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Abstract

Purpose—Volume of distribution is an important pharmacokinetic parameter in the distribution 

and half-life of a drug. Protein binding and lipid partitioning together determine drug distribution.

Methods—Here we present a simple relationship that estimates the volume of distribution with 

the fraction of drug unbound in both plasma and microsomes. Model equations are based upon a 

two-compartment system and the experimental fractions unbound in plasma and microsomes 

represent binding to plasma proteins and cellular lipids, respectively.

Results—The protein and lipid binding components were parameterized using a dataset 

containing human in vitro and in vivo parameters for 63 drugs. The resulting equation explains 

~84% of the variance in the log of the volume of distribution with an average fold-error of 1.6, 

with 3 outliers.

Conclusions—These results suggest that Vss can be predicted for most drugs from plasma 

protein binding and microsomal partitioning.
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Introduction

Predicted pharmacokinetic properties play a large role in selecting drug candidates. It is 

unlikely that a compound will enter a drug development program without some knowledge 

of its pharmacokinetic properties. The two most important factors that determine the plasma 

concentration-time profile are the clearance and volume of distribution (1,2). The steady-

state volume of distribution (Vss) is the most useful parameter to describe drug distribution, 

and can be impacted by plasma protein binding, permeability, partitioning, and active 

transport. Drug distribution parameters are important components of both compartmental 

and physiologically based pharmacokinetic (PBPK) models. Compartmental PK models 

define volumes as mathematical empirical terms to convert amounts to concentrations, 
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whereas PBPK models use partition coefficients and tissue volumes to describe drug 

distribution.

The Oie-Tozer equation was the first physiological model for volume of distribution of drugs 

and remains a simple and useful standard (3). This model states that prediction of volume of 

distribution requires knowledge of drug plasma protein binding and tissue partitioning. It is 

understood that tissue partitioning will depend upon the physicochemical characteristics of a 

drug molecule, and numerous studies have been published with models for the prediction of 

drug tissue or membrane partitioning, with subsequent prediction of volume of distribution. 

For example, Lombardo et al. (4,5) used the rearranged form of the Oie-Tozer equation to 

calculate fut (free fraction of drug in tissue) for neutral and basic drugs using experimental 

LogD, fraction ionized at pH 7.4, and plasma protein binding (fup). Acidic drugs were not 

included in this work, and Vss was predicted for 18 neutral and basic compounds with a 

mean 2.26-fold error. Importantly, even if calculated LogD and pKa are used, experimental 

fup data are necessary for the fut prediction with Lombardo’s method.

Another approach to predict tissue partitioning and Vss is provided within the framework of 

PBPK models (6–12)}. A summary of the accuracy of these approaches to predict Vss has 

been recently published (13).

These models use a ‘bottom-up’ approach to predict drug disposition. Thus, tissue lipid 

composition, fup, blood:plasma ratio (BP), pKa and LogP are used to predict tissue 

partitioning. Lipid composition is characterized by three lipid categories: neutral lipids, 

neutral phospholipids, and acidic phospholipids. The following assumptions are made: The 

original Poulin method models partitioning into the neutral lipid fraction with the vegetable 

oil:water partition coefficient (usually calculated from LogP) and assumes that 

phospholipids can be represented as 30% neutral lipids and 70% water (14). Only unionized 

drugs are assumed to bind to neutral lipids. A more recent unified algorithm (12) and the 

methods of Rodgers et al. (8–10) assume that cationic molecules bind only to acidic 

phospholipids. Partitioning into acidic phospholipids is modeled with BP and fup. Although 

these methods are purported to be based on first principles only, the underlying assumptions 

and approaches suggest that these models are actually semi-empirical in nature.

Since microsomes are essentially unsorted phospholipid membranes and since the primary 

determinants of distribution are plasma protein binding and lipid partitioning, we explored 

the possibility of using fum to represent tissue lipid partitioning in a model for Vss. Thus, the 

goal of the overall work was to develop simple models for Vss prediction with experimental 

fup and fum input. Next, predicted fum values from Part 1 of this work were used to predict 

Vss. The results of these studies are presented here.

