we start in chapter 1 by 

discussing viral means to inhibit host defense gene transcription. In chapter 2, we present an 

overview of the virus exploitation of the host proteasome pathway for the degradation of 

cellular defense factors. We next review the ability of viruses to hijack host defense proteins, 

to regulate immune effectors by post-translational modifications, and to inhibit cellular 

apoptosis for efficient replication (chapters 3, 4, and 5). In chapter 6, we present the striking 

ability of viruses to mimic host factors in order to act as signaling sinks of cellular antiviral 
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components. Altogether, these strategies reveal examples of convergent and divergent 

evolution across DNA viruses, highlighting the efficacy of viral immune evasion to secure 

successful replication and spread. In closing, we highlight emerging themes in viral immune 

evasion strategies and the value of understanding these strategies for the development of 

antiviral therapies.

1. Antagonism of host defense gene transcription by multiple mechanisms

Viruses have effective means to inhibit de novo transcription of critical host antiviral genes, 

as well as fast-acting strategies to antagonize the stability of host RNA already present 

within the cell upon infection. Of the latter, the capacity of viruses to advantageously 

regulate cellular gene expression can be met through mechanisms of host shutoff, viral 

micro RNAs, and selective targeting of RNA, all of which ultimately suppress a significant 

degree of cellular protein synthesis. This subsection presents an overview of these 

mechanisms. Additional post-transcriptional modulatory mechanisms employed by viruses, 

including RNA editing and RNA splicing, is reviewed elsewhere (Hogg, 2016).

1.1. Virus induced destabilization of mRNA

An efficacious host shutoff approach used by viruses is the promotion of global RNA decay 

(Covarrubias et al., 2009; Glaunsinger and Ganem, 2004; Kwong and Frenkel, 1987; Lin et 

al., 2004; Read and Frenkel, 1983; Rowe et al., 2007; Sato et al., 2002). Notably, several α- 

and γ-herpesviruses have been well studied for their modulation of mRNA stability through 

viral ribonuclease-induced mRNA degradation (Figure 2, left). As an example, the human 

herpes simplex virus-1 (HSV-1) protein UL41, or virion host shutoff (vhs), is an mRNA-

specific endonuclease that is packaged within the tegument protein layer of mature virion 

particles (Elgadi, Hayes, and Smiley, 1999; Everly et al., 2002; Schek and Bachenheimer, 

1985). Upon cell entry, vhs is dispersed throughout the cytoplasm, rapidly degrading host 

and viral mRNAs prior to de novo viral gene expression, seizing the synthesis of cellular 

protein, and disaggregating preexisting polyribosomes (Smiley, Elgadi, and Saffran, 2001). 

These roles serve to prevent the expression of cellular immune factors and divert host 

machinery for viral replication. Importantly, the temporal degradation of host and viral 

mRNA levels promotes a shift in the cascade of viral gene expression from early to late viral 

genes. Mutations in vhs display reductions in viral titers as a result of increased levels of 

early gene transcripts and delays in late gene expression (Oroskar and Read, 1987; Oroskar 

and Read, 1989; Read and Frenkel, 1983).

Viruses may exhibit convergent evolution as evidenced by mRNA degradation through 

multiple means of mRNA targeting and different positions of primary cleavage. Viral 

RNases, like HSV vhs, Kaposi's sarcoma-associated herpesvirus (KSHV) ORF37 (SOX), 

murine herpesvirus 68 (MHV68) ORF37 (muSOX), and Epstein-Barr virus (EBV) ORF37 

homolog (BGLF5), cleave mRNA into fragments. In a study exploring the patterns of RNA 

cleavage by the aforementioned DNA viral factors, it was determined that, in addition to 

evidence for global mRNA degradation (Rivas, Schmaling, and Gaglia, 2016), these viral 

RNases displayed preferential cleavage of RNA polymerase II-derived transcripts that 

contain a 7-methylguanosine 5’ cap and 3’ poly-adenylated tail (Gaglia et al., 2012). 
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Through one of its RNA destabilizing mechanisms, vhs associates preferentially with the 5’ 

end of transcripts through the cap-binding protein complex, whereas the methods of mRNA 

targeting by SOX, muSOX, and BGLF5 await future characterization (Figure 2, left). 
Endonucleolytic cleavage of mRNA subsequently occurs near the cap for muSOX, or at 

internal positions for vhs, SOX, and BGLF5. Ultimately, all of these viral factors require 

cellular Xrn1 5’ – 3’ exonuclease activity to degrade the cleaved mRNA body (Covarrubias 

et al., 2011). Vhs was also shown to specifically target RNA containing AU-rich elements 

within the 3’ untranslated region of mRNA (Rivas, Schmaling, and Gaglia, 2016; von Roretz 

et al., 2011). Vhs directly binds the cellular protein tristetraprolin, which itself binds to AU-

rich elements (Shu, Taddeo, and Roizman, 2015), representing a possible procedure through 

which vhs mediates targeted degradation. Of particular relevance to viral immune evasion, 

AU-rich elements are prevalent within mRNAs encoded by innate immune response genes 

(Schott and Stoecklin, 2010), which may highlight an evolved viral mean to specifically 

dampen host antiviral immunity in tandem with mechanisms of global mRNA 

destabilization. It has been further elucidated that an immediate-early protein of HSV-1, the 

multifunctional ICP27, contributes to the inhibition of mRNA processing by being necessary 

for and sufficient to impair proper splicing of premature mRNAs containing introns (Hardy 

and Sandri-Goldin, 1994). A staggering percentage of cellular genes contain introns, 

compared to no more than 5% of HSV-1 genes, of which a majority are immediately-early 

genes (Smiley, Elgadi, and Saffran, 2001). In this way, HSV-1 may indirectly avoid 

interferences with gene expression by not having an obligation to undergo splicing.

In addition to its characterized functions in viral replication, the involvement of vhs in 

preventing the expression of critical host defense genes supports a model of host shutoff as a 

means of immune evasion. Mice infected with nonfunctional vhs displayed elevated innate 

immune responses activated by the host (Duerst and Morrison, 2004; Murphy et al., 2003; 

Pasieka et al., 2008). Specifically, vhs counteracts host immune factors by facilitating the 

degradation of antiviral interferon stimulated genes (ISG), including ZAP and viperin (Shen 

et al., 2014; Su, Zhang, and Zheng, 2015). It was determined that the ectopic expression of 

ZAP prevented the infection and progression of a mutant HSV-1 virus strain lacking vhs, 

while overexpression of vhs promoted the degradation of ZAP mRNA (Su, Zhang, and 

Zheng, 2015). Similarly, wild-type HSV-1 infection was capable of reducing levels of 

viperin mRNA, whereas UL41-null HSV-1 infection did not (Shen et al., 2014). Given that 

ISGs can restrict the replication of DNA and RNA viruses (Chin and Cresswell, 2001; Shen 

et al., 2014), these findings point to the evolution of an effective HSV-1 immune evasion 

tactic, and whether other viruses also have mechanisms of viperin inhibition remains to be 

determined.

The regulation of mRNA turnover allows a cell to rapidly adjust gene expression in an 

adaptive manner. Vaccinia virus (VACV), the prototype for the laboratory study of 

poxviruses, modulates both viral and host gene expression during the course of infection 

(Parrish, Resch, and Moss, 2007). VACV D10 protein was identified to contain mRNA 

decapping activity, an enzymatic activity not previously shown to be encoded by a DNA 

virus. This discovery provides a mechanism for control of both host and viral gene 

expression. The conservation of D10 proteins in all sequenced poxviruses suggests an 

evolved mechanism of immune system subversion that is an active area of research. In fact, 
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it was subsequently established by the same laboratory that the decapping activity of D10 is 

dependent on a Nudix hydrolase motif that is also present in the VACV D9 protein, which 

shares 25% sequence identity with D10 (Parrish and Moss, 2007).

A viral strategy for destabilizing cellular mRNA by preventing its nuclear export has also 

been reported. Adenovirus 5 was shown to inhibit cellular mRNA export, while promoting 

the selective export of viral late mRNAs to the cytoplasm (Gonzalez et al., 2006). This 

selectivity is achieved by the adenovirus E1B 55-kDa protein, which interacts with the viral 

E4 Orf6 and four cellular proteins (cullin 5, Rbx, and elongins B and C) to generate an 

infection-specific E3 ubiquitin ligase (Harada et al., 2002). It was also established that the 

export of viral late mRNAs occurs through the Nxf1/Tap pathway. However, it remains 

unclear if the associated substrates of the E3 ligase are targeted for proteasome-dependent 

degradation.

1.2 Translational inhibition by viral microRNAs

Alternative to inducing active mRNA degradation, DNA viruses encode and express non-

coding RNAs, or microRNAs (miRNA), approximately 19-23 nucleotides long that can 

target specific cellular genes (Figure 2, right). Although the roles of a majority of viral 

miRNAs have yet to be fully understood, early assessments of viral miRNA target genes in 

immune and non-immune cells suggests that viral miRNAs are critical for subverting the 

host antiviral immune response (Boss and Renne, 2010). For example, the microRNA miR-

UL112-1 of the human cytomegalovirus (HCMV) was shown to downregulate the 

expression of a ligand involved in the killing of NK cells, the major histocompatibility 

complex class I-related chain B (Stern-Ginossar et al., 2007). Aside from direct miRNA 

inhibition of host defense genes, Qin et al. provide the first report of viral miRNA-dependent 

induction of cytokines by targeting a host defense gene (Qin et al., 2010). It was determined 

that in human myelomonocytic cell lines, KSHV miR-K12-3 and miR-K12-7 target an 

isoform of the immune-stimulatory transcription factor C/EBPb, LIP, culminating in the 

expression of interleukins IL-6 and IL-10. As IL-6 and IL-10 have roles in inhibiting the 

maturation of dendritic cells, thereby preventing antigen presentation, the targeting of miR-

K12-3 and miR-K12-7 to LIP represents an indirect immune evasion strategy mounted 

during KSHV infection. Aside from directly targeting the cellular immune pathway, viral 

miRNAs also target proapoptotic genes. As an example, the EBV miRNAs miR-BART16, 

miR-BART17-5p, and miR-BART1-5p were shown to target and attenuate the expression of 

LMP1, an EBV transforming factor that facilitates cellular growth and survival through the 

stimulation of NF-κB (Lo et al., 2007). Temporal control of the downregulation of LMP1 by 

EBV miRNAs ensures cell longevity by preventing LMP1-induced apoptosis and NF-κB 

inhibition.

1.3. Viral RNA as a sequestration sink for host defense factors

To hinder the production of virion particles during infection, cells possess an army of pattern 

recognition receptors and interferon-induced antiviral molecules that bind foreign nucleic 

acid and arrest viral protein synthesis. Of these antiviral effectors, the double stranded RNA 

(dsRNA)-dependent cellular protein kinase R (PKR) is critically involved in translational 

inhibition and stasis, as well as apoptosis induction, of infected cells. PKR binds viral 
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dsRNA and phosphorylates the cellular translation initiation factor, eIF2α, thereby stalling 

protein synthesis. Many protein antagonists of PKR, derived from DNA viruses, have been 

identified (Figure 2, right). These include VACV E3L and K3L, HCMV TSR1, and HSV-1 

US11 (Davies et al., 1993; Marshall et al., 2009; Peters et al., 2002). As an example, VACV 

E3L sequesters dsRNA, thus preventing viral mRNA-dependent activation of PKR or other 

dsRNA receptors (Griffiths and Coen, 2005). From the perspective of non-protein 

antagonists, several viruses express non-coding, double-stranded, or structured RNA 

molecules, which competitively inhibit host dsRNA receptors involved in cellular immunity. 

