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Superior colliculus neurons encode a visual saliency
map during free viewing of natural dynamic video

Brian J. White!*, David J. Bergz'*, Janis Y. Kan'!, Robert A. Marino, Laurent Itti3** & Douglas P. Munoz**

Models of visual attention postulate the existence of a saliency map whose function is to
guide attention and gaze to the most conspicuous regions in a visual scene. Although cortical
representations of saliency have been reported, there is mounting evidence for a subcortical
saliency mechanism, which pre-dates the evolution of neocortex. Here, we conduct a strong
test of the saliency hypothesis by comparing the output of a well-established computational
saliency model with the activation of neurons in the primate superior colliculus (SC),
a midbrain structure associated with attention and gaze, while monkeys watched video
of natural scenes. We find that the activity of SC superficial visual-layer neurons (SCs),
specifically, is well-predicted by the model. This saliency representation is unlikely to be
inherited from fronto-parietal cortices, which do not project to SCs, but may be computed in
SCs and relayed to other areas via tectothalamic pathways.
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ince its introduction almost 30 years ago!, saliency-m p

theory (Fig. la) has attracted wide-spread attention?,

with an explosion of applications not only in neuroscience
and psychology, but also in machine vision, surveillance, defence,
transportation, medical dlagnosrs, design and advertising.
The concept of a priority map>* (Fig. la, blue) arose as an
extension of this idea to include top-down, goal-dependent input
in a combined representation of visual saliency and behavioural
relevancy, which is thought to determine attention and gaze.

Empirical and computational modelling studies have reported
evidence of a saliency and/or priority map in various cortical
brain areas (for examgle, V1 (refs 5-7); V4 (refs 8,9); lateral
intraparietal area, LIP!%12; frontal eye fields, FEF'3; dorsolateral
prefrontal cortex!?). While these studies used intuitive definitions
of saliency with simple stimuli under restricted viewing
conditions, a strong test of the saliency hypothesis would be
to use a well-established computational model to correlate
neuronal firing rates with model-predicted saliency during
unconstrained viewing of natural dynamic scenes. This requires
that saliency be quantitatively defined at every location and time
in any stimulus stream, which is best achieved with
a computational saliency model>!>1°,

There is evidence for a subcortical saliency mechanism in the
avian optic tectum!’"1®, which pre-dates the evolution of
neocortex. The superior colliculus?® (SC; the mammalian
homologue of the optic tectum) is a multilayered midbrain
structure with two dominant functional layers ideally suited for
the role of a saliency versus priority map, a visual-only superficial
layer (SCs), and a multisensory, cognitive, motor-related
intermediate layer (SCi) (Fig. 1b). We hypothesize that visual
saliency is coded in the primate SCs (Fig. lb) because (1) it is
heavily interconnected with early visual areas?; (2) it encodes
stimuli in a featureless manner®!~23; (3) it has a well-defined
topography?%; and (4) it has long- range centre surround organi-
zation well sulted for a saliency mechanism?’. In contrast, we
hypothesize that visual saliency is poorly represented in the
SCi because activation of these neurons is highly dependent upon
goal-directed attention and gaze behaviour?®?%, owing to its
dominant inputs from frontal/parietal areas and basal ganglia,
and its direct output to the brainstem saccade circuit®®. This has
led to the hypothesrs that SCi best represents a behavioural
priority map

Results
Saliency maps to dynamic scenes in monkey SC. To test the
hypothesis that SCs represents a visual saliency map, three rhesus
monkeys freely viewed a series of high-definition video clips
of natural dynamic scenes while we recorded extracellular activity
of single SC neurons (Fig. 2a). Saliency maps were generated by
a computational saliency model that was (i) built from the
architecture of earlier, now well-established, models!!>!6,
(ii) validated on the viewing behaviour of rhesus monkeys?!,
(iii) coarsely tuned to the primate visual and oculomotor
systems®? and (iv) computed in gaze-centred log-polar space
corresponding to the SC maps®* (Fig. 2b,c; see Methods).
Although there were no structured events to time-lock to
during free viewing, we defined naturally occurring fixations as
events, because they represent the window in which the visual
system integrates visual information. Excluding fixations less than
200ms (see Methods and Supplementary Fig. 1), we obtained
between 65 and 1,812 fixations per neuron (n=50,659 total
fixations over 4,267 clip v1ew1ngs) The neurons were separated
into two main functional types?, SCs visual neurons and
SCi visuomotor neurons (see Methods), to examine differences
in saliency coding between the two brain areas. For each fixation,
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Figure 1 | Saliency and priority coding in the superior colliculus (SC).
(a) Conceptual framework of saliency model. Visual input is decomposed
into several topographic feature maps for luminance contrast, colour
opponency, oriented edges, flicker and motion. Spatial centre-surround
competition for representation in each feature map highlights locations
which stand out from their neighbours. All features are integrated into

a single saliency map which encodes salience in a feature- and behaviour-
agnostic manner and which, combined with top-down signals, gives rise to
a priority signal that controls orienting behaviour. Abbreviations: Lum:
luminance; R-G: red-green colour opponency; B-Y: blue-yellow colour
opponency. (b) Simplified schematic of the dominant inputs and outputs of
the primate SC. SCs: superior colliculus superficial layers; SCi: superior
colliculus intermediate layers.