Methods

Development of the Vss model

Similar to the approach by Oie and Tozer that considers intracellular, extracellular, and 

plasma compartments (3), we use the simple two compartment model (plasma and tissue) 

shown in Figure 1. In this model, plasma proteins exist in both the vascular (plasma) and 
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extravascular (tissue) space. Unbound drug in the plasma is at equilibrium with drug bound 

to plasma protein and with free drug in the tissue. The free drug in tissue can bind to 

extravascular plasma proteins (P) and to lipids (L). Additionally, binding to neutral lipids 

and lysosomes is represented by the dashed arrows. The model without neutral lipids and 

lysosomal partitioning was derived as follows. As described by Rowland and Tozer (2), a 

plasma-tissue model can be described with Equation 1:

Equation 1

VP is the plasma volume, Vt is the tissue volume, Cp is the concentration in the plasma, and 

Ct is the concentration in the tissue. Substituting for bound and unbound components of 

plasma and tissue gives Equation 2.

Equation 2

In Equation 2, Cu is the concentration of unbound drug, Cpb is the concentration of drug 

bound to plasma proteins in the plasma, Ctb is the concentration of drug bound to plasma 

proteins in the tissue, and Cl is the concentration of lipid–associated drug. Equation 3 can be 

derived using the following relationships: fup = Cu/(Cu+Cbp); R1 = Pt/Pp = Ctb/Cpb; Cl = Cu 

LKL, where fup is the unbound fraction in plasma, R1 is the ratio of the concentration of 

plasma proteins in the tissue to the concentration of plasma proteins in the plasma, L is the 

amount of lipid in the tissue, and KL is the association constant for drug binding to the lipid. 

R1 is analogous to RE/I in the Oie-Tozer equation (3) with the exception that R1 is based on 

protein concentration and RE/I is based on protein amounts.

Equation 3

Volumes and plasma protein levels were used as described by Rowland and Tozer (2), with 

Vp = 0.043 L/kg, Vt = 0.557 L/kg. R1 is calculated to be 0.116 for neutral and acidic 

compounds (60% extraplasma albumin in 0.557 L/kg divided by 40% plasma albumin in 

0.043 L/kg). An R1 value of 0.052 was used for basic drugs that are expected to bind to α-

acid glycoprotein, AAG (40% extraplasma AAG in 0.557 L/kg divided by 60% plasma AAG 

in 0.043 L/kg).

In order to use the fraction unbound in microsomes as a measure of LKL, we assume that 

LKL is proportional to (1−fum)/fum:

Equation 4
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In Equation 4, c is the proportionality constant that relates microsomal membrane 

partitioning to the partitioning of drug into the tissue membranes. Combining Vt and c in the 

last term to give the constant a gives Equation 5:

Equation 5

If the relationship between microsomal partitioning in vitro and partitioning in vivo is linear 

instead of simply proportional, a constant b can be added to the last term in equation 5 to 

give equation 6.

Equation 6

Accounting for pH differences inside versus outside the cell, equation 6 can be further 

revised to include the unionized fraction of drug entering the cell, as follows (Equation 7).

Equation 7

Where X = 1 + 10pKa,b–pHiw + 10pKiw–pHa,a and Y = 1 + 10pKa,b–pHp + 10pKp–pHa,a

The pH values for intracellular water and plasma are pHiw=7.2, and pHp=7.4, respectively.

Finally, in order to account for non-specific binding of ionized bases to acidic tissue 

components, a fraction ionized term can be added to Equation 6, as shown in equation 8.

Equation 8

Equations that include binding to neutral lipids and lysosomes can be derived in an 

analogous manner (equations 9 and 10, respectively). In Equation 9, the neutral lipid binding 

is represented by LogP (13), and lysosomal partitioning in equation 10 is modeled as pH 

partitioning terms (10a for acids and 10b for bases) (15). Table S1 in supplementary 

materials further lists all the Vss models developed and tested.

