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Abstract

The assessment of direct and indirect effects with time-varying mediators and confounders is a 

common but challenging problem, and standard mediation analysis approaches are generally not 

applicable in this context. The mediational g-formula was recently proposed to address this 

problem, paired with a semi-parametric estimation approach to evaluate longitudinal mediation 

effects empirically. In this paper, we develop a parametric estimation approach to the mediational 

g-formula, including a feasible algorithm implemented in a freely available SAS macro. In the 

Framingham Heart Study data, we apply this method to estimate the interventional analogues of 

natural direct and indirect effects of smoking behaviors sustained over a 10-year period on blood 

pressure when considering weight change as a time-varying mediator. Compared with not 

smoking, smoking 20 cigarettes per day for 10 years was estimated to increase blood pressure by 

1.2 (95 % CI: −0.7, 2.7) mm-Hg. The direct effect was estimated to increase blood pressure by 1.5 

(95 % CI: −0.3, 2.9) mm-Hg, and the indirect effect was −0.3 (95% CI: −0.5, −0.1) mm-Hg, which 

is negative because smoking which is associated with lower weight is associated in turn with lower 

blood pressure. These results provide evidence that weight change in fact partially conceals the 

detrimental effects of cigarette smoking on blood pressure. Our work represents, to our 

knowledge, the first application of the parametric mediational g-formula in an epidemiologic 

cohort study.
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Introduction

Mediation analysis, a method to decompose the total effect of an exposure on an outcome 

into direct and indirect effects through a mediator, is essential for investigating pathways or 

mechanisms in epidemiology and in the social sciences. Causal mediation analysis, defining 

natural direct and indirect effects based on counterfactual models, extends traditional 

mediation analysis to settings involving nonlinearities and interactions1,2. Numerous 

methodologic approaches based on causal mediation analysis have been developed in recent 

years allowing different outcome scales, including additive, multiplicative, and odds ratio 

scales, as well as other models for time-to-event data3–8. Most of the approaches mentioned 

above only consider a point exposure and a subsequent point mediator. When conducting 

causal mediation analysis with longitudinal data, the restriction of only one single exposure 

and mediator neglects exposures or mediators at other time-points, which thus potentially 

results in loss of valuable information.

Robins has proposed the g-formula to estimate the total effect in settings with time-varying 

exposures and confounders9. In addition, when mediators can be intervened upon, the g-

formula can estimate the controlled direct effect by comparing the effects of two different 

exposure levels and specifying the mediators at certain fixed values. For mediation, however, 

the natural direct effect and the natural indirect effect involved in effect decomposition are, 

unfortunately, not identified. VanderWeele and Tchetgen Tchetgen10 proposed the 

mediational g-formula to overcome the methodologic challenges of causal mediation 

analysis with time-varying mediators. As discussed below, this method decomposes the 

randomized interventional analogue of total effect into interventional analogues of natural 

direct effect and indirect effect and moves beyond the limitations of a single exposure and a 

single mediator. Time-varying confounders can also be accounted for provided no 

unobserved confounding is present. For estimation of the randomized natural direct and 

indirect effects, VanderWeele and Tchetgen Tchetgen proposed a semi-parametric approach 

based on inverse probability weighted estimators. As with standard inverse probability 

weighting, this approach is potentially unstable if the exposure is continuous or the weights 

are highly variable. Instead, we consider an alternative approach that is potentially more 

stable and efficient, by implementing a fully parametric mediational g-formula approach, 

using a user-friendly algorithm implemented in freely available software. We then apply this 

method to the Framingham Heart Study (FHS) data to investigate the effect of smoking on 

blood pressure mediated by weight change.

Case study for Framingham dataset: smoking, weight, and blood pressure

In past research, the association between smoking and blood pressure has been 

controversial11–16. In some studies, average blood pressure, as measured using a domestic 

blood pressure monitor17–19, is lower among smokers than among non-smokers at particular 

times of the day14,20. According to most literature, among former smokers, smoking 

cessation is associated with increased blood pressure21,22 while some studies fail to observe 

this association23.

Three possible mechanisms might explain this association. First, smoking activates the 

autonomic nervous system to increase blood pressure directly, but smoking cessation also 
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activates the autonomic nervous system, increasing blood pressure among former 

smokers24,25. Second, smoking elevates blood pressure through exacerbating arterial 

stiffness. Third, smoking decreases blood pressure through weight loss21. The adverse effect 

of smoking on elevated blood pressure might thus be partially concealed by weight loss. 