we computed the average model-predicted saliency within
each neuron’s receptive field (RF) boundary during a saccade-
free period from 0 to 200ms post-fixation. Figure 2d shows
a Spearman correlation between model-predicted saliency and
firing rate (spks per s) for an example SCs neuron (each dot
represents a single fixation). Seventy-nine percent (27/34) of
SCs neurons (Fig. 2e) and 62% (16/26) of SCi neurons (Fig. 2f)
showed a significant positive correlation between continuous
firing rate and model-predicted saliency. In addition,
both distributions of r-values (Fig. 2ef) were shifted
significantly to the right of zero indicating overall positive
correlations (P=4.1e—06 for SCs, P=2.4e—05 for SCi,
Wilcoxon sign-rank test).

Fixations were then sorted and binned into tertiles of saliency
level in the RF (low, medium, high). For each neuron, we plotted
the averaged firing rate at each saliency level as a function of time
from fixation. Figure 2 shows four example neurons, two from
SCs (Fig. 2gh) and two from SCi (Fig. 2j,k). The example
SCs neurons showed a clear systematic increase in post-fixation
firing rate with each increment in model-predicted saliency.
This pattern of results was significant in the population average of
SCs neurons (Fig. 2i; F(2, 66) =35.69, P=3.12e — 11, repeated-
measures ANOVA). This trend was similar for SCi but overall
weaker, as illustrated by the example SCi neurons (Fig. 2j,k),
and the more modest, but significant, trend in the population
averages (Fig. 2I; F(2, 50)=14.98, P=8.0le— 06, repeated-
measures ANOVA). This overall pattern of results was observed
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Figure 2 | Saliency coding in the SC during free viewing of natural dynamic scenes. (a) Single frame of an HD clip (crosshair: eye position; annulus:
receptive field (RF) of the neuron). (b) Transformation into log-polar SC space based on?4. (¢) Model-predicted pattern of activation across the SC map.
The black regions in b represent the viewing area that extended beyond the monitor, and was blackened using non-reflective cloth (see Methods). The
annulus in b and ¢ represents the approximate point image corresponding to the RF in a. (d) Spearman correlation between model-predicted saliency and
firing rate of a single SCs neuron. (ef) Distributions of r-values for the correlation between model-predicted saliency and firing rate for the sample of
34 SCs neurons (e), and 26 SCi neurons (f). (g,h) Average firing rate ( £ 1 standard error of the mean; s.e.m.) of two example SCs neurons as a function of
time from fixation onset, when the saliency values in the RF were divided into tertiles (low, medium, high). Only fixations with duration >200 ms were
included. (i) Average normalized firing rate of the 34 SCs neurons during the saccade-free epoch (0-200 ms post fixation) illustrated by the grey shaded
region in g. (j,k) Average firing rate (£1 s.e.m.) of two example SCi neurons as a function of time from fixation onset, for the three saliency levels.

(I) Average normalized firing rate of the 26 SCi neurons during the saccade-free epoch (0-200 ms post-fixation). Error bars in i and I indicate =1 s.e.m.

*P<0.05, paired t-test, one-tailed.

in all three animals (MI1: F(2, 52)=12.09, P=4.86e —05;
M2: F(2, 22)=34.88, P=1.50e—07; M3: F(2, 40)=19.97,
P=9.69¢ —07).

Next, we asked to what extent this saliency representation
was modulated by the behavioural goal of the animal
Theoretically, a saliency map should represent visual conspicuity
irrespective of saccade goal'>!6, in contrast to a prioritZ
map, whose output determines the locus of attention and gaze®.
To address this question, we selected a subset of the total fixations
based on the next saccade direction (Saccade-goal in
versus Saccade-goal opposite the RF; Fig. 3, top illustration).
Figure 3 shows the average normalized firing rate, aligned
on fixation onset, as a function of saliency and saccade-goal,
for SCs (Fig. 3a,b) and SCi (Fig. 3d,e) neurons, respectively.
Figure 3cf shows normalized firing rate averaged across
the saccade-free epoch illustrated by the shading from
0 to 200ms in Fig. 3ab,de. We ran a three-way mixed
ANOVA with saliency (high-low) and saccade-goal
(in-opposite) as repeated-measures factors, and neuron-type
(SCs-SCi) as an independent-measures factor. The ANOVA
revealed a significant three-way interaction (F(1, 58)=4.47,