An area of active research is the identification of viral factors that use self-RNA as a proxy 

to subvert the role of PKR in translational inhibition by binding to PKR and preventing 

activation of the catalytic domain. These include RNA derived from adenovirus and EBV 

(Langland et al., 2006; Launer-Felty, Wong, and Cole, 2015). The adenovirus RNA 

molecule, virus-associated RNA-I, or VAI, which is an approximately 160 nucleotide 

dsRNA molecule, is one such self-RNA decoy that binds to PKR. Structural analyses, 

including small angle x-ray scattering and analytical ultracentrifugation, established that 

VAI adopts a flat duplex conformation stabilized by a pseudoknot, facilitating the formation 

of an apical stem and several loop regions. The association of the apical stem with the 

central domain of VAI generates a monomeric PKR binding site, the interaction of which not 

only occurs with high affinity and precision, but also in a fashion that avoids kinase 

activation (Dzananovic et al., 2014; Launer-Felty, Wong, and Cole, 2015). The constitutively 

expressed EBER-1 and EBER-2 RNAs of EBV are composed of 167 and 172 nucleotides, 

respectively (Glickman, Howe, and Steitz, 1988), and similarly sequester PKR from RNA 

products of viral replication (Laing, Matys, and Clemens, 2001; Launer-Felty, Wong, and 

Cole, 2015). Stem-loop IV of EBER-1 binds PKR at two different regions, providing the 

theoretical capability of sequestering two binding domains of PKR with one EBER-1 

molecule (Vuyisich, Spanggord, and Beal, 2002).

In addition to protein and RNA products that prevent PKR activation, it is possible that DNA 

viruses encode other competitive inhibitory factors of cellular dsRNA receptors. While such 

viral factors remain to be discovered for DNA viruses, a genomic region of the RNA virus, 

Hepatitis C virus, contains a structured internal ribosomal entry site (IRES) that is also a 

competitive inhibitor of PKR-mediated dsRNA binding. Considering the larger genome 

sizes of many DNA viruses relative to RNA viruses, it is possible that the genomic luxury of 

many DNA viruses affords the capacity to encode a competitive IRES element within 

polycistronic mRNA. Current knowledge of existing IRES elements in DNA viruses is 

limited to that in the thymidine kinase gene of HSV-1 (Griffiths and Coen, 2005), upstream 

of the simian virus 40 vp3 coding region (Yu and Alwine, 2006), and upstream of the shrimp 

pathogen White Spot Syndrome Virus (Han and Zhang, 2006). Despite this, it is conceivable 

that these and other as-of-yet uncovered IRES elements in DNA viruses similarly act as 

competitive inhibitors of cellular dsRNA receptors.

2. Viruses exploit the proteasome pathway to destroy host antiviral proteins

The proteasome pathway is critical for maintaining cellular homeostasis. This pathway is 

responsible for regulating protein turnover for the majority of intracellular proteins ((Rock et 

al., 1994) and reviewed in (Lecker, Goldberg, and Mitch, 2006)). These proteins are post-
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translationally modified by a chain of ubiquitin (Ub) molecules, which triggers their 

recognition by the 26S subunit of the proteasome. Via a stepwise process, the multisubunit 

proteasome complex degrades the proteins into small peptides. Among its roles in 

maintaining cellular homeostasis, the proteasome pathway is critical for the regulation of the 

immune responses. For example, this pathway is responsible for generating peptides for 

antigen presentation by major histocompatibility complex (MHC) class I and initiation of 

adaptive immune responses (Rock et al., 1994). Furthermore, the proteasome-mediated 

degradation of polyubiquitinated IκB is an important step in innate immune response, 

necessary for the translocation of NF-κB to the nucleus for transcriptional activation of type 

I IFNs (reviewed in (Karin and Ben-Neriah, 2000)).

Given the importance of this pathway in regulating immune response proteins, viruses have 

evolved mechanisms that exploit this pathway to specifically inhibit host defense factors. In 

particular, many DNA viruses have acquired the property to encode for viral E3 ubiquitin 

ligases (Randow and Lehner, 2009). One example is ICP0 from HSV-1 that functions as an 

E3 ligase through its RING finger domain (Boutell, Sadis, and Everett, 2002). Another viral 

strategy is the recruitment of host E3 ligases. This section provides an overview of the viral 

proteins shown to target host proteins for degradation via the proteasome pathway. 

Specifically, this three-part section reviews the virus-induced degradation of proteins 

involved in intrinsic defense, linking intrinsic to innate immunity, and innate immune 

responses.

2.1. Virus-induced degradation of intrinsic immunity proteins

A major reported target of viral E3 ubiquitin ligases is PML, the main constituent of PML 

nuclear bodies (PML-NBs). PML-NBs are composed of several transiently-interacting 

proteins that form distinct puncta in the nuclear matrix, and have been shown to have 

antiviral functions (reviewed in (Everett and Chelbi-Alix, 2007) and (Scherer and 

Stamminger, 2016)). PML-NBs were reported to suppress a number of herpesviruses, 

including HSV-1(Everett et al., 2006), (HCMV) (Ahn and Hayward, 2000), EBV 

(Sivachandran, Wang, and Frappier, 2012) and KSHV (Marcos-Villar et al., 2009), as well as 

other DNA viruses, including adenovirus (Doucas et al., 1996), human papilloma virus 

(HPV) (Stepp, Meyers, and McBride, 2013), and parvovirus (Mitchell et al., 2014). The cell 

intrinsic defenses of PML-NBs are due in part to the epigenetic silencing of viral genomes 

(reviewed in (Scherer and Stamminger, 2016)). In agreement with its antiviral activity, PML 

knockdown leads to increased HSV-1 titers following infection in human fibroblasts (Diner 

et al., 2015). Several viral E3 ligases were reported to target PML for proteasomal 

degradation. The HSV-1 protein ICP0 was shown to directly target PML (Boutell, Orr, and 

Everett, 2003) (Figure 3, left). The details surrounding PML degradation are complicated, as 

studies have shown both SUMO-dependent (most isoforms of PML)(Boutell et al., 2011) 

and -independent (PML.I) (Cuchet-Lourenço et al., 2012) modes of degradation by ICP0. 

However, both virus-mediated modes of PML degradation lead to inhibition of intrinsic 

antiviral defenses. Similar to ICP0, the protein encoded by ORF75c of murine 

γherpesvirus-68 directly targets PML for degradation, an event found essential for efficient 

virus propagation (Ling et al., 2008).
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In addition to PML, other components of PML-NBs, including hDaxx, ATRX, and Sp100, 

were also shown to have antiviral properties, either collectively (as PML-NBs) or 

individually (Lukashchuk et al., 2008; Saffert and Kalejta, 2006; Stepp, Meyers, and 

McBride, 2013; Wagenknecht et al., 2015). Therefore, it may not be surprising that all 

viruses mentioned above as inhibited by PML-NBs have acquired mechanisms for targeting 

its diverse components either for degradation or dispersal (the latter of which will be 

discussed in chapter 3). For example, during infection with HCMV, hDaxx is recruited to the 

viral major immediate early promoter (MIEP) to suppress transcription of viral immediate-

early (IE) genes. This function is counteracted by the HCMV tegument protein pp71 (UL82) 

(Saffert and Kalejta, 2006), which induces hDaxx degradation in a proteasome-dependent 

manner (Hwang and Kalejta, 2007; Saffert and Kalejta, 2006). However, it is interesting that 

this event seems to occur in an ubiquitin-independent manner (Hwang and Kalejta, 2007). 

This is not unprecedented for pp71, as this protein was also shown to induce the degradation 

of retinoblastoma (Rb) family members in a proteasome-dependent, ubiquitin-independent 

manner (Kalejta and Shenk, 2003). Another example is ORF75 of the γ-herpesvirus KSHV, 

which encodes a tegument protein that leads to the relocalization of hDaxx, dispersal of 

sp100, and degradation of ATRX (Full et al., 2014). This protein is homologous in sequence 

to phosphoribosylformylglycineamide amidotransferase (FGARAT), a cellular biosynthesis 

enzyme (Full et al., 2014). Indeed, another γ-herpesviruses that encodes a viral FGARAT is 

the herpesvirus saimiri from ORF3 that targets sp100 for degradation ((Full et al., 2012) and 

reviewed in (Scherer and Stamminger, 2016)). Lastly, the adenovirus (Ad5) protein 

E1B-55K, in complex with cellular cullin-5, has also been shown to target hDaxx for 

proteasomal-dependent degradation (Schreiner et al., 2010).

Host intrinsic immune responses also include the inhibition of viral gene transcription by 

using the host DNA damage response (DDR) pathway. Ad5 has been shown to target the 

DNA damage response protein Mre11 for degradation. Mre11, Rad50 and NBS1 form the 

MRN complex, which localizes to sites of DNA damage as part of the dsDNA break repair 

system. E4 mutant Ad5 infection elicits a cellular DDR that results in concatemerization of 

viral genomes (Weiden and Ginsberg, 1994). The consequence is that the viral genomes are 

too large to be packaged into virions (Boyer, Rohleder, and Ketner, 1999). To counteract 

this, the wild-type Ad5 virus has the ability to disperse the Mre11 complex, targeting Mre11 

for degradation (Stracker, Carson, and Weitzman, 2002). This event relies on the viral 

proteins E4orf6 and E1b55K that together form a complex with E3 ligase activity (reviewed 

in (Weitzman and Ornelles, 2005)).

2.2. Degradation of host proteins that bridge intrinsic and innate immune responses

The recognition of viral DNA by host PRRs constitutes a core mechanism through which 

cells initiate innate immune responses (Crow, Javitt, and Cristea, 2015). Not surprisingly, 

viruses have acquired means to target PRRs for degradation to inhibit their DNA sensing 

functions, i.e., binding to viral DNA and stimulation of IFNs or pro-inflammatory cytokines. 

ICP0 of HSV-1 was shown to target the DNA sensor DNA-PK (Figure 3, right). DNA-PK is 

a protein complex that consists of the catalytic subunit (DNA-PKcs) and the heterodimer 

Ku70/80. Although this complex is more commonly known for its role in DNA repair 

processes, such as its contribution to non-homologous end-joining after DNA damage 
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(Lieber et al., 2003), it was more recently reported as a sensor of viral DNA (Ferguson et al., 

2012). Lees-Miller et al. found that ICP0 is required for a reduction in the half-life of DNA-

PKcs (Lees-Miller et al., 1996). Shortly after, Roger Everett's group determined that ICP0 is 

necessary and sufficient for the proteasome-mediated degradation of DNA-PKcs (Parkinson, 

Lees-Miller, and Everett, 1999). Furthermore, it was determined that this activity by ICP0 is 

advantageous to HSV-1 replication, as the virus replicated more efficiently in DNA-PKcs-

depleted cells (Parkinson, Lees-Miller, and Everett, 1999). HSV-1 infection induces a DNA 

damage response in cells. Therefore, it is tempting to speculate that the degradation of DNA-

PKcs is beneficial to the virus in two ways: inhibition of a DNA damage response, and 

debilitating innate immune DNA sensing by DNA-PK. The role of ICP0 in inhibiting DNA 

sensing proteins is further exemplified by the degradation of the nuclear DNA sensor IFI16. 