Because both smoking status and weight change vary over time, the mediational g-formula 

can be used to study the extent of this adverse effect mediated by weight loss. In this study, 

we obtain the estimates by applying our method to the FHS data and demonstrate an 

application of causal mediation analysis with time-varying mediators.

Methods Development

Notation and review for causal mediation analysis

First consider a setting with an exposure, mediator, and outcome measured at a single time. 

Let A denote an exposure, Y an outcome, and M a mediator. Let V denote a set of baseline 

covariates not affected by the exposure. The relationships among these variables are 

described in Figure 1. Under counterfactual models26,27, Ya and Ma denote the 

counterfactual values of the outcome and the mediator, respectively, if exposure A is set to 

level a. Yam denotes the counterfactual value of the outcome if exposure A is set to level a, 

and mediator M is set to level m. In addition, YaMa* denotes the counterfactual value of the 

outcome if exposure A is set to level a and mediator M is set to level Ma*. Under the 

consistency assumption6,28,29, Ya = Y and Ma = M if A = a; Yam = Y if A = a and M = m; 

and the composition assumption that YaMa* = Y if A = a and M = Ma*.

Mediation analysis decomposes the overall effect into a direct effect (the effect not through 

the mediator) and an indirect effect (the effect through the mediator). Under the above 

counterfactual models, causal mediation analysis usually defines the total effect, natural 

direct effect, and natural indirect effect to represent the overall, direct, and indirect effects, 

respectively. Let A = a and A = a* denote two hypothetical intervention statuses, exposure 

and non-exposure, respectively. The total effect is defined as E[Ya − Ya*] or equivalently, 

E[YaMa − Ya*Ma*]; the natural direct effect is defined as E[YaMa* − Ya*Ma*], and the natural 

indirect effect is defined as E[YaMa − YaMa*]. These effects have been described extensively 

elsewhere and arguments have been made that they are theoretically appealing for effect 

decomposition1,2,6. However, in the presence of time-varying confounders, the natural direct 

effect and natural indirect effect are not generally identified from data even if these 

confounders are observed30,31. To address the problem of identification, an alternative 

definition uses the randomized analogue of total effect, randomized natural direct effect, and 

randomized natural indirect effect to represent the overall, direct, and indirect effects, 

respectively32–34. Let Ga denote a random draw from the distribution of the mediator 

amongst those with exposure status A = a. When exposure is set to a (or a*), the distribution 

of mediator among whole population is also determined. Therefore, for every individual, a 

random draw from this distribution, Ga (or Ga*), will be independent of the counterfactual 

mediator, Ma (or Ma*) and outcome (Yam). The randomized analogue of total effect is 

defined as E[YaGa] − E[Ya*Ga*]. The randomized natural direct effect is defined as E[YaGa*] 

− E[Ya*Ga*], which can be interpreted as an effect on the outcome comparing exposure 

versus no exposure with the mediator in both cases randomly drawn from the distribution of 
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the population when given no exposure. Finally, the randomized natural direct effect is 

defined as E[YaGa] − E[YaGa*], interpreted as an effect on the outcome of randomly 

assigning an individual who is given exposure to a value of the mediator drawn from the 

distribution of the mediator amongst those given exposure versus not given exposure. We 

have the decomposition: E[YaGa]− E[Ya*Ga*] = (E[YaGa] − E[YaGa*]) + (E[YaGa*] − 

E[Ya*Ga*]), so the overall effect decomposes into the sum of the effect through the mediator 

(i.e. the indirect effect) and the direct effect.