Equation 9
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Equation 10a

Equation 10b

For Vss model development, a subset of 63 drugs (Table S2) was selected, based on the 

availability of fup and Vss from a single meta study (16). The careful considerations and 

strict calculation criteria for each Vss value of each compound are described in great detail in 

Obach et al.(16). Briefly, strictly IV dosing studies were selected, and the steady state 

volume of distribution (as against central compartment volume or beta-phase volume) was 

calculated with standard compartmental equations for Vss. For studies where only C-t 

profiles were presented but no compartmental analysis was reported, the authors in the meta-

study calculated the Vss with the standard noncompartmental statistical moment equation. It 

is noteworthy that variation in study populations and therefore variability in Vss across 

populations has not been considered in this analysis. The experimental fum values are from 

sources provided in Part 1. The experimental fum values were normalized to 1 mg/ml 

microsomal protein by assuming linearity and calculating an average binding constant and 

predicting the value at 1 mg/ml. Due to the sensitivity of the resulting model to very low fup 

and fum values (see discussion), we excluded drugs with fup < 0.005. Equations 6–10 were 

fit to this dataset. Log transformed equations were fit using the NonlinearModelFit routine in 

Mathematica. For models that included lysosomal partitioning, the equations for acids and 

bases were fit simultaneously. Model selection was based on corrected Akaike Information 

Criteria (AICc) (17). Outliers were identified using the BoxWhisker function in 

Mathematica with the upper and lower fences defined as 1.5 times the interquartile range. 

Finally, the best models were used to predict Vss using predicted fum values derived in Part 

1.

Results

For Vss prediction, a total of ten models was derived (Eqs.6–10, Table S1), and the five 

models with the best AICc values are shown in Tables 1 and 2. The five models had 

essentially similar AICc values (Table 1). Addition of a neutral lipid component, correction 

for fraction ionized, or addition of a lysosomal compartment did not result in a substantially 

lower AICc.

For models in Tables 1 and S1, three outliers were identified: nicardipine, quinine and 

zidovudine. After excluding outliers, the R2 values, average absolute fold error (AAFE), and 

best fit parameters for the 5 models are listed in Table 1. In general, about 85% of the 

variance could be explained by all models and parameters were consistent. The linear LKL 

model with inclusion of neutral lipids and fraction ionized had a slightly lower AICc value 

(13.9), relative to the linear LKL model (AICc = 15.4). However, this difference is 
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insufficient to distinguish between the two models. Therefore the simpler linear LKL model 

was selected, and the fit for this model is shown in Figure 2a. It can be seen that 75% of the 

60 drugs have predicted Vss values within 2-fold error and 92% drugs were within 3-fold. 

The AAFE values were 1.6 for all models.

Figure 2b shows the predicted versus observed Vss values for all 63 drugs using the linear 

LKL model in Table 1, with predicted fum values from Part 1. With predicted fum values, the 

R2 of the Vss prediction was 0.75 with no outliers. Of the 63 drugs analyzed, 71% of drugs 

have predicted Vss values within 2-fold error and 86% of drugs were within 3-fold.

In addition to the model to predict fum in Part 1, other models to predict fum are available. A 

commonly used model predicts fum with a quadratic relationship between fum and LogP/D 

(18). A dataset for which experimental fum, Vss, and LogP or LogD are available (n = 59) 

was used to compare the Hallifax model with the fum model in Part 1. Vss predictions using 

the quadratic relationship and Equation 11 from Part 1 is shown in Figure 3. Using the 

predictions from the model in Part 1, 81% of LogVss values were predicted within 3-fold 

and 71% within 2-fold error with R2 = 0.73. Using the quadratic equation, 81% of LogVss 

values were predicted within 3-fold and 58% within 2-fold error with R2 = 0.62.