Orzalli et al. showed that early during HSV-1 infection there is a requirement for ICP0 E3 

ligase activity for the prompt degradation of IFI16 (Orzalli, DeLuca, and Knipe, 2012). 

Another study showed that ICP0 alone is not sufficient for inducing IFI16 degradation, 

suggesting that this degradation is also dependent on the function of another viral 

immediate-early protein yet to be determined (Cuchet-Lourenço et al., 2013). In agreement 

with these observations, another study showed that IFI16 degradation was slower and only 

partial during infection with a mutant virus devoid of all IE genes except for ICP0 (d106) 

(Diner et al., 2015). Additionally, degradation did not occur during infection with an ICP0-

RING finger mutant virus, suggesting that ICP0 is necessary, but not sufficient for IFI16 

degradation. Further investigations will be needed to determine which other viral or host 

proteins may be involved in targeting IFI16 for degradation. Nevertheless, the reduction in 

protein levels of IFI16 was shown to be favorable for viral replication. Altogether, the ability 

of viruses to target DNA sensors for degradation highlights an effective mean through which 

viruses can inhibit host immune defenses (Figure 3).

2.3. Virus-mediated degradation of innate immune pathway components

Many innate immune pathways exist as a compilation of events carried out by distinct 

protein interactions and post-translational modifications. These pathways are triggered by 

PRRs and signal through adaptor molecules to initiate the nuclear translocation of 

transcriptional activators; e.g. NF-κB, and interferon regulatory factor -3 and -7 (IRF3 and 

IRF7). IRF3 is a cytoplasmic protein that translocates to the nucleus upon its activation and 

dimerization, an event induced by its phosphorylation by Tank binding kinase 1 (TBK1) 

(Fitzgerald et al., 2003). During virus infection, the function of IRF3 is to stimulate the 

transcription of type I interferons (John Hiscott, 1999). ORF61 of varicella zoster virus 

(VZV) encodes for a phosphoprotein that contains a RING finger domain homologous to the 

equivalent domain in ICP0 of HSV-1 (Moriuchi et al., 1992). Activation of IRF3 was found 

to be inhibited during infection with VZV (Zhu et al., 2011). ORF61 targets activated IRF3, 

leading to its degradation in a proteasome-dependent manner; the RING finger domain of 

ORF61 was required for this activity (Zhu et al., 2011). As only active (phosphorylated) 

IRF3 was targeted by ORF61, this suggests a mechanism through which viral proteins 

recognize immune activation, avoiding the unnecessary degradation of an inactive protein 

that may increase cellular stress. Interestingly, the bovine ICP0 (bICP0) from bovine 

herpesvirus was also shown to trigger IRF3 degradation (Saira, Zhou, and Jones, 2007). 

However, ICP0 of HSV-1 does not target IRF3 for degradation, but instead inhibits it 
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through an alternative mechanism (discussed in the virus hijacking section of this review). It 

is rather remarkable that several alpha-herpesviruses that encode homologous ICP0 genes 

have been shown to inhibit IRF3, yet the manner in which this inhibition ensues can differ.

Similar to IRF3, IRF7 is a transcriptional regulator of type I interferons and interferon-

stimulated genes (ISGs). IRF7 is activated upon virus infection, which causes its 

dimerization in the cytoplasm, and subsequent translocation to the nucleus to bind to the 

interferon-stimulated response element (ISRE) on the promoters of interferon genes (Marié 

et al., 2000). The immediate-early transcriptional regulator RTA of KSHV was shown to 

directly target IRF7 for degradation in a proteasome-dependent manner (Yu, Wang, and 

Hayward, 2005) (Figure 3, bottom). Interestingly, although RTA is not known to have a 

traditional HECT or RING domain, it was found that the N-terminal domain of RTA was 

required for IRF7 ubiquitination and subsequent degradation in vitro, suggesting that this 

region encodes a non-canonical E3 ligase domain (Yu, Wang, and Hayward, 2005).

Toll-like receptor 2 (TLR2) is a PRR that is expressed on the cell membrane (Figure 3, 

bottom). Although primarily known for its function against bacterial, fungal and parasitic 

infection (Akira, Takeda, and Kaisho, 2001), TLR2 was recently shown to be activated in 

response to virus infection ((Compton et al., 2003; Kurt-Jones et al., 2004) and reviewed in 

(Akira, Uematsu, and Takeuchi, 2006)). During virus infection, its role in host defense is to 

recognize viral proteins at the cell surface and induce a signaling cascade that leads to an 

innate immune response. Within this signaling cascade are adaptor proteins, such as myeloid 

differentiation factor 88 (MyD88) and MyD88 adaptor-like (Mal), which initiate the 

activation of NF-κB that in turn results in the expression of pro- and anti-inflammatory 

cytokines (e.g., IL-6, reviewed in (Akira, Uematsu, and Takeuchi, 2006)). HSV-1 infection 

was shown to inhibit TLR2 downstream signaling and decrease of IL-6 levels (van Lint et 

al., 2010). This group went on to discover that MyD88 and Mal proteins are degraded 

through the proteasome in a manner dependent on the E3 ligase activity of ICP0 (van Lint et 

al., 2010).

The HSV-1 ICP0 protein was also shown to be responsible for the degradation of the p50 

component of the NF-κB heterodimer (Zhang et al., 2013). Although there are several NF-

κB family members, the predominant form of NF-κB exists as a heterodimer consisting of 

the p65/RelA and p50 subunits (Albert S. Baldwin, 1996). NF-κB –mediated interferon 

transcription requires the nuclear translocation of NF-κB. Zhang et al. showed that the p65/

RelA subunit was inhibited from translocating to the nucleus as a direct result of the RING 

finger domain of ICP0 binding to p65/RelA. Interestingly, although the viral inhibition of 

NF-κB subunits p65/RelA and p50 both require the ICP0 RING finger domain, only the p50 

subunit was found to be degraded (Zhang et al., 2013).

The downstream effect of type I IFN expression is the induction of ISGs. The signaling 

cascade is through the well-established Jak-STAT pathway; thus, Jak1 is an important 

regulator of ISG expression via the concerted efforts of Jak-STAT signaling (as reviewed in 

(Amsler, Verweij, and DeFilippis, 2013)). HCMV has acquired a mechanism to perturb this 

signaling, and Jak1 was shown to be degraded during infection. Although the specific viral 

protein mediating this activity has not yet been identified, the use of DNA polymerase 
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inhibitors had minimal effect on the degradation event, suggesting the involvement of a 

tegument, immediate-early or early viral protein (Miller et al., 1998). The initiation of Jak-

STAT signaling is through ligand binding of IFN receptors. Thus, another way viruses can 

inhibit ISG expression is by directly targeting IFN receptors. Indeed, KSHV proteins K3 and 

K5 were found to specifically target IFNγ receptor 1 for ubiquitination and subsequent 

degradation (Li et al., 2007).

In addition to the majority of PRRs that are known to trigger signaling cascades leading to 

transcriptional activation of antiviral cytokines, PRRs that trigger inflammasome formation 

culminate in the maturation of pro-inflammatory cytokines. For example, upon binding to 

viral DNA, the DNA sensor absent in melanoma 2 (AIM2) recruits apoptosis-associated 

speck-like containing a CARD (ASC) protein and pro-caspase-1. This interaction leads to 

the auto-proteolytic cleavage of caspase-1 and concludes with the cleavage of pro-

interleukin-1β and secretion of the mature interleukin-1β (IL-1β). This, and related pro-

inflammatory cytokines, have important roles in cell differentiation, cell death pathways, and 

priming adaptive immune responses (Lamkanfi and Dixit, 2014; Stienstra et al., 2010). From 

the virus perspective, the secretion of these cytokines can impede virus production at 

multiple levels. Although many routes of virus inhibition of inflammasomes have been 

described (see viral mimicry section), thus far one virus, HPV, has been shown to inhibit 

inflammasome function using a proteasome-dependent approach. The E6 protein of HPV 

has pleiotropic functions. One function of this protein is to commandeer the cellular protein 

E6-associated protein (E6-AP), an E3 ubiquitin ligase, a process extensively studied in the 

deregulation and degradation of the pro-apoptotic factor p53 (Huibregtse, Scheffner, and 

Howley, 1991). However, this interaction between E6 and cellular E6-AP was recently 

shown to inhibit downstream inflammasome activity (Niebler et al., 2013). The association 

of E6 with E6-AP has proven beneficial in HPV transformed keratinocytes, where they can 

target pro-IL-1β for proteasomal degradation, thus inhibiting the action of the NALP3 

inflammasome (Niebler et al., 2013).

Of note, DNA viruses can also use viral factors to regulate viral protein levels. For example, 

the HSV-1 protein ICP0 was shown to regulate the degradation of the tegument protein 

pUL46 (Lin et al., 2013). pUL46 can impact the initial transcription of immediate early viral 

genes, and the temporal control of its protein levels was proposed as important for the 

progression through the virus life cycle. It remains to be determined whether this is a virus-

mediated mechanism for limiting the levels of viral transcripts within the cell, which could 

lead to premature cell death. Altogether, it has become evident that DNA viruses, either by 

encoding their own E3 ligases or by taking over cellular ones, have efficient mechanisms for 

inhibiting host responses at multiple points within intrinsic and innate immune response 

pathways.

3. Viral hijacking of host defense proteins

A compelling strategy employed by DNA viruses to subvert cellular immune surveillance is 

to hijack host defense and immune-stimulatory proteins by means of sequestration and 

functional inhibition. This subsection highlights prominent protein classes within antiviral 

response pathways targeted by DNA viruses during early stages of infection (Figure 4).
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Immune-stimulatory proteins, such as those canonically associated with the STING-TBK-1-

IRF-3 cytosolic signaling pathway, as well as with NF-κB and IRF transcriptional activity, 

have characterized functions in promoting the expression of antiviral cytokines. The immune 

signaling pathways initiated by DNA virus infections indeed intersect at the stage of 

transcription factor stimulation, making transcription factors amenable targets for virus 

factors to dampen and dismantle cellular immunity (Unterholzner and Bowie, 2008). As 

such, it is not surprising and well-documented that many viruses contain factors to prevent 

their activation. As IRF-3 has additionally been identified as an inhibitor of proapoptotic 

gene expression, it would stand to reason that viruses may target IRF-3 for inactivation. This 

would enable the establishment and maintenance of persistent and/or latent infections. The 

HSV-1 immediately-early transactivator ICP0 binds IRF-3, sequestering it within nuclear 

bodies alongside its co-activating proteins, CbP and p300 (Melroe et al., 2007). This 

sequestration event prevents transcription factor association with host gene binding sites that 

are required for type I IFN induction. A trans-inducing tegument factor, VP16, is one of the 

latest HSV-1 factors characterized to both inhibit NF-κB and hinder IRF-3 recruitment to its 

cofactor, CbP (Xing et al., 2013). It has been posited that a critical function of the interferon 

effector protein ISG15 is to directly counteract the proteolysis of IRF-3 during viral 

infection. ISG15 has been found to covalently bind to and stabilize IRF-3, preventing its 

ubiquitination during infection. Of note, VACV E3L was determined to target and dismantle 

ISG15 (Guerra et al., 2008), which speaks to the impressive repertoire of immune evasion 

strategies used by viruses.