Both natural direct and indirect effects can be identified under four assumptions: (1) Yam⊥A|

V (no unmeasured exposure-outcome confounder); (2) Yam⊥M|V, A (no unmeasured 

mediator-outcome confounder); (3) Ma⊥A|V (no unmeasured exposure-mediator 

confounder); and (4) Yam⊥Ma*|V (no mediator-outcome confounder affected by 

exposure)6,30, when ⊥ denotes independence and X ⊥ Y | Z denotes that X is independent 

of Y conditional on Z. Under these assumptions, natural direct effects (NDE) and indirect 

effects (NIE) are identified by the following expressions:

(1)

(2)

The fourth assumption holds only under a non-parametric structural equation model and 

would be violated under several settings. The most common one is the existence of a 

mediator-outcome confounder L that is affected by exposure (Figure 2), in which case the 

fourth assumption fails, even if this confounder is observed. When this confounder is a 

single binary variable, Tchetgen Tchetgen and VanderWeele proposed a method to identify 

the NDE and NIE by assuming the monotonicity about the effect of exposure on this 

confounder35. A severe shortcoming of this assumption is that even if the mediator is 

restricted to occurring immediately after the exposure, the assumption cannot be ensured. As 

a result, this approach is not generally applicable for settings with time-varying mediators. 

However, even if this assumption fails, given assumptions (1) to (3) hold and the mediator-

outcome confounder is observed, the randomized natural direct effect (rNDE) and 

randomized natural indirect effect (rNIE) in the second definition are still identifiable from 

the data by the empirical expressions given by34:

(3)

(4)

To understand the difference in the effects better, note that the natural direct effect and 

natural indirect effect cannot be checked by designing a randomized trial even if we were 
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able to intervene on both the exposure and the mediator. However, it is possible to design a 

two-stage trial to estimate randomized natural direct and indirect effects. A randomized trial 

could first be conducted to obtain the empirical distribution of counterfactual mediator given 

exposed and non-exposed by randomizing the exposure and measuring the mediator 

distributions. We can then estimate randomized natural indirect effect in a second trial by the 

effect on the outcome of assigning an individual who is given the exposure to a value of the 

mediator sampled from the marginal distribution of the mediator amongst those given 

exposure versus no exposure, using the empirical distributions of the mediator estimated 

from the first randomized trial. Similarly, we can estimate randomized natural direct effect 

by a direct effect comparing exposure versus no exposure with the mediator in both cases 

randomly drawn from the empirical distribution of the population when given no exposure, 

which was also estimated from the first randomized trial.

Notation and review of mediation analysis with time-varying mediators and the mediational 
g-formula

Consider exposures, mediators, and confounders that vary over time in longitudinal settings 

with T measurements at time t = 0, 1, 2, …, T−1. Let (A(0), A(1), …, A(T−1)), (M(0), M(1), 

…, M(T−1)), and (L(0), …, L(T−1)) denote values of the time-varying exposures, 

mediators, and confounders at periods 1, …, T, with the final outcome of interest Y. The 

initial baseline confounders are included in L(0). Figure 3 depicts a possible data generating 

mechanism under which these assumptions would hold.

For any variable W, let  and let 

. Let  be the counterfactual value of Y 

given Ā is set to ā and M̅ is set to m̅. Let Mā(t) be the counterfactual value of M(t) given 

 is set to . Let Gā(t) denote a random draw from the distribution of the mediator 

Mā(t). Let Ā = ā and  denote two hypothetical intervention statuses, for example, 

exposed from t = 0 to T−1 and non-exposed from t = 0 to T−1, respectively. In this setting, 

we define total effect as  (i.e. ), natural direct effect, as 

, and natural indirect effect ; we aslo define 

randomized analogues of total effect as , randomized analogue of 

natural direct effect as , and randomized analogue of natural indirect 

effect as . We can decompose the total effect into the natural direct 

effect and natural indirect effect. Similarly, randomized analogue of total effect is 

decomposed into randomized analogues of natural direct effect and of natural indirect effect 

(i.e., .

If the entire vector  is taken as the joint exposure of interest and 

as the mediators of interest, then assumption (4) is violated because the variable L(1) is 

affected by A(0) and confounds the mediator-outcome relationship between M(1) and Y 

(similarly, the L(t) is affected by  and confounds the relationship between M(t) and 

Y, when t = 1, …, T−1). Therefore, natural direct and indirect effects cannot be identified in 

this setting. However, randomized natural direct and indirect effects are still identifiable 
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under the following three assumptions for all t: (1)  (no 

exposure–outcome confounding conditional on the past variables), (2) 

 (no mediator–outcome confounding conditional on the past 

variables), and (3)  (no exposure–mediator 

confounding conditional on the past variables)10. Given the three assumptions, VanderWeele 

and Tchetgen Tchetgen10 show that the randomized natural direct (rNDE) and indirect 

effects (rNIE) are identified non-parametrically by the following equations:

(5)

(6)

(7)

As in VanderWeele and Tchetgen Tchetgen, we refer to this expression Q(ā1, ā2) above as 

the mediational g-formula. When there are no mediators, i.e. M̄ equals empty, this formula 

(7) reduces to the standard g-formula:

(8)

Further, rNDE (5) and rNIE (6) reduce to the natural direct effect and natural indirect effect, 

respectively, when there are no time-varying confounders10.