P=0.039). To simplify the result, we ran a subsequent two-way
ANOVA (saliency x saccade-goal) for SCs and SCi neurons,
separately. For SCs neurons (Fig. 3c), the interaction was
not significant (F(1, 33)<1, P=0.37), but there was a highly
significant main effect of saliency (F(1, 33)=62.34,
P=1.0e—07), and a significant main effect of saccade-goal
(F(1, 33) =12.58, P=10.0011). Thus, the activation of our sample
of SCs neurons was well-predicted by the model, and this
effect was highly significant irrespective of the goal of the next
saccade. In contrast, for SCi neurons (Fig. 3f), the interaction
between saliency and saccade-goal was statistically significant
(F(1, 25)=6.78, P=0.015). Subsequent Bonferroni-corrected
comparisons revealed that the saliency effect for SCi neurons
was present only in the saccade-goal in condition
(in: #(25) =4.50, P=1.36e-04; opposite: #(25)=1.44, P=0.16;
paired t-tests, 1-tailed), and most importantly it was markedly
weaker than in SCs (#(58) = 4.37, P=2.5432e — 05; independent
t-test, 1-tailed). In addition, the saliency representation emerged
later in SCi than SCs (note the tick marks above the abscissa
in Fig. 3ab,d indicating the period at which the response
curves diverged).
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Figure 3 | Behavioural dependence of SC saliency coding (fixation-aligned). A subset of the total fixations were extracted based on saccade-goal
(that is, the direction of the next-saccade relative to the RF; top illustration). (a,b) Average normalized firing rate of SCs neurons associated with high
(dark red) versus low (light red) saliency (upper versus lower tertiles), when next-saccades were directed in a versus b opposite the RF. (d,e) Average
normalized firing rate of SCi neurons associated with high (dark blue) versus low (light blue) saliency, when next saccades were directed in d versus

e opposite the RF. Shading along the response curves indicates =1 s.e.m. Tick marks above the abscissa indicate significant differences between the
response curves within the pre-saccadic epoch (5 ms bins, Wilcoxon paired-samples test, Bonferroni-Holm correction). The dotted vertical line in a,b and
d indicates the time the response curves first differed. (c,f) Average normalized firing rate during the pre-saccadic epoch (0-200 ms) illustrated by the gray
shaded regions in a,b,d and e. Error bars in ¢ and f indicate £1 s.e.m. *P<0.05, paired t-test, 1-tailed; NS = not statistically significant.

We ran the same analyses on the data aligned on saccade onset
(Fig. 4). Here, averaging was done over a saccade-free epoch from
— 150 to — 50 ms relative to saccade onset (illustrated by the grey
shaded region in Fig. 4ab,d,e. For SCs neurons (Fig. 4c), the
interaction was again not significant (F(1, 33) =1.1, P=0.298),
and like the fixation-aligned data, there was a highly significant
main effect of saliency (F(1, 33) =64.26, P=1.0e —07), and
a significant main effect of saccade-goal (F(1, 33)=17.49,
P=0.0002). Importantly, although there was a main effect
of saccade goal in both the fixation- (Fig. 3) and saccade-
aligned (Fig. 4) data, the magnitude of the saliency representation
(that is, the ratio of the response to low versus high saliency)
in SCs remained constant irrespective of saccade-goal. For
SCi neurons in the saccade-aligned data (Fig. 4f), the interaction
between saliency and saccade-goal was not significant
(F(1, 25) =1.61, P=0.21), but there was a significant main effect
of saliency (F(1, 25) =10.41, P=0.0034), and a significant main
effect of saccade-goal (F(1, 25)=9.11, P=0.0057). While the
interaction was not significant, the main effect of saliency for
SCi neurons was clearly not driven by the saccade-goal opposite
condition (Fig. 4ef), which was not significant (#(25)=0.60,
P=0.55), whereas the saccade-goal in condition was significant
with Bonferroni correction (#25) =3.21, P=0.0037). Taking the
fixation- and saccade-aligned results together, it is clear that
SCi neurons, in contrast to SCs neurons, showed an overall
weaker saliency representation, and a clear absence of saliency
coding outside the saccade-goal (Figs 3e and 4e). Thus, the

4

pattern of results for SCi neurons is not supportive of a visual
saliency map. Qualitatively similar results were observed using
receiver operating characteristic analysis (Supplementary Fig. 2).

These data also provide validation for the model as evidenced
by the link with saccade behaviour (Fig. 5). Specifically, there
was a greater frequency of saccades directed in the RF when
saliency in the RF was high (n=2,387) versus low (n=2,080)
(Fig. 5a, P=1.31e — 06, Wilcoxon independent-samples test).
Likewise, the reaction time of saccades directed in the RF was
faster (that is, shorter fixation duration) when saliency in the
RF was high (mean=299ms) versus low (mean=314ms)
(Fig. 5b, P=4.17e — 06, Wilcoxon independent-samples test).
Greater ~model-predicted saliency also led to earlier
neuronal selection time for SCi visuomotor neurons only
(Supplementary Fig. 3).