In addition to sequestering IRF-3 and NF-κB, as described in chapter 2, the transcription 

factors IRF-7 and IRF-1 are known viral targets for immune evasion. As a protein with a 

relatively short half-life, IRF-7 protein stability is highly regulated in a cell type-specific 

manner (Prakash and Levy, 2006). During infection, IRF-7 destabilization is accelerated in 

many cell types in a proteasome-dependent fashion, as reviewed earlier. Alternative to 

proteasome-mediated degradation, the transcription factor K-bZIP of KSHV competes with 

IRF-3 for binding sites within the IFN-β promoter, thereby blocking promoter activation 

(Lefort et al., 2007). An immediate-early protein of EBV, BZLF-1, directly binds IRF-7 to 

inhibit its association with host genes (Unterholzner and Bowie, 2008). The elucidation of 

oncoprotein-mediated inhibition of transactivating IRF activity during HPV infection has 

reinforced the conceived supposition that immune response and viral immune evasion may 

be intimately tied to cancer (Park et al., 2000; Ronco et al., 1998; Um et al., 2002). IRF-1 

has been characterized as a tumor suppressor based on the presence of low IRF-1 levels in a 

number of human cancers, its function in promoting apoptosis and suppressing cell 

proliferation in vitro, as well as the correlation between loss of IRF-1 and oncogene 

deregulation in vivo (Mboko et al., 2016; Nozawa et al., 1999; Savitsky et al., 2010). 

Furthermore, epidemiological studies have proposed that viral evasion factors of cellular 

immunity can be etiological agents of oncogenesis (Um et al., 2002). An early viral gene 

and implicated oncoprotein, E6, has been shown to bind IRF-3 and attenuate its ability to 

induce a type I IFN immune response following infection with the RNA virus, Sendai virus 

(Ronco et al., 1998). The HPV E7 gene encodes another oncoprotein that has been strongly 

implicated in the malignancy of cervical cancer (Park et al., 2000; Um et al., 2002). Upon 

exploring the effect of E7 expression on IFN signaling, researchers established that the 
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amino terminal of E7 directly binds IRF-1 and attenuates the induction of IFN-β (Um et al., 

2002).

Despite the contribution of NF-κB to the generation of antiviral chemokines and type I 

interferon, it has also been implicated in inhibiting the onset of virus infection-dependent 

apoptosis and thus facilitating the proliferation of host cells. This latter function seems 

functionally divergent from its role in intrinsic and innate immunity because apoptosis is a 

host defense mechanism that can annihilate virus-infected cells and prevent viral spread to 

neighboring cells (see chapter 5). In fact, several viruses promote NF-κB function to avoid 

apoptosis. VACV b14 prevents the phosphorylation, and thus activation of a NF-κB 

inhibitor, IKKB (Chen et al., 2008). KSHV protein K13 interacts with the IKKa-IKKb 

complex to prevent NF-κB inhibition (Matta et al., 2007). To reconcile these NF-κB 

functions from a pro-viral perspective, viruses can temporally control NF-κB in a biphasic 

manner. During early stages of infection, viruses can prevent NF-κB immune-activating 

roles through direct inhibition or proteasome-targeted degradation of NF-κB. As an 

example, the African Swine Fever Virus (ASFV) protein A238L is a homologue of a direct 

NF-κB cellular inhibitor, Ikbα, which sequesters NF-κB in the cytoplasm during early 

stages of infection (Tait et al., 2000). As the infection progresses, the ASFV protein A224L 

is temporally expressed later to activate NF-κB and inhibit caspases for the prevention of 

apoptosis. Evidently, the regulation of NF-κB activity during viral infection can be highly 

complex and temporally manipulated in response to both viral and cellular interests.

Aside from transcription factor inhibition by DNA viruses, several viral factors act on 

components upstream of either the STING-TBK-1-IRF-3 pathway or of transcription factor 

activity. The HSV-1 leaky-late protein γ1ICP34.5 was shown to bind directly to TBK-1, 

sequestering the kinase from interacting with and activating IRF-3 (Verpooten et al., 2009). 

Studies characterizing viral immune evasion factors have substantiated the functional 

relevance of cellular immune modulatory mechanisms. In a genome-wide expression screen 

of primary keratinocytes expressing the early HPV protein E2, STING and IFN-κ were two 

of 92 genes associated with innate immunity and were found to be suppressed (Sunthamala 

et al., 2014). In addition, the early HPV protein E7 and the adenovirus protein E1A were 

found to suppress IFN responses in immortalized HEK293 and HeLa cells (Lau et al., 2015). 

By immunoaffinity purification, both of these viral proteins were shown to interact with 

STING (Lau et al., 2015), suggesting that these viruses specifically target the STING 

pathway to inhibit early immune responses. A cogent demonstration of how understanding 

viral immune evasion can provide insight into mechanisms of cellular signaling is the 

exploration of VACV K7 protein inhibition of the TBK-1-IKKε complex (Schroder, Baran, 

and Bowie, 2008; Soulat et al., 2008). The authors determined that K7 targeted the human 

RNA helicase, DEAD-box protein 3 (DDX3), whereupon the TBK-1-IKKε complex was 

inhibited from upregulating IRFs and thus IFN-β levels. It was established for the first time 

that DDX3 functions downstream of PRRs, comprised of both RNA receptors and 

cytoplasmic DNA receptors, and indeed associates with the TBK-1-IKKε complex to 

stimulate IFN induction.

The multitude of examples by which DNA viruses inhibit components of the STING-

TBK-1-IRF-3 signaling axis underscores the functional relevance of this pathway in intrinsic 
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and innate immune defense, as well as the conservation of viral evasion strategies. The 

nuclear-replicating herpesvirus HCMV was found to prevent the activation of the nuclear-

localized PRRs IFI16 and IFIX (Diner et al., 2015) in a non-degradative manner. The major 

tegument protein of HCMV, pUL83, was shown to specifically target the pyrin domain of 

IFI16 and IFIX, suppressing homotypic pyrin oligomerization and attenuating PRR-

mediated antiviral immune responses (Li, Chen, and Cristea, 2013). In agreement with the 

involvement of pUL83 in suppressing immune responses, primary fibroblasts infected with a 

mutant HCMV strain lacking UL83 were able to induce over 10-fold greater levels of 

antiviral cytokines compared to wild-type HCMV infection. So, HSV-1 and HCMV evolved 

different means to suppress IFI16 functions, one destructive and one just inhibitory. 

Although these findings highlight the importance of IFI16 in antiviral response, it is 

puzzling that HCMV would evolve to maintain IFI16 following infection. This may be in 

part due to the roles of IFI16 in transcriptional regulation, and may represent the repurposing 

of IFI16 functions for the benefit of viral replication (Cristea et al., 2010). More studies will 

be needed to elucidate the diverse functions of IFI16 and IFIX in the context of infection. 

Another bona-fide DNA-binding PRR and known to function upstream of the STING-

TBK-1-IRF-3 axis, cyclic GMP-AMP synthase (cGAS), was recently found to be inhibited 

by a tegument protein with homologues in the gammaherpesviruses KSHV, EBV, and 

MHV68 (Wu et al., 2015). In this study, it was established that the KSHV tegument protein 

ORF52 inhibited cGAS enzymatic activity of generating STING-activating cyclic 

dinucleotides by binding both to cGAS and DNA. The inhibitory titration of IFI16 and IFIX 

molecules by pUL83, as well as of cGAS by ORF52, reflects a “safety in numbers” 

approach to evade cellular immunity, considering that tegument proteins such as pUL83 are 

present in thousands of copies per virion particle (Varnum et al., 2004).

Alternative targets for DNA viruses outside of the STING-TBK1-IRF axis similarly act by 

binding and inhibiting host defense proteins. Of these immune modulatory pathways, toll-

like receptor signaling is actively targeted by DNA viruses. The VACV protein A46 has been 

found to bind and sequester the TLR adaptor proteins Myd88, TRIF, Mal, and TRAM 

(reviewed in (Bowie and Unterholzner, 2008). In addition, VACV A52 binds the TBK-1-

IKK stimulatory kinase, IRAK-2, and TNFR-associated factor TRAF6, ultimately 

preventing cellular immune signaling (Bowie and Unterholzner, 2008). The deficiency of 

either of these two proteins within virion particles resulted in lower infectivity in mouse 

models (Harte et al., 2003; Stack et al., 2005). Considering that VACV retains other factors 

that repress host defense (i.e., D9, D10, E3L, K7, b14), an evolved viral necessity may be a 

multi-step inhibition strategy of the same cellular immune response pathways. In lieu of this, 

viruses may activate particular viral immune evasion factors in a cell type-specific manner. 

Regardless, the final goal of such viral subversion is to effectively disrupt the partially 

redundant cellular immune pathways, which converge at the level of transcription factor 

activation, as well as antiviral cytokine and chemokine expression.

While still an emerging area of research, the study of viral infection on the posttranslational 

modification (PTM) state of virus and host factors has revealed dynamic and modification-

specific regulation of proviral strategies and host defense mechanisms (discussed in chapter 

4). Specific to viral hijacking, an uncommon example of PTM-mediated viral antagonism of 

a host immune protein is provided by the adenovirus E1A protein, the most immediately 
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expressed viral protein upon viral infection (Fonseca et al., 2012). E1A had been well 

established as a critical viral transactivator for both manipulating gene transcription, as well 

as reprogramming cells to maintain active cell cycle state. It was subsequently determined 

that E1A achieved reprogramming of quiescent cell replication by altering histone 3 

acetylation (Horwitz et al., 2008). An interaction screen identified an association between 

E1A and hBre1/RNF20, a protein involved in the monoubiquitination of histone 2B and 

initiating ISG expression upon viral infection (Fonseca et al., 2012). To inactivate 

components of ISG induction and to promote viral replication, E1A was found to bind and 

dissociate the hBre1 complex, thereby preventing histone 2B monoubiquitionation and 

subsequent expression of ISGs. The establishment of a key transcriptional effector, E1A, as 

a regulator of cellular histone PTM highlights the essentiality of protein modification in both 

viral immune evasion and host defense. More recently, ORF45, the immediate-early protein 

found in the tegument of KSHV virion particles, was shown to compete with IRF-7 for 

phosphorylation by acting as an alternative substrate for the kinases IKKε and TBK-1 

(Liang et al., 2012). While it is tempting to conjecture that viral immune-inhibitory factors 

that have been identified to target an IRF may correspondingly target other IRFs, evidence 

exists for cases of substrate specificity. For example, ORF45 phosphorylation inhibition of 

IRF-7 was not recapitulated for IRF-3, signifying a kinase-indirect mechanism of ORF45 

immune subversion (Liang et al., 2012). The exploration of dynamic PTM regulation during 

viral infection warrants future research and is further discussed in chapter 4.

4. Viruses can regulate antiviral proteins via post-translational modification

Another important mechanism through which viruses can inhibit host defenses involves the 

regulation of host protein post-translational modifications (PTM). One of these 

modifications, ubiquitination, was reviewed in the section on virus induced proteasome-

dependent degradation. However, recent years have demonstrated that other PTMs are also 

dynamically modulated during viral infections, including phosphorylation, acetylation, and 

SUMOylation (Figure 5).

Induction of protein phosphorylations has been linked to virus regulation of host innate 

immune response and downstream immune pathways. It is well established that the 

phosphorylation of IRF3 at Ser396 and its subsequent dimerization are required for its 

nuclear translocation and induction of type I IFN. During HSV-1 infection, the viral 

tegument Ser/Thr kinase US3 acts in immune evasion by targeting IRF3 (Wang et al., 2013). 