Parametric mediational g-formula

VanderWeele and Tchetgen Tchetgen described how to use inverse probability weighting of 

marginal structural models to estimate the mediational g-formula Q(ā1, ā2) (7) in realistic 

high-dimensional settings10. However, this approach can perform poorly with continuous 

exposures and mediators and can also be inefficient. As an alternative, an adaptation of the 

standard parametric g-formula9,36 can be used to parametrically estimate the mediational g-

formula in high-dimensional settings and, in turn, the randomized natural direct effect (5) 

and randomized natural indirect effect (6).
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We begin by briefly reviewing the standard parametric g-formula. This approach 

parametrically estimates the standard g-formula by (i) fitting parametric models for the joint 

density of the outcome and time-varying covariates and (ii) using the estimated parameters 

of these models to simulate many covariate histories consistent with the exposure 

intervention ā. Specifically, the following algorithm, which is implemented in a publicly 

available SAS macro37, can be used to parametrically estimate the standard g-formula Q(ā):

1. Fit parametric models for the observed data:

(1a) For times t ≥ 0, fit parametric models for the joint density of the 

confounders and exposures at t given the measured past.

(1b) Fit a parametric model for the mean of the outcome at the end of 

follow-up given the measured past.

2. Set baseline confounders and exposures to the observed sample values. 

Recursively, for each subject i = 1, …, n and for each time t = 0, 1, 2, …, T−1:

(2a) For t ≥ 0, generate time t confounders and exposures based on the 

estimated model coefficients of (1a) and previously generated 

exposures and confounders under intervention.

(2b) Assign time t exposures under intervention ā.

3. Simulate the outcome for each of the n generated histories in step 2 based on the 

estimated model coefficients of (1b).

4. Take the mean over n simulated outcomes in (3) to estimate Q(ā).

Here, we have adapted the above algorithm and associated SAS macro code to 

parametrically estimate the mediational g-formula Q(ā1, ā2), the randomized analogues of 

total effect, of natural direct effect, and of natural indirect effect. The primary difference 

between the parametric g-formula and the parametric mediational g-formula is, under the 

latter algorithm, the estimated model coefficients from step (1) are additionally used to 

estimate the joint distribution of the time-varying mediators (marginal over all other 

covariates) under both exposure interventions ā and . These are then used to assign values 

of the mediator under the joint exposure and mediator interventions (ā,Ḡā), 

and . The algorithm is as follows:

1. Fit parametric models for the observed data:

(1a) For times t ≥ 0, fit parametric models for the joint density of the 

confounders, exposures and mediators at t given the measured past.

(1b) Fit a parametric model for the mean of the outcome at the end of 

follow-up given the measured past.

2. Estimate the joint distribution of time-varying mediators under time-varying 

exposure interventions ā and :

(2a) Set baseline (t = 0) covariates to the observed values for subject i. 

Recursively, for each time t = 0, …, T−1 and each subject i = 1, …, n:
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(2a.i) For t ≥ 0, generate time t confounders, exposure, and 

mediator based on the estimated model coefficients of (1a) 

and previously generated covariates under the time-varying 

exposure intervention ā through t−1.

(2a.ii) Assign time t exposure under the intervention ā.

(2b) For each t = 0,…T−1, randomly permute the n values of the joint 

mediators assigned under intervention ā in (2a). For each t, save this 

permutation for use in (3) below (we obtain Ḡā in this step).

(2c) Repeat (2a) replacing intervention ā with .

(2d) Repeat (2b) replacing intervention ā with  (we obtain  in this 

step).

3. Estimate Q(ā, ā),  and  by repeating the following for 

each  and :

(3a) Recursively for each time t = 0,…,T−1 and each subject i = 1,…,n:

(3a.i) Repeat (2a.i) but replacing “time-varying exposure 

intervention ā through t−1” with the joint “time-varying 

exposure and mediator intervention ”.