Lastly, we asked to what extent the saliency representation in
the SC is feature-agnostic (that is, independent of the features that
gave rise to saliency), a hallmark of saliency map theory!!>16,
A detailed analysis of the individual feature maps can be seen in
Fig. 6. Each column represents a given neuron, and each row
represents a given feature. The intensity of the colour is an index
of the neuron’s response to that feature. Specifically, it represents
the difference in activation evoked by high versus low model-
predicted feature-saliency (note the colour scale on the left).
Although there was some variation in individual neuron’s feature
preference, on average SC neurons were activated by all features
when the saccade goal was in (Fig. 6a; SCs: £(33) >4, P<0.001;
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Figure 5 | Model saliency predicts saccade behaviour. (a) Number of
saccades directed IN the RF as a function of model-predicted saliency.
(b) Mean saccade reaction time (RT; that is, fixation duration) for saccades
directed IN the RF as a function of model-predicted saliency. *P<0.05,
Wilcoxon independent-samples test.

SCi t(25)>3, P<0.05; Bonferroni-corrected paired t-tests);
that is, they represented integrated visual salience as opposed
to being strongly tuned to any one feature. When saccade-goal
was opposite (Fig. 6b), SCs neurons were again significantly
activated by all features (#(33) >3, P<0.01), whereas SCi neurons

were not (#(25)<1.8, P>0.5, for all but one feature), again
supporting the behavioural dependence of SCi neurons reported
earlier. This indicates that the pattern of activation for
SCs neurons specifically is consistent with a feature-agnostic,
combined-cues saliency map. This is in agreement with previous
studies indicating that SC neurons are sensitive to features such as
colour and motion, but they are not particularly selective for any
specific feature?! =23, This is also in agreement with a previous
study showing that the pattern of free viewing gaze behaviour
of monkeys with V1 lesion (but spared retina-to-SC
projection) remains significantly guided by most features of the
saliency model®2.

Discussion

Here, we showed that SCs neurons, whose dominant inputs
arise from the retina and visual cortex?® (Fig. 1b), exhibited
discharge patterns that were highly consistent with a visual
saliency map, when they were recorded during free viewing of
natural dynamic scenes. Specifically, SCs neurons showed
a reliable correlation between firing rate and the output of
a  well-established ~ computational ~ saliency — model>!>16,
irrespective of the top-down goal of the animal. That is not to
say that the response of SCs neurons was not modulated by
saccade-goal. Specifically, the magnitude of the saliency
representation (that is, the ratio of the response to low versus
high saliency) in SCs remained constant independent of saccade-
goal (Figs 3¢ and 4c). Importantly, the activation of SCs neurons
was not consistent with a priority map whose peak determines
attention and gaze, because peak activation on the SCs map was
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Figure 6 | Feature dependence of SC saliency coding. Feature-specific
activation profiles of SCs (red; n=34) and SCi (blue; n=26) neurons when
the saccade-goal was in (a) versus opposite (b) the RF. Each column
represents a given neuron, and the intensity of the colour represents the
difference in activation evoked by high versus low model-predicted feature
contrast (colour scale on the left). The table of numbers on the right
indicates the mean across neurons for a given feature, with the bolded
numbers/asterisk indicating the significant features. *P<0.05,
Bonferroni-corrected t-tests, 1-tailed. Abbreviations: Lum: luminance; R-G:
red-green colour opponency; B-Y: blue-yellow colour opponency.

ambiguous as to the saccade-goal. For example, SCs neurons
showed the same or lower peak activation in the saccade-goal
in/low-saliency condition (Figs 3a and 4a, light red) as in the
saccade-goal opposite/high-saliency condition (Figs 3b and 4b,
dark red; see also Figs 3c and 4c comparing the light red symbol
in the saccade-goal in condition with dark red symbol in the
saccade-goal opposite condition). This indicates that the output
of the SCs map alone cannot provide sufficient information to
determine gaze, while its output did provide a good index of
model-predicted saliency.

SCi neurons, which represent a later sensorimotor processing
stage, and receive inputs from fronto-parietal areas®® (Fig. 1b),
showed a clear absence of a saliency representation outside the
saccade goal (Figs 3e,f and 4e,f). Unlike SCs neurons, SCi neurons
did not encode visual saliency in the way described by several
well-known computational models!!>!6. This observation echoes
a recent study that examined saliency coding in the FEF during
search in natural stationary images*>. In that study, the authors
concluded that FEF does not represent bottom-up saliency, but is
more dominated by goal-directed selection and saccade planning
processes. SCi has dominant inputs from FEF?, and plays an
important role in visual attention and target selection?~>°. Thus,
SCi is more closely associated with the role of a priority map?,
which plays an important role in determining which salient
signals are selected for the moment-by-moment locus of gaze.