Specifically, US3 hyperphosphorylates IRF3 at an atypical site, Ser175. This inhibits its 

dimerization and nuclear translocation, thereby blocking IFN-β production. Consistently, the 

infection with a US3 kinase-dead (KD) mutant virus induces increased levels of IFN-β when 

compared to a wild type virus. The HSV-1 US3 kinase also targets the NF-κB signaling 

pathway by interacting with the NF- κB transcription factor subunit RelA (p65) (Wang et al., 

2014). Activation of NF-κB regulates genes involved in production of antiviral cytokines 

and regulation of apoptotic processes (Chen and Greene, 2004). Similar to the IRF3 

inhibition mechanism, US3 triggers the hyperphosphorylation of RelA at Ser75, blocking its 

nuclear translocation and repressing the expression of inflammatory cytokines (Wang et al., 

2014). The US3 KD mutants do not block the nuclear translocation of RelA, indicating that 

the hyperphosphorylation is sufficient to prevent its nuclear accumulation.
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Viral infections can also induce the phosphorylation of other host proteins, including histone 

deacetylases (HDACs). During infection with DNA viruses, the viral genome is rapidly 

associated with histones upon its entry into the nucleus. Therefore, HDACs can have 

important functions, as the histone acetylation status impacts viral gene transcription (Guise 

et al., 2013). The HCMV pUL97 kinase triggers the phosphorylation of HDAC1, thereby 

disrupting its binding to the major immediate early promoter of HCMV and aiding viral 

immediate early gene expression (Bigley et al., 2013). The HSV-1 US3 kinase also mediates 

phosphorylation of HDAC1 and HDAC2, thus blocking the silencing of viral genes by 

HDACs (Poon, Gu, and Roizman, 2006; Walters et al., 2010). In addition, ORF66p of VZV, 

homologous to HSV-1 US3, hyperphosphorylates HDAC1 and HDAC2 to release the viral 

genome from HDAC inhibition (Walters et al., 2009). The phosphorylation of HDACs may 

not be directly linked to viral immune evasion; however, as HDACs provide transcriptional 

regulation for a wide range of genes, it remains to be determined whether immune response 

genes are also affected.

Viral infections can also regulate cellular proteins by inhibiting phosphorylation events 

necessary for host defense. The phosphorylation of the signal transducer and activator of 

transcription 1 (STAT1) is required for its function as a transcription factor for IFN-inducing 

genes. This represents a step in the signal relay downstream of receptors for IFNs. Binding 

of IFNs to their receptors induces IFN receptor oligomerization and phosphorylation via 

Janus tyrosine kinases (Jaks) (Figure 5). Phosphorylation of IFN receptors leads to the 

subsequent recruitment and Jak-mediated phosphorylation of STAT proteins, allows STATs 

to dimerize and translocate into the nucleus, where they function as transcription factors. 

During HCMV infection, the Jak mediated STAT1 phosphorylation is inhibited (Baron and 

Davignon, 2008). The cellular tyrosine phosphatase SHP2 was proposed to be involved in 

the dephosphorylation of STAT1 and Jak1 (Baron and Davignon, 2008; You, Yu, and Feng, 

1999), and this process was shown to be dependent on HCMV replication (Baron and 

Davignon, 2008).

Another host defense pathway regulated by phosphorylation is the cellular DDR. During 

infection with DNA viruses, the viral replication intermediates and the linear double 

stranded DNA are interpreted as DNA damage, thereby activating DDR. Viral replication 

can be inhibited by misrepair of viral DNA. Many DNA viruses have evolved mechanisms to 

inhibit the DDR, thus promoting viral replication (Weitzman, Lilley, and Chaurushiya, 

2010). The adenovirus E4orf4 protein, in conjunction with the host phosphatase PP2A, was 

shown to reduce the phosphorylation of DDR proteins from the ataxia-telangiectasia 

mutated (ATM) and ATM- and Rad3-related (ATR) pathways, including ATM, 53BP1, 

Smc1, Nbs1, Chk1, and Chk2 (Brestovitsky et al., 2016). This decreased phosphorylation 

reduces DDR signaling, increasing the presence of damaged DNA. Although not a 

traditional DDR protein, another DNA binding protein that is phosphorylated by a viral 

protein is Barrier to Autointegration Factor (BAF). Unphosphorylated BAF acts to inhibit 

VACV replication; this antiviral function is circumvented by the VACV B1 kinase via 

phosphorylation of BAF (Wiebe and Traktman, 2007).

Viral regulation of protein acetylation was also shown to be relevant during infection. The 

small E1A protein of adenovirus has the ability to modulate histone H3 acetylation, thereby 
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regulating host gene transcription and maintaining an active cell cycle (Horwitz et al., 2008). 

E1A was also reported to bind the tumor suppressor RB and the cellular acetyltransferase 

p300 (Ferrari et al., 2014). This interaction promotes p300 acetylation of K873/K874 in RB 

and K239 in E1A, which ultimately leads to chromatin condensation and the transcriptional 

repression of host defense genes (e.g., THBS1 and CTGF).

NF-κB pathway is regulated by inhibition of acetylation during HPV infection. RelA (p65) 

is known to be acetylated by p300/CBP and deacetylated by HDAC3 (Chen et al., 2001). 

This deacetylation promotes the binding of RelA, p50 and IκBα, leading to the nuclear 

export of the NF-κB complex. Thus, this reversible acetylation controls the duration of 

nuclear NF-κB action. During HPV infection, the RelA Lys310 acetylation is impaired. 

HPV induces the overexpression of interferon-related developmental regulator 1 (IFRD1) by 

upregulating epidermal growth factor receptor (EGFR). IFRD1 upregulation enhances the 

HDAC3-mediated RelA Lys310 deacetylation, thereby suppressing antiviral cytokines 

expression (Tummers et al., 2015).

Changes in protein SUMOylation have also been connected to viral infection. HSV-1 

infection was shown to lead to the decrease in a large number of protein SUMOylation sites 

(Sloan et al., 2015). Given the requirement for PML SUMOylation in the formation of PML-

NBs, this modification has been of particular interest. PML-NB function to silence viral 

gene expression, and as previously mentioned in this review, viruses have acquired different 

mechanisms to antagonize PML-NBs (Scherer and Stamminger, 2016). HSV-1 ICP0 was 

shown to use both SUMO-targeted and SUMO-independent mechanisms to induce the 

degradation of PML-NB. ICP0 acts as a SUMO-targeted ubiquitin ligase (STUbL), inducing 

the proteasomal degradation of SUMO-conjugated proteins, such as PML and other NB 

components (Boutell et al., 2011). In contrast, HCMV IE1 inhibits the PML-NB formation 

using a proteasome independent pathway. It binds to PML and limits its SUMOylation 

during infection, resulting in a dispersal and inactivation of PML-NBs. The central 

hydrophobic domain of HCMV IE1 was shown to be required for PML binding and 

deSUMOylation (Lee et al., 2004).

The regulation of the PTM status during the progression of a viral infection was not only 

shown to act in virus immune evasion, but also as a mechanism used by host cells to 

suppress infection. For example, the phosphorylation of the HCMV major tegument protein 

pUL83 was shown to impact its function in host immune evasion (Li, Chen, and Cristea, 

2013). pUL83 phosphorylation at Ser364 was induced by cell host kinases. Importantly, this 

phosphorylation inhibited the ability of pUL83 to suppress the oligomerization of the 

interferon-inducible protein IFI16. IFI16 is a nuclear DNA sensor necessary for induction of 

IFN response upon infection with several herpesviruses. Therefore, this phosphorylation 

event shows that host cells can inhibit virus immune evasion and rescue IFI16 function by 

PTM of viral proteins (Li, Chen, and Cristea, 2013).

5. Manipulation of apoptosis by DNA viruses

Apoptosis is a well-characterized form of cell death, which plays a key role during viral 

infection. It constitutes one of the early host defense mechanisms that limits the availability 
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of cells for viral infection, being able to eradicate viral infection early on. Premature cell 

death can effectively reduce viral replication and limit the progression of viral infection. As 

indicated in the sections above, viral propagation relies on the cellular machinery, 

modulating numerous biological processes. Upon entry, viruses disrupt normal cell 

functions, inducing stress responses that can stimulate the apoptosis pathway. Although most 

viral infections should trigger apoptosis, viruses have acquired multiple strategies for either 

suppressing or promoting apoptosis to avoid being eliminated by the host immune system 

(Roulston, Marcellus, and Branton, 1999; Shen and Shenk, 1995). The existence of viral 

products in diverse DNA viruses that modulate apoptosis indicates that the regulation of 

apoptosis is evolutionarily conserved and constitutes a core viral mechanism for inhibition 

of host defense.

Apoptosis can be initiated through distinct mechanisms, being under the control of multiple 

cellular factors. The apoptosis inducing stimuli usually fall into two categories, extrinsic and 

intrinsic pathways, which both converge into the activation of effector caspases (e.g., 

caspase-3, -6, and -7), committing the cells to programmed cell death (Enari et al., 1998) 

(Figure 8). The extrinsic pathway begins at the cell membrane, where death receptors bind to 

signal factors, particularly tumor necrosis factor (TNF) and Fas ligands (Locksley, Killeen, 

and Lenardo, 2001). Upon binding of TNF or Fas to the TNF receptor, the Fas-associated 

death domain protein (FADD) and TNFR1-associated death domain protein (TRADD) form 

the death-inducing signaling complex (DISC), leading to the activation of caspase-8 and 

downstream effector caspases (Hsu, Xiong, and Goeddel, 1995; Kischkel et al., 1995). The 

intrinsic pathway is mediated by the mitochondria and held in check by Bcl-2 family 

members (Adams and Cory, 1998; Chao and Korsmeyer, 1998; Cory et al., 1994; Strasser, 

Huang, and Vaux, 1997) (Figure 8). Bcl-2 proteins play a pivotal role in deciding whether a 

cell will live or die by up- or down-regulating mitochondrial membrane permeability (MMP) 

(Crompton, 1999; Oltvai, Milliman, and Korsmeyer, 1993). Once pro-apoptotic Bcl-2 

proteins are recruited to the mitochondrial membrane, MMP is altered, resulting in the 

release of cytochrome c, apoptosis inducing factor (AIF) and mitochondrial caspase (Susin 

et al., 1999). These released factors are essential components of the apoptosome, which 

activates effector caspases. Viruses have evolved strategies to manipulate both the extrinsic 

and intrinsic pathways. These viral strategies include the use of caspase suppressors, TNF 

receptor suppressors, viral FLICE (pro-caspase-8) inhibitory proteins (vFLIPs), and viral 

Bcl-2 homologues. Additionally, viruses inhibit apoptosis using p53 inhibitors, and reactive 

oxygen species (ROS) regulators. This section will review these strategies adopted by DNA 

viruses to block apoptosis pathways, as well as briefly describe examples of viral promotion 

of apoptosis.

5.1. DNA viruses suppress apoptosis

A common viral mechanism for suppressing apoptosis is via inhibition of caspases. 

Caspases, a group of cysteine proteases, are evolutionarily conserved executioners of the 

apoptotic response (Cohen, 1997; Shi, 2002; Thornberry and Lazebnik, 1998). All caspases 

are produced in the form of catalytically inactive pro-caspases, which are activated through 

cleavage at certain Aspartate residues (Riedl and Shi, 2004). Once the caspase cascade is 

initiated, the effector caspases will cleave a wide range of cellular proteins, inevitably 
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leading to cell death. A number of viral proteins have been found to inhibit caspase protease 

activity. Cowpox virus (CPV) encodes a potent wide-spectrum caspase inhibitor, the 

cytokine response modifier A (CrmA), and homologues of this protein were also found in 

vaccinia virus as B13R and B22R gene products (Dbaibo and Hannun, 1998). The 

baculovirus protein p35 and the inhibitor of apoptosis (IAP) also target multiple caspases 

(Barry and McFadden, 1998; Miller, 1997). The African swine fever virus (ASFV) encodes 

an IAP homolog that was shown to specifically inhibit caspase-3 (Chacon et al., 1995; Nogal 

et al., 2001).