(3a.ii) Assign the time t mediator as the ith component of the 

permuted vector for time t from (2b)  or (2d) 

.

(3a.iii) Assign time t exposure under the intervention .

(3b) Simulate the outcome given each of the i = 1,…,n histories based on 

the estimated model coefficients of (1b) and the histories generated in 

(3a).

(3c) Estimate  as the mean over the n simulated outcomes in (3b).

(3d) Repeat (1) to (3c) for some fixed number K (e.g. 25) times, using 

different permutation in (2b) for each time.

(3e) Estimate  as the mean of the K (e.g. 25) values of  in 

(3d).

The algorithm can stop at (3c) and use the  as the unbiased estimate of . 

However, the repeated steps in (3d) can improve standard errors for smaller sample sizes. 

Estimates of the randomized natural direct and indirect effects are then calculated from the 

estimates of the four  in (3). 95% confidence intervals are calculated based on 

repeating the above algorithm in 500 bootstrap samples of the original n observations. This 

algorithm can be implemented with the mgformula macro, freely accessible with 

documentation at http://www.hsph.harvard.edu/causal/software/. However, the data are not 

available on the website. Please see the eAppendix for details.
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Data Application—Beginning in 1948 in Framingham, Massachusetts, the FHS is a 

longitudinal cohort study. The original cohort consists of 5,209 participants aged from 30 to 

62 years old without cardiovascular disease (CVD) history at baseline. All the participants 

underwent examinations at the beginning of the study and routinely every two years after 

that. During each exam, potential CVD risk factors were collected, including socio-

demographic data, lifestyle characteristics, detailed medical history, physical examination 

data, and blood samples. Further details on the design of FHS have been described 

elsewhere23,38. All participants had provided written informed consent and the protocol was 

approved by the Institutional Review Board at Boston University Medical Center. The 

purpose of the analysis here is to illustrate the parametric meditational g-formula approach 

and software.

We specify exam 3 as the first exam and exams 1 and 2 as pre-baseline covariates to allow 

the function of the past in the models of step (1) of the estimation algorithm to depend on 

two lagged periods of the covariates. We follow the cohort for ten years (i.e. five visits) to 

reduce the proportion of death or loss to follow up to limit selection bias by death. Four 

exclusion criteria are listed below: (1) death or loss to follow up during the period before 

exam 7 (the end of follow-up); (2) no record at baseline on weight, height, smoking status, 

former smoking history, systolic blood pressure (SBP), or total cholesterol; (3) diagnosis of 

diabetes, cancer, or CVD at baseline; and (4) missing value for smoking status or BMI 

missing more than once. After these exclusions, 3,116 participants remain eligible for our 

analysis. For simplicity, we now refer to the original FHS exams 3,…, 7 as exams 1,…, 5.

SBP at exam 5 is the outcome Y. BMI during follow-up (exam 1 to 5) is the mediator M ̅. 
The exposure Ā is smoking status during follow up, measured as self-reported average 

number of cigarettes smoked per day. For missing BMI value or smoking status at a single 

time period, we carry forward the last observed value/status for one exam period only. We 

consider "smoking 20 cigarettes per day" and "no smoking" during follow-up as two 

hypothetical intervention levels Ā = ā and . Time-varying covariates L̅ include the 

exam number, the systolic blood pressure (mm-Hg) at last exam, total non-fasting 

cholesterol level (mg/dl), and the usage of antihypertensive drugs. Baseline covariates 

include gender, age (years), height (meters), education (≤ 8th grade, some high school, high 

school graduate, some college, college graduate, post-graduate), occupation before 

retirement (executive/supervisory, technical, laborer, clerical, sales, housewife), marital 

status (single, married, widowed/divorced), and tobacco use at baseline (never user, current 

user, and past user). All covariates and the corresponding models are listed in Table 1.