Computational modelling of visual saliency has had a profound
impact on how we conceptualize the human visual attention
system, and the development of artificial attention systems'. This
study provides the first direct link between the discharge patterns
of neurons in the midbrain SC elicited by dynamic natural scenes,
and the output of a computational saliency model, built from the
architecture of now well established models!!>!6, and validated
on the viewing behaviour of humans and rhesus monkeys>"32,
The saliency code observed in SCs is unlikely to be inherited
directly from fronto-parietal cortices!®"14, because those areas
do not project to SCs. However, saliency may be computed in
SCs and then relayed to other brain areas via tectothalamic
pathways>4~%6, Future studies may benefit from the use of such a
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computational tool to make sense of visual activation patterns
evoked by complex natural stimuli.

Methods

Subjects. Data were collected from three male Rhesus monkeys (Macaca mulatta)
weighing between 10-12kg. The surgical procedures and extracellular recording
techniques have been detailed previously®’, and were approved by the Queen’s
University Animal Care Committee in accordance with the guidelines of the
Canadian Council on Animal Care.

Stimuli and data acquisition. All stimuli were presented on a high-definition
(HD) LCD video monitor (Sony Bravia 55", Model KDL-46XBR6) at a screen
resolution of 1,920 x 1,080 pixels (60Hz non-interlaced, 24 bit colour depth,
8 bits per channel). Viewing distance was 70 cm resulting in a viewing angle of
82° horizontally and 52° vertically. The room was completely dark except for the
illumination emitted by the monitor. The viewing area that extended beyond the
monitor was blackened using black non-reflective cloth.

The tasks were controlled by a Dell 8100 computer running a UNIX-based
real-time data control system (REX 7.6 (ref. 38)), which communicated with
a second computer running in-house graphics software (written in C/C+ +) for
presentation of stimuli. The HD video was displayed using a third Linux-based
computer running custom software (downloadable at http://iLab.usc.edu/toolkit)
under real-time kernel scheduling to guarantee accurate frame-rate>®. Eye position
was monitored using the scleral search coil technique?® in two animals, and
a video-based eye tracker (Eyelink-1000, SR Research) in a third animal. The
data were digitized and recorded in a fourth computer running a multi-channel
data-acquisition system (Plexon Inc., Dallas, Texas, USA). Spike waveforms
were sampled at 40 Khz. Eye position, event data, and spike times were digitized
at 1 KHz.

The HD videos were converted into 40 Mbits per s MPEG-4
format (deinterlacing when required), and displayed at full resolution
(1,920 x 1,080 pixels). The videos were obtained from commercial and in-house
sources. Commercial sources included the BBC (British Broadcasting Corporation,
London, UK) Planet Earth collection, BBC Wild Pacific, BBC Wild India, and
several in-house collections filmed at locations in Los Angeles, CA, and Kingston,
ON, with a HD camcorder (Canon Vixia HF S20). A total of 516 clips
(102,161 distinct video frames), with durations ranging from 4 to 35s, were
extracted by parsing each video at jump points (points where the video abruptly
changed scenes). Stimulus frame timing was confirmed using a photodiode placed
at the left lower corner of the monitor and hidden by non-reflective tape. The
photodiode measured an alternating white then black stimulus (20 x 20 pixels at
bottom left of screen) on each frame of the video. The photodiode signal was
recorded concurrently with spikes and eye position, and was used offline to recover
the precise onset and duration of each video frame. Each video was randomly
selected from the set. After all videos were viewed once by a given monkey, the set
was allowed to repeat. There were 4,267 clip viewings in total across three monkeys
over a period of approximately 5 months of data collection.

Procedure. The animals were seated in a primate chair (Crist Instr., MD, USA)
approximately 70 cm from the LCD video, head restrained. Tungsten microelec-
trodes (2.0 MQ; Alpha Omega, Israel) were lowered into the SC. During this time
the animals viewed a dynamic video, which provided rich visual stimulation that
facilitated the localization of the visually-responsive dorsal SC surface. When

a neuron was isolated, its visual RF was mapped using a rapid visual stimulation
procedure described previously*!. The animals then performed a delayed saccade
task to characterize whether neurons had visual and/or motor responses, using
previously established methods?>?>#!. This was followed by the free-viewing task.
Each HD clip was initiated by the monkey by fixating a central fixation point
for a short period (500 ms). The animals were engaged in the dynamic video,

so a reward protocol was generally not required for monkeys to initiate the clips.
However, on some occasions, typically near the end of a session, a small liquid
reward was given during the inter-clip interval to motivate the animals to continue
initiating the clips. A typical session lasted 2-3 h.