Viruses have also developed mechanisms to inhibit cell death by specifically targeting the 

extrinsic pathway. One strategy is to disrupt the binding between death receptors and 

TNF/Fas ligands on the cell membrane. An interesting example is provided by the 

adenovirus E3 gene products, 10.4K and 14.5K, which alter the presentation of Fas on the 

plasma membrane via its internalization and retention (Shisler et al., 1997), inhibiting TNF-

induced apoptosis (Dimitrov et al., 1997; Krajcsi et al., 1996). Crm-B, -C, -D encoded by 

CPV, are TNFR-like glycoproteins that neutralize TNF (Hu, Smith, and Pickup, 1994; 

Loparev et al., 1998; Smith et al., 1996). Additionally, HCMV pUL141 restricts TNFR 

function by targeting TNF-related apoptosis-inducing ligand (TRAIL) to the endoplasmic 

reticulum, and dampening the stimulation of death receptors (Smith et al., 2013). Viruses 

also inhibit the extrinsic pathway downstream of TNFR. Some viruses encode viral FLICE 

(pro-caspase-8) inhibitory proteins (vFLIPs) that contain death-effector domains (DED). 

These vFLIPs block the interaction between pro-caspase-8 and death domain protein, 

thereby preventing the activation of caspase-8. MC159 and MC160 are two vFLIPs 

produced by molluscum contagiosum virus (MCV) that mimic cellular FADD and inhibit 

Fas-mediated cell death (Shisler and Moss, 2001). Similarly, another vFLIP protein from the 

bovine herpesvirus, BORFE2, suppresses Fas- and TNFR1-induced apoptosis (Wang et al., 

1997). The HCMV UL36 gene encodes a multi-functional cell death suppressor, denoted 

viral inhibitor of caspase-8 activation (vICA) protein, which binds pro-caspase-8 and 

inhibits its activation by interference with its recruitment to DISC (McCormick et al., 2010). 

Similar vFLIPs from other herpesviruses have also been found, including herpesvirus saimiri 

protein ORF71 (Glykofrydes et al., 2000), equine herpesvirus 2 (EHV-2) protein E8 (Hu et 

al., 1997), and HHV-8 protein K13 (Tolani et al., 2014).

In addition to the extrinsic inhibitory mechanisms, viruses have also acquired means to 

suppress intrinsic apoptosis pathways. Many viruses encode Bcl-2 homologues, which in 

most cases counteract apoptosis triggered in response to abnormal cellular function, stress 

signals, and changes in mitochondria. One characteristic of the Bcl-2 family is that they can 

form heterodimers. Therefore, the Bcl-2 homologues encoded by viruses could interact with 

cellular Bcl-2 proteins and interfere with their functions. One of the first evidences showing 

that viruses inhibit apoptosis by modulating Bcl-2 function was reported for adenovirus. The 

adenovirus E1B 19K protein was demonstrated to form heterodimers with diverse Bcl-2 

family members, thus maintaining the mitochondria membrane permeability (Rao et al., 

1992). Lack of functional E1B 19K gene leads to severe cytopathogenic effect, featured by 

degradation of chromosomal DNA, premature cell death, and reduced yield of viral progeny 

(Granville et al., 1998; Rao, Modha, and White, 1997). This phenotype could be reversed by 

over-expression of host Bcl-2. Later, other virus families were also shown to encode 
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homologues of the Bcl-2 family. ASFV expresses the Bcl-2 homolog A179L, which prevents 

apoptosis initiated by the interferon-induced double-stranded RNA-activated protein kinase 

(Brun et al., 1996). Anti-apoptotic viral factors encoded by herpesviruses have been 

extensively studied, and a number of Bcl-2 factors have been identified. Productive 

replication of HCMV depends on the expression of viral mitochondrial inhibitor of 

apoptosis (vMIA; pUL37 x1). vMIA, the smallest protein product of UL37, is localized to 

mitochondria early in infection (Goldmacher, 2002). It maintains MMP by neutralizing Bax, 

a pro-apoptotic Bcl-2 protein (Ma et al., 2012). Similarly, Epstein-Barr virus (EBV), human 

herpes virus 8 (HHV-8), and herpesvirus saimiri (HVS) encode Bcl-2 homologues that 

recruit Bcl-2 family proteins (Bax or Bak), keeping mitochondria from proapoptotic stimuli 

and stabilizing MMP (Derfuss et al., 1998; Khanim et al., 1997; Marshall et al., 1999; Nava 

et al., 1997; Niedobitek et al., 1991).

Aside from proteins, viral RNA of DNA viruses can also regulate the intrinsic apoptosis 

pathway. For example, HCMV encodes an abundant 2.7-kb non-coding RNA (β2.7), which 

interacts with the mitochondrial complex I, thereby maintaining adenosine triphosphate 

production necessary for the progression of the virus life cycle (Reeves et al., 2007) . This is 

a mean through which β2.7 can protect infected cells from mitochondrial stress, and subvert 

mitochondria-induced apoptosis.

A well-established viral mechanism for inhibiting apoptosis is the targeting of p53. As p53 

controls the transcription of Bcl-2 family members (Miyashita et al., 1994), this also 

provides an indirect modulation of Bcl-2 proteins. Several DNA oncogenic viruses tackle 

p53-mediated apoptosis either by blocking or downregulating p53. In adenovirus, E1B-55K 

and E4 ORF6 products bind p53 and block its transcriptional activation (Dobner et al., 1996; 

Kratzer et al., 2000; Martin and Berk, 1998). Similarly, SV40 large T antigen (LT) interacts 

with p53, together with retinoblastoma tumor suppressor protein (Yanai and Obinata, 1994) 

(pRB), altering their control of cell death. Additionally, as stated in the above section 

describing virus-induced protein degradation, the HPV E6 product disrupts p53 DNA 

binding ability and targets p53 for rapid proteasome-mediated degradation (Scheffner et al., 

1990). HCMV proteins were also reported to target p53. Specifically, the immediate early 

proteins IE1 and IE2 interact with p53 in the nucleus, reducing its tumor suppressor function 

and down-regulating the transcription of proapoptotic genes (Chiou et al., 2006; Sainz et al., 

2005; Taylor and Bresnahan, 2005; Taylor and Bresnahan, 2006).

In addition to inhibiting extrinsic and intrinsic apoptosis pathways, viruses also suppress 

stimuli that trigger apoptosis. Elevated ROS levels, which are linked to apoptosis, have been 

noticed during viral infections (Harman, 1992; Schwarz, 1996). Some viral products 

function to maintain oxidative levels and prevent subsequent apoptosis. For example, the 

MCV MC066L protein exhibits homology to glutathione peroxidase, a key regulator of 

cellular reactive oxygen species (ROS). MC066L blocks apoptosis mediated by UV 

radiation or peroxide treatment (Shisler et al., 1998). The baculovirus p35 gene product and 

IAP also play roles in suppressing ROS-induced apoptosis (Sah et al., 1999).
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5.2. DNA viruses can also benefit from apoptosis

The virus life cycle is a complex and finely-tuned process, during which the suppression and 

induction of apoptosis need to be balanced in order to achieve effective replication and 

dissemination. Although a growing number of viral proteins have been shown to block 

apoptosis, some viruses take advantage of the induction of apoptosis at certain stages of 

infection. For example, viruses can benefit from apoptosis during the lytic cycle once they 

are matured and ready to egress (Bideshi et al., 2005; Mi et al., 2001; Teodoro and Branton, 

1997). Apoptosis at a late stage of infection facilitates the dissemination of matured viral 

particles. Ectromelia virus, a type of poxvirus that infects skin cells, upregulates Fas ligands 

in the suprabasal layer of conjunctiva, leading to apoptosis in epithelial cells. The shedding 

of the epithelial layer of conjunctiva may help the transmission of virus-containing apoptotic 

cells to the surrounding environment (Hu et al., 1997). Additionally, some viruses depend on 

the proteolytic activity of caspases to establish infection. Aleutian mink disease virus 

(AMDV), a member of parvoviruses, serves as a good example. It encodes NS1 protein that 

can be cleaved by caspase-3, generating five distinct NS1 products. These NS1 products 

localize to the nucleus and acts as transcriptional regulators. Therefore, apoptosis-induced 

caspase-3 activation is critical for productive viral replication (Best et al., 2003; Best, 

Wolfinbarger, and Bloom, 2002). Similar mechanisms have also been found for other DNA 

viruses, including adenoviruses (Grand et al., 2002), MCV (Shisler and Moss, 2001), and 

HSV-1 (Munger, Hagglund, and Roizman, 2003), but the contribution of these caspase-

dependent cleavages to the respective virus life cycles remain to be explored.

In addition to apoptosis, programmed necrosis serves as an important alternate defense 

mechanism against viral infection. Recent studies demonstrate the importance of 

programmed necrosis pathways in antiviral response, as well as how viruses have evolved to 

countermeasure this frontline defense strategy (Chan et al., 2003; Cho et al., 2009; Upton, 

Kaiser, and Mocarski, 2010; Upton, Kaiser, and Mocarski, 2012). This topic has been 

elegantly reviewed by (Kaiser, Upton, and Mocarski, 2013).

6. Viral mimicry of host factors to inhibit immune responses

Innate immune signaling molecules, such as cytokines and chemokines, are essential for 

cellular protection against DNA viruses. These ligand molecules function in an autocrine 

and paracrine manner, circulating within the host to alert neighboring cells of the existence 

of danger, as well as to stimulate adaptive immune responses. In this way, they are the 

essence of global protection against DNA viruses. From the virus perspective, these 

signaling components are devastating to virus spread, and therefore to virus “survival”. Once 

cytokines are secreted from an infected cell, it may become more difficult for the virus to 

inhibit immune responses, as these proteins are now extracellular. Many DNA viruses have 

evolved an ingenious approach to inhibit these immune response effectors, which involves 

mimicking cellular cytokines and chemokines. These viral mimics can compete for immune 

receptor binding sites and inhibit downstream signaling. This section reviews the current 

knowledge of DNA viruses that mimic host defense proteins as a strategy to evade immune 

responses.
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6.1. Cytokine mimics of herpesviruses

Herpesviruses offer prime examples of viral mimicry of host immune factors. Thus far, viral 

mimics have been characterized for the β-herpesvirus HCMV, and the γ-herpesviruses EBV 

and KSHV. HCMV encodes two evasin mimics: an IL-10 cytokine mimic (UL111a ORF, 

hereafter referred to as cmvIL-10) (Kotenko et al., 2000), and a chemokine receptor mimic 

encoded by US28 (Gao and Murphy, 1994) (Fig. 7, top). Although numerous cytokine and 

chemokine homologs have been identified for HCMV, only cmvIL-10 and US28 have been 

reported as having immuno-suppressive properties. Similarly, EBV also has an IL-10 mimic 

(BCRF1) (Liu et al., 1997), as well as a cysteine-X-cysteine motif receptor (CXCR) 

homolog (BILF1) (Beisser et al., 2005; Paulsen et al., 2005). The IL-12p40-like protein of 

EBV forms the heterodimer IL-27 and modulates adaptive immune responses. The late-

acting aspect of protein is beyond the scope of this review, and we refer the reader to (Pflanz 

et al., 2002). KSHV has many mimics, which include three cysteine-cysteine (CC)-

chemokines, an IL-6 mimic, and viral versions of IRF proteins (Burýšek and Pitha, 2001; 

Burýšek et al., 1999; Joo et al., 2007; Lee et al., 2014; Molden et al., 1997; Yamin et al., 

2013).