The parametric g-formula is used to estimate the total effect of smoking 20 cigarettes per 

day v.s. no smoking on SBP and on BMI at exam 5, by the g-formula macro. The parametric 

mediational g-formula is applied to conduct mediation analysis with time-varying mediators 

and exposures by our newly developed mgformula macro. We specify models for the 

outcome mean, as well as for each time-varying covariate (including mediator, exposure, and 

confounders) at each time point. We use current covariates and covariates at one period back 

(one lagged model) as the predictors. Specifically, we regress Y on main effects for A(5), 

M(5), L(5), A(4), M(4), and L(4). For t = 0, 1, 2, …, 5, we regress L(t) on A(t−1), M(t−1), 

and L(t−1); regress M(t) on A(t), A(t−1), M(t−1), L(t), and L(t−1); and regress A(t) on A(t
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−1), M(t−1), L(t), and L(t−1) (please refer to the eAppendix for more details). All analyses 

are conducted using SAS 9.4 (Cary, NC).

Results

The demographic and baseline health characteristics for smokers (n = 1,759), non-smokers 

(n = 1,174), and quitters (n = 183) are shown in Table 2. Compared with non-smokers, 

smokers have higher male proportion, younger age, and better education level. The majority 

of non-smokers are female (84%) and half of them have the occupation of housewife. The 

occupations of the smokers are mainly supervisor, laborer, and housewife. At baseline, the 

smokers appear to have better health status for lower systolic blood pressure, cholesterol 

level, and BMI.

We use the g-formula to estimate the total effect of smoking (20 cigarettes per day v.s. no 

smoking for 10 years) on SBP and BMI in Table 3. Smoking elevates SBP by 1.2 mm-Hg 

and reduces BMI by 0.2 kg/m2. In Table 4, we use the parametric mediational g-formula to 

simulate systolic blood pressure at the end of 10-year follow-up under no smoking with BMI 

distributed as the BMI under no smoking, smoking 20 cigarettes per day with BMI 

distributed as the BMI under smoking 20 cigarettes per day, no smoking with BMI 

distributed as the BMI under smoking 20 cigarettes per day, and smoking 20 cigarettes per 

day with BMI distributed as the BMI under no smoking. We then estimate the randomized 

total effect, randomized natural direct effects, and randomized natural indirect effects of 

smoking on systolic blood pressure mediated by BMI. The estimate of randomized analogue 

of total effect is 1.2 (95 % CI: −0.7, 2.7) mm-Hg, the estimate of randomized analogue of 

natural direct effect is 1.5 (95 % CI: −0.3, 2.9) mm-Hg, and the estimate of randomized 

analogue of natural indirect effect is −0.3 (95 % CI: −0.5, −0.1) mm-Hg. The directions of 

randomized natural direct and indirect effects are different, suggesting that the seemingly 

protective mediated effect of smoking through BMI may partially mask the detrimental 

direct effect of smoking on systolic blood pressure.

Discussion

To our knowledge, this is the first paper to provide a fully parametric method for causal 

mediation analysis with time-varying mediators. We develop an algorithm and 

corresponding SAS macro to use the mediational g-formula parametrically. We use the 

parametric approach to obtain estimates for the mediational g-formula by adapting the g-

formula macro externally to build our SAS macro. Similar to the g-formula, we use Monte-

Carlo simulation and bootstrapping methods for point and interval estimation, respectively. 

Since the estimation is an approximation of the maximum likelihood estimation, this 

estimation is asymptotically efficient provided the regression models are all correctly 

specified, while the inverse probability weighting does not achieve the efficiency bound in a 

model where parametric assumptions about the weights and the marginal structural 

modeling are correct. In addition, like other simulation-based methods39, the approach here 

has the advantage of allowing for very flexible models such as quadratic linear models.
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The parametric mediational g-formula provides a powerful method to investigate the 

mechanisms of an effect through time-varying mediators. Traditional techniques, allowing 

only one observation of the mediator and restricting it to variables occurring immediately 

after the exposure, inadequately capture the indirect effect when the exposures affect the 

mediators over time. One alternative approach is to estimate the controlled direct effect, the 

effect of the exposures on the outcome when fixing the mediators at certain values. Obtained 

by applying the g-formula and specifying the mediators to these values, the controlled direct 

effect estimate provides valuable information for policy makers. For example, from FHS 

data we can provide the effect of smoking cessation decreasing systolic blood pressure if 

BMI is fixed to a certain level. This is also described elaborately elsewhere40. The effects 

from the meditational g-formula will, however, further allow for effect decomposition.

This study provides direct evidence for the hypothesis that “the adverse effect of smoking on 

high blood pressure is partially concealed by weight loss”13,21. The concealment of the 

effect is partial because smoking is not substantially associated with weight loss (Table 3). 