Discussion

Much of the effort in preclinical drug metabolism and pharmacokinetics is focused on 

predicting human drug disposition. Significant progress has been made in the area of in 

vitro- in vivo correlations (IVIVCs). Although we have been relatively successful at 

predicting drug clearance from in vitro data (19–22), predicting the half-life of a drug 

requires an estimation of both clearance and volume. Lombardo et al have developed 

quantitative structure-property relationships to predict volume of distribution (4,5). These 

models were based on the Oie-Tozer equation (3) and the tissue binding parameters were fit 

to the experimental parameters, LogD, pKa, and the unbound fraction in the plasma. More 

recently standard QSAR techniques were used to make a model that predicts Vss from 

structural descriptors (23–25). Sui et al. has used artificial immobilized membrane 

partitioning coefficients, pKa, and plasma protein binding data to predict volume (26).

In addition to models that directly predict Vss, PBPK models estimate Vss with tissue 

volumes and drug partition coefficients (8,27). Although these models are bottom-up, some 

of the assumptions call into question the basis of these models (see Perspective in this issue). 

In Part 1 of these manuscripts, we developed models to predict fum from physicochemical 

properties. Here, we evaluate the ability to predict Vss with a minimum set of experimental 

measurements. Specifically, interactions with phospholipid membranes are parameterized 

with microsomal partitioning (fum), interactions with neutral lipids with LogP, and 

lysosomal partitioning with pKa.

We compare a total of ten Vss models (Table S1) that include either proportional or linear 

relationships between microsomal partitioning and tissue partitioning. Other model 

components tested include: partitioning into neutral lipid (represented by LogP), lysosomal 

partitioning (fraction ionized in lysosomes and cytosol), cellular partitioning of ionizable 
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drugs (fraction ionized in cells and plasma), and non-specific binding of ionizable bases to 

tissue acidic components (pKa of basic compounds). The use of LogP to represent neutral 

lipid partitioning is similar to that used by Poulin (28,29) and Rodgers (9) in PBPK 

modeling. To model plasma protein binding, acids and neutrals were assumed to bind to 

albumin and bases were assumed to bind AAG. This assumption is a limitation because 

many compounds can bind to both proteins. Lysosomal sequestration was modeled using 

standard pH partitioning methods. Cellular partitioning between cytosol and plasma is a 

common component of PBPK models (8,30). A very good correlation between unbound Vss 

and the unbound partition coefficient for erythrocytes has been observed for basic drugs 

(31). While the mechanisms underlying this correlation are unknown, one possibility is that 

bases can bind to the ample sialic acid groups on the erythrocyte membrane, and by 

extension, to tissue capillaries. Therefore, non-specific binding of ionizable bases was 

included.

It was found that the linear LKL model was the simplest model with an AICc value of 39.6 

(Table 1). Inclusion of terms for neutral lipids, fraction ionized, or lysosomes did not 

significantly improve the AICc (Table 1). The parameters for these models (Table 1) have 

consistent values for the constants a and b, and similar R2 values. The constant a is estimated 

to be ~ 20. Multiplying the lipid amount in a microsomal incubation (~ 0.7 uL in a 1 mg/mL 

microsomal protein incubation) by 20 results in 14 mL lipid/L. This can be compared to the 

range of 3 to 30 mL phospholipid/L non-adipose tissue. Given the complexities of the 

tissues, a direct correlation may not be expected. For example, as discussed in the 

manuscript, lysosomal partitioning certainly occurs but is likely too covariant with the 

partitioning of bases into phospholipids to allow inclusion in these models.

Also, the coefficient for the lysosomal sequestration term is 0.003, representing ~0.3% 

lysosomal volume. This is consistent with values reported previously (32,33). A comparison 

of the five models with essentially non-distinguishable AICcs (Table 1) indicates that, due to 

its simplicity, the linear LKL model was the most appropriate model for further analyses. 