As mentioned earlier in this review, IL-10 is primarily an anti-inflammatory cytokine, 

inhibiting the production of pro-inflammatory cytokines as a regulatory mechanism for a 

controlled immune response. Among the cytokines inhibited by IL-10 are IL-1β, and type I 

and II IFNs. Viruses use these IL-10 properties to hamper host defenses via pro-

inflammatory cytokine expression. cmvIL-10 is a gene that was likely pirated from the host 

genome (Kotenko et al., 2000) and binds with high affinity to the IL-10 receptor (Jones et 

al., 2002). The effects of cmvIL-10 binding the IL-10 receptor have shown to be effective 

(Spencer et al., 2002), despite only having 27% sequence homology to human IL-10 

(hIL-10) (Jones et al., 2002). A major producer of type I interferons during infection are 

plasmacytoid dendritic cells; however, the expression of IFNα was severely abrogated in 

these cells and shown to be directly due to cmvIL-10 (Chang et al., 2009). The fact that 

cmvIL-10 has relatively little overlap in sequence to hIL-10 may exemplify an adaptation the 

virus has acquired to promote the anti-inflammatory actions of IL-10, while not sharing the 

cell proliferative events stimulated by this cytokine (Spencer et al., 2002). The EBV vIL-10 

encoded by BCRF1 has 80% sequence homology to hIL-10 (Vieira et al., 1991). Despite 

having such high homology to human IL-10, BCRF1 has a much lower affinity for the IL-10 

receptor (Liu et al., 1997). This is in contrast to cmvIL-10, which has lower sequence 

homology but higher affinity for the IL-10 receptor. Despite these differences, both viral 

IL-10 homologues seem to have acquired many inhibitory functions of hIL-10 whilst not 

acquiring the stimulatory functions. Indeed, BCRF1 has been shown to inhibit IFNγ early 

during infection in human peripheral blood mononuclear cells (Swaminathan et al., 1993), 

but does not share the function of hIL-10 in stimulating MHC II expression on B cells (Go et 

al., 1990). It is remarkable how two herpesvirus mimics of hIL-10 have evolved different 

means of procuring anti-inflammatory properties of hIL-10, while not acquiring its pro-

stimulatory properties. Interestingly, the parapoxvirus Orf, that infects sheep, goat, and 

humans, also encodes an IL-10 mimic (Fleming et al., 1997). However, in ovine cells, 

orfIL-10 retained both the anti-inflammatory and immuno-stimulatory functions of IL-10 
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(Haig et al., 2002). Although not a herpesvirus, the fact that Orf virus also encodes a viral 

IL-10 portrays how viruses can adopt similar strategies to evade host immunity.

Contrasting the soluble cytokine cmvIL-10, HCMV also has a chemokine receptor mimic, 

US28 (Figure 7). US28 is expressed early in the virus life cycle (Zipeto et al., 1999) and has 

been implicated in having oncogenic and immunoevasive roles (reviewed in (McSharry, 

Avdic, and Slobedman, 2012)). Here, we focus on the latter activity of US28. A 30% 

sequence homology exists between US28 and β-chemokine receptor CCR1, and limited 

homology with CCR2 and CCR5 is within the ligand binding domain (Gao and Murphy, 

1994). US28 is rather promiscuous in its binding to chemokines, which includes its binding 

to CCL2 and CCL5 that are secreted during infection (Bodaghi et al., 1998; Gao and 

Murphy, 1994). It is postulated that US28 acts as a sink by sequestering these chemokines 

which would inhibit the chemotaxis of immune cells by outcompeting host CCR binding. 

Indeed, Bodaghi et al. showed that US28 bound CCL2 and CCL5 in infected fibroblasts, 

which resulted in reduced extracellular levels of the chemokines (Bodaghi et al., 1998). The 

promiscuity of receptor-ligand binding is also represented by KSHV vMIP-II except in this 

case, vMIP-II is the ligand. vMIP-II (a CCL mimic) was shown to bind CCR-1, -2, -5, as 

well as CXCR4 in COS-7 cells (Kledal et al., 1997). Competition assays utilizing 

conditioned media containing radiolabeled vMIP-II showed the ability of vMIP-II to 

displace CCL2 from CCR2 and CCL3 from CCR-1 and -3 (Kledal et al., 1997). Receptor 

activity was measured by calcium mobilization, where endogenous ligands can increase 

intracellular calcium, an activity that was blocked by vMIP-II (Kledal et al., 1997). It could 

be hypothesized that the blocking of intracellular calcium by vMIP-II may indicate that the 

chemotactic action of these receptors then is also blocked. Indeed, Yamin et al. showed that 

vMIP-II antagonizes CX3CR1 and CCR5 in naïve natural killer (NK) cells leading to 

inhibited migration of NK cells (Yamin et al., 2013). They went on to show that KSHV 

vMIP-I and -3 did not share this inhibitory function (Yamin et al., 2013).

EBV encodes an α-chemokine CXC receptor BILF1 (Paulsen et al., 2005). In contrast to the 

receptor ligand requisitioning technique used by HCMV US28, BILF1 has not yet displayed 

the ability to bind CCLs or CXCLs (Beisser et al., 2005). Instead, BILF1 alters the 

phosphorylation of PKR, an RNA-dependent antiviral protein that aids in apoptosis during 

viral infection (Beisser et al., 2005). Among PKR functions is the ability to activate NF-κB, 

a transcription factor that regulates type I IFNs (Williams, 1995). Thus, perhaps the function 

of BILF1 is to inhibit early interferon signaling during EBV infection.

The cytokine IL-6 has both pro- and anti-inflammatory properties. One vital function of IL-6 

is in the transition from innate to adaptive immune responses. IL-6 downregulates 

chemokines related to neutrophil function while upregulating chemokines that attract 

monocytes (reviewed in (Scheller et al., 2011)). KSHV encodes an IL-6 mimic (vIL-6) that 

has ~25% homology to human IL-6 (hIL-6), but has high sequence homology within the 

binding domain (Neipel et al., 1997) and retains the overall structure of a 4-helix bundle 

(Chow et al., 2001). The resulting protein is able to bypass the receptor binding 

requirements that hIL-6 is restricted by. vIL-6 needs only the gp130 cofactor (Figure 7), 

while hIL-6 requires gp130 in complex with gp80 for effective signaling to occur (Chow et 

al., 2001; Molden et al., 1997). vIL-6 has the ability to block IFNα signaling during 
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infection by inhibiting Jak-STAT signaling mediated by IFN receptor tyk2 phosphorylation 

(Chatterjee et al., 2002). Interestingly, the promoter region of vIL-6 contains two sequences 

that resemble ISREs that were shown to be responsive to IFNα-mediated transcriptional 

activation (Chatterjee et al., 2002). Since vIL-6 can be induced by IFNα and can also 

suppress IFNα induction, vIL-6 has cleverly acquired control to enforce a negative feedback 

loop (Chatterjee et al., 2002).

KSHV has yet another mimicking strategy to inhibit host interferon responses. KSHV 

encode four genes that have some homology to human IRF genes (Moore et al., 1996). The 

proteins, termed vIRF-1, -2, -3, and -4, have all been found to have pro-viral roles. However, 

the mechanisms by which each inhibits the host differ. vIRFs 1-3 have all been shown to 

inhibit IFN response during infection (Joo et al., 2007; Mutocheluh et al., 2011; Zimring, 

Goodbourn, and Offermann, 1998). vIRF1 was found to bind both cellular IRF3 and IRF7; 

however its ability to block IFN responses was limited to its interaction with IRF3 (Lin et 

al., 2001). Furthermore, vIRF1 did not inhibit the dimerization or translocation of IRF3, but 

rather blocked its IFN induction function by inhibiting its ability to recruit its cofactors 

CBP/p300 (Lin et al., 2001). vIRF2 was found to have multiple functions during infection 

that inhibit IFN expression. First, vIRF2 was shown to inhibit PKR by preventing its 

autophosphorylation and therefore, blocking its activation (Burýšek and Pitha, 2001). Later, 

vIRF2 was found to exploit cellular IRF3 turnover mediated by caspase-3 (Aresté, 

Mutocheluh, and Blackbourn, 2009). Lastly, vIRF2 restricts ISG expression by inhibiting the 

interferon stimulating gene factor complex (ISGF-3) (Mutocheluh et al., 2011). The broad 

activity of vIRF2 displayed by the ability to act early and late highlights the importance of 

this viral factor in promoting viral “survival”. vIRF3 also has multiple immune inhibitory 

functions. IRF7-mediated IFNα production was shown to be inhibited by vIRF3 (Joo et al., 

2007) and also restricts IRF5-mediated apoptosis signaling (Wies et al., 2009). vIRF4 has 

recently been found to reduce cellular IRF4 expression as well as to compete with IRF4 for 

c-Myc promoter binding, thereby inhibiting c-Myc transcription (Lee et al., 2014). c-Myc 

has many roles in the cell, but of particular relevance is its role in apoptosis regulation 

(Hoffman and Liebermann, 2008). Since the function of vIRF4 was found to be important 

for efficient lytic cycle of KSHV, this may suggest that the antiviral nature of c-Myc is to 

promote apoptosis during infection, an event that is inhibited by vIRF4. Altogether, although 

these IRF mimics from KSHV may differ in their modes of action, it is clear that the viral 

mimicry of these important IFN inducers aids in KSHV immune evasion.

6.2 Mimics from Poxvirus target inflammasomes

Poxviruses are somewhat unique in their replication cycles, as unlike most other known 

DNA viruses, they replicate in the cytoplasm. Therefore, it may be more difficult for the 

virus to evade host innate immune responses, as most known DNA sensors reside in the 

cytoplasm. Several cytoplasmic PPRs stimulate the formation of an inflammasome complex 

(Figure 7), and such complexes were shown to be induced upon infection with poxviruses. 

To counteract this host response, poxviruses have developed immune evasion strategies 

based on either inhibition of cytoplasmic inflammasome assembly or on mimicking 

inflammasome signaling molecules. The inflammasome typically consists of a PRR, the 

adaptor protein ASC, and caspase-1. The PRR interacts with the ASC via interaction 
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through their pyrin domains (PYD). This is a necessary step for the auto-proteolytic 

cleavage of pro-caspase-1 to its mature form. Similar to the nuclear HCMV strategy 

reviewed in chapter 3, Myxoma virus has devised a way to inhibit cytoplasmic PYD-PYD 

interactions. Myxoma virus is a poxvirus that infects rabbits. This virus produces a protein 

that shares homology with pyrin domain-containing protein, M13L (Johnston et al., 2005). 

M13L interacts directly with ASC, leading to decreases in caspase-1 cleavage and 

diminished IL-1β and IL-18 secretion (Johnston et al., 2005). This suggests that the function 

of M13L is to outcompete the PRR PYD binding to ASC.