Some studies report that smoking cessation increases blood pressure21,22. The discrepancy 

with these studies might be attributed to a different analysis approach or simply the special 

characteristics of FHS participants.

Several limitations of this study should be noted. First, the use of analogue of total effect, 

randomized natural direct effect, and randomized natural indirect effect, defined based on 

the stochastic interventions, results in different interpretations from the total effect, natural 

direct effect, and natural indirect effect34. This is inevitable for causal mediation analysis 

with time-varying mediators because the natural direct and indirect effect are not generally 

identified by empirical data in the presence of time-varying confounders, randomized natural 

direct and indirect effect can still serve as an analogue of natural direct and indirect effect, 

and have the advantage that they can be verified by randomized controlled trial, while 

natural direct and indirect effect cannot. Second, in the macro we have developed, the 

outcome can only be affected by the covariates at the most recent three exams because of a 

similar restriction of the g-formula macro employed for continuous/binary outcome types. 

This is not a limitation of the methodology itself, but only of the current implementation. 

The earlier covariates affect the outcome only through these recent covariates. We specify 

the outcome variables in previous exams (i.e. the previous systolic blood pressure values) as 

the time-varying covariates. Thus, the earlier covariates can also affect the outcome through 

the previous outcome variables. Third, we have not adjusted for selection bias here. 

Selection bias or truncation by death is a difficult problem for causal inference generally and 

for mediation analysis, even with only one single mediator. Most of the literature makes a 

sequential ignorability assumption that survival is effectively randomized conditional on the 

past. Under this assumption, the result can be interpreted as what would happen to the 

population if one could intervene to prevent death for everyone. Alternatively, one could also 

pursue sensitivity analysis approaches and there are also alternative stronger assumptions 

that would allow one to interpret the results without necessarily intervening upon death41,42. 

We hope to address this in future work but the extension of this to time-varying exposures 

and mediators is substantial. For the purposes of the illustration, we have simply focused on 

complete-case data and restricted our follow-up to ten years to partially address this 

selection bias. The relatively low proportion of loss to follow-up (< 20%) perhaps partially 
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mitigates this problem. A general disadvantage of our proposed approach is that it may be 

particularly prone to bias due to model misspecification. Some misspecification may be 

theoretically guaranteed in complex longitudinal settings as considered here when the null 

hypothesis of no causal time-varying treatment effect is true, a problem known as the g-null 

paradox43. The magnitude of bias implied by the g-null paradox is not guaranteed and, 

depending on the setting, may be large or small. For some further consideration of the g-null 

paradox using numerical examples, see Young and Tchetgen Tchtegen44. The 

aforementioned inverse probability weighting estimator offers an alternative method which 

is not subject to the g-null paradox and might be used for the population estimands 

considered here45. Finally, the analysis is subject to potential violation of the confounding 

assumptions. Future research could develop sensitivity analysis techniques for violations of 

these assumptions for our method.

Conclusion

The parametric mediational g-formula serves as a powerful and useful tool for mediation 

analysis with longitudinal data. Researchers can apply our method to disentangle the 

complicated causal mechanisms arising from time-varying mediators, exposures, and 

confounders. Further issues concerning the interpretation of the interventional direct and 

indirect effects can be found in VanderWeele and Tchetgen Tchetgen10. Using this method, 

we provide evidence that weight change in fact partially conceals the detrimental effect of 

cigarette smoking on blood pressure.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simple model for mediation analysis.
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Figure 2. 
Mediation analysis with a mediator-outcome confounder L that is affected by exposure.

Lin et al. Page 16

Epidemiology. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Time-varying mediation with ordering of variables of A(t), M(t), L(t), for t = 0 to T−1.
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Table 1

Summary of covariate models.