Calibration. Each monkey performed a thorough 72-point calibration
procedure. Briefly, the animals made saccades to a series of targets that spanned
most of the screen (nine eccentricities, eight radial orientations). The targets
appeared in random order, with multiple counts per location, and the animals were
required to fixate the targets for a minimum of 300 ms for a liquid reward. The
mode of the distribution of eye position points for each target was computed using
the mean-shift algorithm42 with a bandwidth of 10 pixels (0.5°). If multiple clusters
emerged, the cluster with maximum count was taken as the true eye position. If two
clusters had the same count, the bandwidth was increased and the procedure
repeated until a dominant cluster emerged or the maximum bandwidth of 15 pixels
was reached, at which point the location was rejected. Eye position space was then
corrected using an affine transformation with outlier rejection to recover the linear
component of the transformation, and a thin-plate-spline to recover the nonlinear
component®!, In the third animal using the video-based eye tracker, we
removed eye blinks offline by interpolating eye position before and after each blink.
During the free-viewing task, the same mean-shift procedure described above
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was used for drift correction during central fixation just before clip onset.
Saccades were defined as eye movements that exceeded a velocity criterion
of 50° per s and a minimum amplitude of 1°.

Neuron classification. Single units were isolated online using
a window discriminator, and confirmed offline using spike sorting software
(Plexon Inc., Dallas, Texas, USA). A total of 82 SC neurons were isolated. Nine
neurons were excluded because the isolation was lost after <20 clip viewings. Six
neurons were excluded because of an unreliable photodiode signal required to
synchronize the video with spike trains and behaviour. Six neurons were excluded
because their RFs were too close to the fovea (<2° eccentricity) for the saccade
direction analyses. Two neurons were excluded because they were not visually
responsive. The remaining 60 neurons formed the basis of the analysis
(n=27 from monkey 1; n =12 from monkey 2; n =21 from monkey 3). Spikes
were convolved with a function that resembled an excitatory post-synaptic
potential®3, with rise and decay values of 5 and 20 ms, respectively.

The SC is comprised of two dominant functional layers?>*, a visual-only
superficial layer (SCs), and a multisensory/cognitive/motor-related intermediate
layer (SCi). The neurons were functionally classified as visual-SCs or visuomotor-
SCi based on their discharge characteristics using a visual RF mapping procedure?!
to determine the presence of a visual component, and a delayed-saccade task to
determine the presence of a motor component, using previously established
methods?>2%41, Briefly, neurons were defined as havinlg a visual component if the
visual mapping procedure yielded a localized hotspot*!. We also confirmed visual
responses of most (51/60) neurons using the delayed saccade task, by determining
whether the average activity immediately following stimulus onset (40 to 120 ms
post stimulus) was significantly greater than the average activation over
a pre-stimulus baseline period (— 80 ms to stimulus onset). Neurons were defined
as having a motor component if the average firing rate around the time of the
saccade (— 25 to + 25 ms relative to saccade onset) was significantly greater than a
pre-saccadic baseline period ( — 150 to — 50 ms relative to saccade onset). For nine
neurons we were unable to obtain data from the delayed saccade task, so we
estimated their motor-related discharge during free-viewing using the same criteria
above on a subset of the saccades that were directed into the RF. In total,

26 neurons were classified as visuomotor SCi, and the remaining 34 were classified
as visual SCs. Of the 34 neurons classified as SCs, the majority of these (29, 85%)
were estimated to be sampled within 1 mm of the dorsal surface of the SC. The
remaining five were estimated to be deeper. The results were qualitatively similar
between these five neurons and the other 29 labelled as SCs. Also, the statistical
results were the same with or without these five neurons, so we combined them in
the final analysis.

Fixation durations and epochs. Ninety-five percent of fixation durations fell
between 95 and 545 ms (Supplementary Fig. 1). A minimum fixation duration
cutoff of 200 ms was chosen to allow for a sufficient saccade-free, visual integration
period while retaining a sufficient amount of data (50,659 total fixations).
Averaging was computed over the pre-saccadic period (0-200 ms).

Data normalization. Neuronal discharge rates were normalized for each neuron
using a 0-1 rescaling of the spike density function via the following equation,

, x — min(x)

" max(x) — min(x)

where x" refers to the normalized spike density function for a given condition,
and x refers to the original spike density function for that condition. Min(x) and
max(x) refer to the minimum and maximum values within the post-fixation period
(0-500 ms).