Inhibition of inflammasome formation is not the only trick of mimicry that poxviruses have 

acquired. Indeed, poxviruses also utilize mechanisms similar to those discussed for 

herpesviruses, mimicking cytokines or their receptors. Vaccinia virus was found to encode 

two genes, B15R and B18R, that share homology to human and mouse IL-1 receptors 

(Smith and Chan, 1991). B15R is able to bind to murine IL-1β and inhibit B and T 

lymphocyte proliferative responses normally induced by IL-1β (Spriggs et al., 1992), 

suggesting that B15R is a soluble IL-1β receptor mimic. IL-18 is another product of 

inflammasomes, which induces IFNγ and stimulates NK cells (reviewed in (Dinarello et al., 

2013). Since IL-18 stimulates inflammatory responses, and its misregulation is associated 

with autoimmune diseases (reviewed in (Dinarello et al., 2013)), strict regulation of IL-18 is 

required for optimum homeostasis. Cellular regulation of IL-18 involves an IL-18 binding 

protein (IL-18BP) that has higher affinity for IL-18 than the IL-18Rα does for IL-18 

(Dinarello et al., 2013). Most poxviruses have been determined to have IL-18BP encoding 

genes (Krumm et al., 2008) suggesting that poxviruses intend to nullify the immune 

stimulatory functions of IL-18 by binding IL-18 before it can bind to its receptor. Several 

poxviruses have been shown to adopt this approach, including Molluscum antagiosum virus 

(MCV), variola virus (varv), and VACV. MCV is a poxvirus that causes small raised lesions 

in humans. Although in healthy individuals the virus is rather benign, in that there is little 

evidence for inflammation, the lesions can persist for many months or even years, 

suggesting a suppression of the local immune response (reviewed in (Smith et al., 1999)). 

MC54L of Molluscum antagiosum was found to bind human IL-18 (Xiang and Moss, 2001), 

which may contribute to the inhibition of a local immune response around the infected 

lesions. Varv was the virus responsible for the deadly smallpox disease, prior to its 

eradication by vaccination. Varv also inhibits IL-18 from binding its receptor by way of 

varvIL-18BP, which outcompetes hIL-18R for IL-18 binding (Meng, Leman, and Xiang, 

2007). Lastly, vaccinia virus was also found to encode an IL-18BP homolog (Smith, Bryant, 

and Alcamí, 2000). This gene, C12L is thought to be responsible for inhibiting IL-18-

mediated immune responses, since infection with a C12L mutant in mice displayed 

increased pro-inflammatory responses- including elevated IFNγ production and NK and T-

cell cytotoxicity (Reading and Smith, 2003).

Closing remarks

Herein, we have highlighted shared and unique mechanisms by which DNA viruses evade 

cellular intrinsic and innate immune responses. We emphasize the presence of convergent 

and divergent viral strategies that function to dismantle host immunity. These strategies work 

either by preventing antiviral cytokine/chemokine expression or by preserving cellular 
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viability in the interests of viral replication and spread. The current knowledge inspires 

many questions regarding evolution-driven viral designs that serve to abate cellular immune 

detection. Do DNA viruses have conserved means to exploit immune signaling pathways for 

the promotion of viral replication? Is there a precedent for the evolutionary loss of molecular 

signatures recognized by PRRs as foreign? For example, the gamma-herpesvirus MCMV 

contains an abundance of TLR9-stimulating CpG motifs, whereas such motifs are 

underrepresented in the related MHV68 genome (Pezda et al., 2011). The absence of CpG 

motifs in MHV68 begs the question of whether this virus has evolved to specifically evade 

the recognition by TLR9. Additionally, is the deficiency in lysine residues in many 

herpesvirus proteins demonstrative of an evolved means to evade cellular ubiquitin-mediated 

degradation? Furthermore, virus strategies that facilitate latency in hosts is an active area of 

research that is reviewed elsewhere (Lieberman, 2016). These questions and others expose 

the intricacies of the virus-host relationship, which warrant continued research.

While some of these immune evasion tactics are starting to be well defined, the knowledge 

of others remains limited because of the complex interrelationship between viruses and 

hosts. Insight into these viral subversion strategies not only sheds light upon fundamental 

cellular signaling pathways, but also provides therapeutic opportunities. To facilitate the 

generation of antiviral vaccines and treatments, ongoing efforts are focused on removing 

viral evasion factors while maintaining attenuated virus strains. The characterization of viral 

targets for immune evasion can also be leveraged as drug targets for autoimmune diseases 

that require suppression of host immunity. Hence, characterizing these mechanisms can 

afford the capacity to develop a multifaceted toolkit to regulate cellular immunity in 

personalized medicine against immunity-related afflictions.
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Figure 1. 
Strategies used by DNA viruses to evade early host immune responses. Shown is an 

overview of viral strategies discussed in this review. Nuclear viral strategies include 

modulation of host gene expression while other strategies involve utilizing proteasome and 

apoptosis pathways, modulation of protein functions via PTM or hijacking, and viral 

mimicry of host immune proteins.
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Figure 2. 
DNA virus immune evasion by antagonism of host defense gene transcription. Cellular 

(blue) mRNA is targeted for destabilization before and after the generation of mature mRNA 

that is exported to the cytoplasm with CBC. Viral (red) ribonuclease-induced fragmentation 

of RNA polymerase II-derived transcripts is initiated at different primary cleavage sites, 

including the 5’ 7-methylguanosine cap, 3’ poly-adenylated tail, and 3’ untranslated region. 

Decapping and destabilization of mRNA is facilitated by VACV D10 and D9 proteins. 

Adenovirus E1B 55-kDa associates with E4 Orf6 to selectively promote the export of viral 

late mRNAs to the cytoplasm, while inhibiting the export of cellular mRNA. Viral mRNA 

can act as a sequestration sink for host defense factors like PKR, ultimately suppressing 

antiviral gene expression. Viral microRNAs target specific cellular genes to either 

downregulate host defense gene expression, or attenuate antigen presentation through 

cytokine-dependent means of inhibiting immune cell maturation. Cap-binding protein 

complex, CBC; herpes simplex virus-1, HSV-1; Epstein-Barr virus, EBV; vaccina virus, 

VACV; adenovirus, AdV; human cytomegalovirus, HCMV; Kaposi's sarcoma virus, KSHV; 

protein kinase R, PKR.
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Figure 3. 
Viruses exploit host proteasome pathway for immune evasion. Intrinsic immune response 

(blue) include proteins of PML-NBs or the DDR that are targeted for proteasome-mediated 

degradation by several viruses (see text). Innate immune (pink) DNA sensors DNAPKcs and 

IFI16 are both targeted for degradation by HSV-1 viral protein ICP0. Immune response 

pathway components (within grey shading of cell) are targeted for degradation by several 

viruses. Viral proteins are represented by red circles. Dotted lines represent movement.
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Figure 4. 
DNA virus hijacking and sequestration of host defense proteins. Depicted are viral proteins 

(red) shown simplistically as targeting the most downstream relevant host proteins (blue) 

involved in each of the following steps of cellular antiviral immune signaling. Detailed viral 

immune subversion mechanisms are described in the text. Upon early stages of infection of a 

cell with a DNA virus (1), the viral DNA genome is detected by cytoplasmic DNA sensors 

(2a), or nuclear DNA sensors (2b). Plasma membrane- or endosomal-localized TLRs (3a), as 

well as cGAS (3b) bind cytoplasmic viral DNA and ultimately activate several protein 

components of cellular immune signaling (4), including the transcription factors NF-KB, 

IRF-3, IRF-7, and IRF-1. Upon cytoplasmic activation, the transcription factors translocate 

to the nucleus (6), bind to regions of the host genome, and upregulate the expression of 

antiviral cytokines and chemokines (7). Herpes simplex virus-1, HSV-1; Epstein-Barr virus, 

EBV; vaccina virus, VACV; adenovirus, AdV; human cytomegalovirus, HCMV; Kaposi's 

sarcoma virus, KSHV; African swine fever virus, ASFV; Toll-Like receptor, TLR; histone 

2B, H2B; phosphorylation, P; monubiquitination, Ub.

Crow et al. Page 45

Crit Rev Biochem Mol Biol. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Viral regulation of host proteins via post translational modifications. HSV-1 US3 protein can 

hyperphosphorylate IRF3 and RelA to prevent their nuclear localization and transcription 

activation functions. HCMV can inhibit the Jak-mediated STAT1 phosphorylation in an 

SHP2-dependent manner, preventing STAT1-mediated induction of IFN-inducing genes. 

E4orf4 of adenovirus, together with PP2A, reduces phosphorylation of DDR proteins to 

inhibit DNA damage response. HPV infection enhances HDAC3-mediated RelA 

deacetylation by upregulating IFRD1 via the EGFR pathway, which decreases the duration 

of NF-κB signaling. HCMV IE1 binds to PML and limits its SUMOylation, repressing the 

formation of PML-NBs. Phosphorylation, P; acetylation, Ac; SUMOylation, SUMO.

Crow et al. Page 46

Crit Rev Biochem Mol Biol. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
DNA viruses suppress apoptotic processes. Viruses exploit host extrinsic and intrinsic 

apoptotic pathways via distinct viral proteins (red). Initiation of the extrinsic pathway is 

inhibited by virus-encoded TNF receptor suppressors. Downstream of the Fas/TNF 

receptors, within the cytosol, the activation of caspase-8 is inhibited by vFLIPS. The 

inhibition of caspase-8 will shut off the caspase cascade. In addition, viruses target other 

caspases by caspase suppressors. To prevent the activation of the intrinsic pathway, viral 

proteins mimic host Bcl-2 proteins and regulate mitochondrial membrane potential by 

recruiting these proteins to the outer membrane of mitochondria. This recruitment will 

reduce the release of APAF1, cytochrome c, and other mitochondria apoptotic factors. 

Therefore, these viral Bcl-2 homologues can suppress the activation of caspase-9, and in 

turn, apoptosis. P53 is critically involved in the regulation of the expression of pro-apoptotic 

factors, thus it constitutes a target of some viruses. A number of viral proteins function as 

p53 suppressors that modulate the levels of pro-apoptotic and anti-apoptotic genes. Of note, 

oxidative stress can be controlled by viral products, such as MCV MC066L, and baculovirus 

p35 and IAP. These viral proteins prevent host cells from ROS mediated apoptosis, but the 

underlying mechanisms await further characterization.
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Figure 7. 
Viruses mimic host immune response proteins. Cell membrane: Chemokine receptors (e.g. 

CCR5, CXCR4) are blocked from binding their ligands by KSHV vMIP-II. HCMV US28 

receptor binds promiscuously to a variety of chemokine ligands- leading to fewer molecules 

being available to bind their receptors. Viral IL-10 (HCMV, EBV) binds human IL-10 

receptor inhibiting transcription of IFNα or γ, respectively. The cofactor of the IL-6 

receptor gp130 binds viral IL-6 (KSHV) resulting in activation of downstream signaling, or 

inhibition of IFNα. Cytoplasm: myxoma virus protein M13L inhibits inflammasome 

formation by binding the pyrin domain of ASC thereby inhibiting the interaction of ASC 

with the pyrin domain of a PRR. Mature IL-1β resulting from inflammasome activity is 

inhibited by VACV B15R which acts as a soluble IL-1 receptor. Levels of secreted IL-18 is 

depleted by several poxvirus family proteins including MCV MC54L, VACV C12L, and 

variola virus vIL-18BP. EBV protein BILF1 inhibits NF-κB nuclear translocation by 

modifying PKR phosphorylation status. Nucleus: KSHV viral IRF homologues inhibit 

transcription of immune response genes by effecting host IRF binding promoter regions.
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