Variable Type of model when used as
dependent variable

Functional form when
used as predictor

Non-modifiable

  Gender Not predicted Indicator

  Age Not predicted Quadratic linear

  Height Not predicted Quadratic linear

  Education level Not predicted Six categoriesa

  Occupation Not predicted Six categoriesa

  Marital status Not predicted Three categoriesb

  Baseline smoking Not predicted Three categoriesb

Modifiable

  SBP Linear Quadratic linear

  Smoking Logistic then log-linearc Quadratic linear

  Cholesterol Linear Quadratic linear

  Anti-hypertension
  drug

Linear Three categoriesb

a
Education level categories are ≤ 8th grade, some high school, high school graduate, some college, college graduate, and post-graduate. Occupation 

categories are executive/supervisory, technical, laborer, clerical, sales, and housewife.

b
Marital status categories are single, married, and divorce or widowed. Baseline smoking are smoking, not smoking, and quitting. Anti-

hypertension drug are regular use, not use, and sporadic use.

c
zero-continuous variables such as cigarettes per day are predicted in two stages, first a logistic regression on an indicator of whether the variable is 

nonzero and then a linear regression of the log of the nonzero values.
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Table 2

Baseline characteristics of eligible participants grouped by former smoking status.

Characteristic Quitters
(n = 183)

Non-smokers
(n = 1,174)

Smokers
(n = 1,759)

Male (%) 128 (69) 188 (16) 1049 (59)

Age, year
(Mean (SD))

50 (8.5) 49 (8.5) 46 (8.0)

SBP, mmHg
(Mean (SD))

128 (18) 132 (22) 126 (18)

BMI
(Mean (SD))

26 (4) 26 (4) 25 (4)

Chol
(Mean (SD))

234 (44) 232 (45) 228 (43)

Height
(Mean (SD))

66 (3) 63 (3) 65 (3)

Education (%)

  <High school 65 (36) 507 (43) 675 (38)

  High school 64 (35) 420 (36) 707 (40)

  College or higher 51 (28) 227 (19) 350 (20)

  Missing 3 (2) 20 (2) 27 (2)

Work (%)

  Supervisory 58 (32) 156 (13.3) 419 (23.8)

  Technical 20 (10.9) 31 (2.6) 130 (7.4)

  Laborer 48 (26.2) 238 (20.3) 517 (29.4)

  Clerical 12 (6.6) 76 (6.5) 109 (6.2)

  Sales 8 (4.4) 19 (1.6) 91 (5.2)

  Housewife 36 (19.7) 647 (55.1) 478 (27.2)

  Missing 1 (0.5) 7 (0.6) 15 (0.9)

Marital (%)

  Married 163 (89.1) 935 (80) 1580 (90)

  Single 10 (6) 145 (12) 105 (6)

  Divorced 10 (6) 94 (8) 74 (4)

SBP: systolic blood pressure; BMI: body mass index; Chol: cholesterol level;

No one use the anti-hypertensive drugs at the beginning.
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Table 3

Estimates of the total effect of smoking 20 cigarettes per day for 10 years (compared with no smoking) on 

SBP and BMI.

Intervention SBP
(mm-Hg)

Change in SBP
(95% CI)

BMI
(kg/m2)

Change in BMI
(95% CI)

No intervention 136.2 0.5 (−0.1, 1.0) 25.8 −0.00 (−0.2, 0.1)

No smoking 135.7 Reference 25.9 Reference

20 cigarettes/day 136.9 1.2 (−1.0, 3.1) 25.7 −0.2 (−0.4, 0.0)

SBP: systolic blood pressure; BMI: body mass index; CI: confident interval.
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Table 4

Randomly interventional analogue of total effect, of natural direct effect, and of natural indirect effect for the 

effect of smoking 20 cigarettes per day for 10 years (compared with no smoking) on SBP, mediated by BMI 

change over time.

Estimate 95% CI

E[Y0G0] 135.691 134.93, 137.11

E[Y1G0] 137.211 135.76, 138.80

E[Y0G1] 135.336 134.57, 136.69

E[Y1G1] 136.874 135.64, 138.37

rTE 1.18 −0.68, 2.69

rNDE 1.52 −0.25, 2.90

rNIE −0.34 −0.52, −0.13

rTE: randomly interventional analogue of total effect; rNDE: randomly interventional analogue of natural direct effect; rNIE: randomly 
interventional analogue of natural indirect effect; CI: confident interval; E[Y0G0], E[Y1G0], E[Y0G1], and E[Y1G1]

represent “no smoking with BMI distributed as the BMI under no smoking”,
“smoking 20 cigarettes per day with BMI distributed as the BMI under no smoking”,
“no smoking with BMI distributed as the BMI under smoking 20 cigarettes per day”,
and “smoking 20 cigarettes per day with BMI distributed as the BMI under smoking 20 cigarettes per day”, respectively.
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