Statistics. The main statistical analysis was a repeated-measures ANOVA, whose
assumptions were met for use in this study: (1) The independent variables
(saliency-level and saccade-goal) were repeated/matched (that is, saliency-level
and saccade-goal were extracted from within the same experimental sessions).
(2) The dependent variable (neuronal discharge rate) was continuous. (3) The data
across all conditions met the normality assumption based on Kolmogorov—
Smirnov test (P<0.05). (4) The error variance between conditions was equal
(that is, Mauchly’s sphericity test of equal variances was not violated). Observed
statistical power was greater than 0.7 for the main interaction between saliency-
level and saccade-goal, and greater than 0.93 for all other significant main effects.
T-tests were one-tailed unless otherwise stated, and based on a priori directional
hypotheses. Alpha levels for multiple t-tests were Bonferroni-corrected, and
running statistical tests were corrected using Bonferroni-Holm method for time-
series data.

Model overview. The general architecture of the saliency model has been
described in detail>'>!6, and was created and run under Linux using the iLab
C+ + Neuromorphic Vision Toolkit*>. Briefly, the model is feed-forward in
nature and consists of six high-level feature maps that are coarsely tuned to
the primate visual system>?: luminance centre-surround contrast, red-green
opponency, blue-yellow opponency, orientation/edges, flicker centre-surround
(abrupt onsets and offsets), and motion centre-surround (responding to
local motion that differed from surrounding full-field motion) (Fig. 1a). The
high-level feature maps were linearly combined with equal weighting to create
a feature-agnostic saliency map. The feature and saliency maps were computed
in a gaze-contingent manner (each video frame was shifted to fovea-centred
coordinates). The model was computed on a log-polar transformation of the input
image (Fig. 2) to approximate the non-homogeneous mapping of visual- to

SC space?*. Saliency within a neuron’s RF was computed as the normalized sum of
the saliency output within the region specified by the RF.

Retinal input. Each HD video frame was first shifted to retinal coordinates
(that is, the centre of gaze was always the centre of the input to the model),
replacing any empty values with black to match the viewing environment beyond
the screen. Each frame was embedded in a larger black background image to
simulate 100° x 100° of the viewing environment (the size of our SC saliency map).
The eye movement data were down-sampled from 1,000 Hz to 200 Hz, and the
video was processed at a matched 200 Hz to accurately capture the visual dynamics
associated with rapid eye movements. Thus, each eye position sample gave rise
to a new retinal image, even when the video display was unchanged. The retinal
image was rescaled by decimating and smoothing with a 3-tap binomial filter, and
converted to the Derrington-Krauskopf-Lennie (DKL) colour space*® to
approximate the luminance, red-green opponent, and blue-yellow opponent
systems in early vision.

Space-variant transformation. The primate retinostriate and retinotectal
projections create a nonhomogeneous mapping of visual space such that most
of the neural surface is dedicated to foveal processing. In the SC, this has been
described as a log-polar transformation??, logarithmic with respect to eccentricity
from the fovea, and polar with respect to angular deviation from the horizontal
meridian. One disadvantage of this mapping is that it is discontinuous
at the vertical meridian, which makes standard image processing techniques
unusable. Instead of a conformational mapping to the SC surface, we performed
a simpler log-polar resampling of the input image which captures key features of
the retinotectal mapping®’. The result of the transform was a square image on
which standard image processing can be applied.

Model SC units were simulated on a two dimensional (200 x 200) grid
representing approximately 100° x 100° of visual angle. To compute the point in
visual space (or image space) corresponding to the RF centre of each SC unit,
we used the inverse of the basic variable resolution transform*’. The scaling
parameters of the transform were set by simulating a square grid of SC surface
(4.5 mm rostral-caudal and 3.5 mm medial-temporal for each hemifield) and using
the inverse conformational mapping®* to find the corresponding points in visual
space. The SC model map points were also projected to visual coordinates using the
inverse basic variable resolution transform, and a least squares fit, minimized with
a simplex-algorithm using 1,000 random restarts*®, resulted in the best scaling
parameters.

Raw feature computation. The model’s six high-level feature maps in
SC space were created by linearly combining the responses of different filters
(low-level feature maps) of the same type (for example, 45° and 90° edge
detectors). In total, there were 60 filters and associated low-level feature maps: one
each for luminance, red-green, and blue-yellow opponent contrasts, 8 for static
oriented edges computed at 4 orientations and 2 spatial scales (retinal and half
retinal), one for flicker, and 48 for opponent motion computed by pair-wise
subtraction from 24 raw motion maps computed at 3 speeds, 4 orientations
and 2 spatial scales. All features were computed in a centre-surround architecture
and thus signaled salient local differences between centre and surround regions
(see below). To compute the orientation, flicker and motion maps, which were all
derived from luminance in the DKL space, the luminance images were buffered for
9 frames and processed by a three-dimensional 2nd derivative of Gaussian
separable steerable filter®”. The steerable set allows for the creation of the required
57 spatio-temporal filters as linear combinations of base filters from a small basis
set. The filters were computed in quadrature pair, and the magnitude was
taken as the filter response. Hence, the filters responded to both step edges and bars
(static, flickering or moving), as in models of V1 complex cells*®. Raw feature maps
described here were further endowed with non-linear horizontal connections that
further emphasized salient regions in each map (described below).