The ability to explain most of the variance in Vss using only fup and fum suggests that 

interactions with membranes are an important determinant of Vss. The fact that the 

additional terms e.g. neutral lipid partitioning and lysosomal partitioning, do not reach 

statistical significance does not imply that these processes do not occur. Lysosomal 

partitioning is expected for ionizable bases, and ionizable bases are also more likely to 

partition into phospholipid membranes. Likewise, hydrophobic molecules partition into both 

neutral lipids and phospholipids. These correlated properties might mask the individual 

contributions of each phenomenon. We may need to incorporate these processes for other 

datasets or when modeling partition coefficients for specific tissues. As more and better data 

become available, additional components may emerge, resulting in more complex but more 

accurate models.

The linear LKL model had three outliers, zidovudine, nicardipine and quinine, and lower 

residuals were observed for all 3 when predicted fum values were used. As discussed in Part 

1, zidovudine may have an inaccurate experimental fum value. When using predicted versus 

experimental fum for nicardipine and quinine, the residuals were −0.37 versus −0.59, and 

−0.55 versus −0.7, respectively. It is interesting that quinidine, a diastereomer of quinine, 
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was well predicted. For quinidine, the experimental and predicted fum values were similar 

(LKL = 0.67 and 0.8, respectively; Table S2). However, for quinine, the predicted LKL was 

0.5 log units lower than the experimental LKL. The result is that the experimental LKL value 

for quinine was 13-fold higher than that for quinidine, whereas the predicted values are only 

3-fold higher. Although diastereomers can have different physicochemical properties, the 

better Vss prediction with the predicted fum suggests that the experimental quinine fum may 

be inaccurate.

Figure 2 shows the fits for Vss prediction with experimental (A) and predicted (B) fum 

values. Using the experimental fum values, there were three outliers. Of the remaining 60 

drugs, 92% were within 3-fold and 75% were within 2-fold error, with an R2 of 0.83. Using 

predicted fum values, there were no outliers, 86% of the predictions were within 3-fold, 71% 

were within 2-fold, and the R2 was 0.75. Since these models are mechanistic with a 

minimum number of fitted parameters, overfitting is unlikely. The results suggest that using 

only two experimental inputs, ~80% of the variance in Vss can be explained. However the 

model is very sensitive to both low fup and low fum values (Figure 4). Therefore Vss for 

compounds with very high binding to plasma proteins and/or high partitioning to 

membranes may be poorly predicted. Figure 4 also shows that all regions are sensitive to the 

value of fum except when there is very high protein binding and moderate membrane 

partitioning.

This model can be compared to a number of descriptor-based volume models (34), such as 

QSAR models (23–25), models based on the Oie-Tozer equation (4,5), and tissue 

partitioning models used in PBPK approaches (8–11,13,29,35,36). Descriptor-based models 

could predict volume values within 2-fold of the observed approximately 70% of the time 

(23,24). With the PBPK approach, Vss can be calculated as the sum of the individual tissue 

partition constants (Kp) times their tissue volumes plus the volume of the plasma. Methods 

to predict Kp values generally use experimental fup values and relationships involving LogP, 

pKa, and tissue lipid composition (8–11,13,29,35). In addition, the Rodgers method to 

calculate Kp values for bases used an experimental blood-to-plasma ratio. A recent analysis 

to evaluate the accuracy of the various methods showed that 63–87% of the predicted 

volumes were within 3-fold of the experimental values (13). In light of these analyses, any 

new predictive model for Vss should have better predictability and/or greater simplicity than 

previous models. Including outliers, the model reported here with experimental fum values 

can predict 92% of Vss values within 3-fold, and 86% with predicted fum values. Therefore, 

the models reported here are comparable to or more predictive than previously reported 

approaches. More notable is the simplicity of this model.

The availability of a model to predict fum reduces the required experimental input for Vss 

prediction to fup, provided that estimations of LogP and pKa are available. Although models 

to predict fum have been reported (18,37,38), a commonly used model proposes a quadratic 

relationship between fum and LogP or LogD (18). A comparison of Vss predictions using the 

predicted fum values from the quadratic relationship and Equation 11 in Part 1 is shown in 

Figure 3. With the fum model developed in Part 1, 81% of LogVss values were predicted 

within 3-fold and 71% within 2-fold error with R2 = 0.73. Using the quadratic equation, 

81% of LogVss values were predicted within 3-fold and 58% within 2-fold error with R2 = 
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0.62. The recent models published by Poulin et al. (12,39,40) cannot be directly compared to 

the present model because Poulin’s model requires an additional experimental input 

(blood:plasma ratio), and errors are reported as deviations from fum instead of deviations 

from Log LKL.

It should be noted that the models presented here are preliminary in that the experimental 

data used in these models came from literature sources. If plasma protein binding is not 

conducted in the presence of CO2, fup can be underestimated (41). This, together with the 

large inter-laboratory variability in fum values, suggests that these models can be improved. 

Although the present models have only been applied to predict Vss, they can also be used in 

PBPK models to predict tissue partitioning. It may be necessary to develop tissue-specific 

models for prediction of tissue partition coefficients. This will allow for prediction of 

perfusion-limited distribution kinetics in addition to Vss. These studies are currently 

underway.

In summary, we report a simple model for Vss prediction based on fup and fum. This simple 

two compartment model can explain >80% of the variance in Vss. The fum and Vss models in 

Parts 1 and 2 of this work can be used together to predict Vss with only an experimental fup 

as an in vitro input. The use of fum instead of LogP to predict lipid partitioning may result in 

quantitatively better models to predict human drug distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AAG α-acid glycoprotein

AICc corrected Akaike Information Criteria

Cl concentration of lipid–associated drug

Cp drug concentration in the plasma

Cpb concentration of drug bound to plasma proteins in the 

plasma

Ctb concentration of drug bound to plasma proteins in the 

tissue

Cu concentration of unbound drug

fum fraction unbound in microsomal incubation
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fup unbound fraction in plasma

IVIVC in vitro in vivo correlation

KL association constant for drug binding to the lipid

Kp tissue partition constant

L amount of lipid in the tissue

PBPK physiologically based pharmacokinetic models

pKa,a and pKa,b pKa values for acids and bases are respectively

PLS partial least squares

R1 ratio of the concentration of plasma proteins in the tissue to 

the concentration of plasma proteins in the plasma

Vss steady-state volume of distribution of a drug

Vt tissue volume
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Figure 1. Model for predicting Vss
A model with two compartments is used, with plasma and tissue represented by the two 

compartments. Plasma proteins exist in both the vascular (plasma; Pp) and extravascular 

(tissue; Pt) space. Unbound drug (D) in the plasma is at equilibrium with drug bound to 

plasma protein (PpD) and with free drug (D) in the tissue. The free drug in tissue can bind to 

extravascular plasma proteins (PtD) and to lipids (LD). Additionally, binding to neutral 

lipids (NLD) and lysosomes (LysD) are represented by the dashed arrows.
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Figure 2. Predictions of Vss
Predicted versus observed Vss are plotted with A) experimental fum or B) fum predicted with 

equation 1. See drug list (n=63) in Table S2. Red: acidic drugs, blue: basic drugs, green: 

neutral drugs. Open circles represent outliers. The dashed and dotted lines represent 2-fold 

and 3-fold error, respectively. R2 values including and excluding outliers are listed.
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Figure 3. Comparison of model predictions of Vss
Vss predicted versus experimental values (n = 59) using predicted fum were compared with 

either (A) equation 11 of Part 1, or (B) the quadratic equation by Hallifax et al (18). Red: 

acidic drugs, blue: basic drugs, green: neutral drugs. The dashed and dotted lines represent 

2-fold and 3-fold error, respectively.
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Figure 4. Vss model sensitivity to fum and fup values
The relationship between fum, fup, and Vss is plotted. The green surface indicates a stable 

relationship. The red surface indicates instability in the region of very low fup values, and the 

blue surface indicates instability in the region of very low fum values. The fum and fup values 

are depicted on a (A) linear scale or (B) log scale.
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