Modelling SC receptive-fields. SC Neurons are reported to have a centre-
surround receptive field structure such that a disk stimulus larger than a preferred
size begins to inhibit responses?’. Preferred stimulus size ranges from 0.75° near
the fovea to approximately 5° at 40° eccentricity”'; however, SC neurons have large
response fields of 10°-40° diameter that are largely invariant to the exact position
of the stimulus within the RE>2. The size specificity with large invariant activation
fields suggests a simple model where the SC pools responses of Difference-of-
Gaussian (DoG) detectors at nearby spatial locations.

Receptive fields were modelled by first computing a Gaussian scale space®.

A DoG detector was built by subtracting a sample at a lower level from one at the
same spatial location at a higher level in the scale space. The spatial locations of the
samples are given by the space-variant transform. The level (receptive field size)
was computed from previously established estimations®!. To create a DoG detector
sensitive to an optimal stimulus size S in degrees, and DoG ratio K, the excitatory
Gaussian size in degrees was,

SV2vVK - 1Y/K+1
o= v X T
¢ 4K {/logK
and the inhibitory size was,
g; =Ko,

DoG receptive fields were constructed linearly with eccentricity with an optimal
stimulus size of 0.75° at the fovea, and 5° at 40° eccentricity. The space-variant
remapping and centre-surround receptive fields were computed for each feature
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map. For the luminance and chromatic features, we used K= 6.7 based on
experiments in retinal ganglion cells®®. For these features, the absolute value of the
DoG response was taken giving rise to double opponency responses (for example,
responds to red surrounded by green and green surrounded by red). For the
spatiotemporal feature maps, K = 3.2 was used based on studies in V1 (ref. 55) and
the DoG responses were half-wave rectified. To model long-range competition in
the SC? a single iteration of the salience competition operator of Itti and Koch®
was applied to each feature map. Briefly, the map was first filtered with a large
DoG (3° excitatory, 9° inhibitory). The result was added back to the feature

map and a constant subtracted to represent global inhibition, followed by a final
half-wave rectification. This operator has been argued to capture some of the
non-classical surround effects in early visual processing®®. Each point in each
200 x 200 map was then replaced by the sum in a 3 pixel circular neighbourhood to
simulate the large (but size selective) activation fields observed in the SC. This
resulted in model activation fields which were approximately 2° at 10° eccentricity
and 10° at 40° eccentricity, similar to those in the SCs°!. Due to pooling and
symmetrically filtering in the SC model space, the activation fields also have an
asymmetr;r such that they slightly narrow toward the fovea, as described
elsewhere®”.

For the saccade-in/opposite analysis, which used only a subset of the total
saccades/fixations, a less conservative estimate of the RF boundary was used for
inclusion of saccades/fixations. We estimated the RF boundary of each neuron by
converting the boundary of a circular point image in SC space to visual space using
the reverse mapping equations from Ottes et al.?*

2u u v
R= A.\/exp <B—> —2 exp (B—> .cos (B—) +1

exp (?) sin (37)
exp (17) cos (17) —1

where R and @ represent the eccentricity and polar angle of points along the
RF boundary. u and v represent the horizontal and vertical position of points along
the point image boundary. A, B, and B,, whose values were 3, 1.4 and 1.8
respectively, are constants that determine the precise shape of the mapping. We
chose a point image diameter of 1.5 mm (based on (ref. 37)), which was centred on
the SC map location that corresponded to each neuron’s optimal visual RF centre
(derived from the course visual mapping procedure described earlier).

Data fitting and saliency response. For every neuron and video in the
analysis, 60 gaze-centred, space-variant feature maps were computed at 200 frames
per s, and values were collected over the duration of each video at the location
corresponding to the cell’s receptive field centre (obtained from the receptive field
mapping paradigm). Spike trains during each clip were binned (5 ms intervals) and
convolved with a 50 ms Gaussian filter. The data fitting took place for each cell
separately using a leave-one-out training such that each clip was excluded from the
set once for testing, and the model was trained on all the rest. The collected feature
values in the test clip were normalized by the maximum in the training set
(across all clips for each feature separately) and linearly combined into the six high-
level features. Before combining the high-level features into the saliency response,
each feature was optimally aligned to the spike density function. The optimal delay
for each feature was computed by calculating the mutual information at different
time delays (up to 150 ms) between test-set features and test-set neural responses,
considering all clips. After optimal alignment, the square root of each high-level
feature was taken and the responses were linearly combined to create the saliency
response.

@ = atan

Code availability. The Computer Code for the saliency model is available
from coauthor Laurent Itti (University of Southern California, CA, USA) upon
reasonable request.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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