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ROCK signaling promotes collagen remodeling
to facilitate invasive pancreatic ductal
adenocarcinoma tumor cell growth
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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a major cause of
cancer death; identifying PDAC enablers may reveal potential
therapeutic targets. Expression of the actomyosin regulatory
ROCK1 and ROCK2 kinases increased with tumor progression in
human and mouse pancreatic tumors, while elevated ROCK1/
ROCK2 expression in human patients, or conditional ROCK2 acti-
vation in a KrasG12D/p53R172H mouse PDAC model, was associated
with reduced survival. Conditional ROCK1 or ROCK2 activation
promoted invasive growth of mouse PDAC cells into three-
dimensional collagen matrices by increasing matrix remodeling
activities. RNA sequencing revealed a coordinated program of
ROCK-induced genes that facilitate extracellular matrix remodel-
ing, with greatest fold-changes for matrix metalloproteinases
(MMPs) Mmp10 and Mmp13. MMP inhibition not only decreased
collagen degradation and invasion, but also reduced proliferation
in three-dimensional contexts. Treatment of KrasG12D/p53R172H

PDAC mice with a ROCK inhibitor prolonged survival, which was
associated with increased tumor-associated collagen. These find-
ings reveal an ancillary role for increased ROCK signaling in
pancreatic cancer progression to promote extracellular matrix
remodeling that facilitates proliferation and invasive tumor
growth.
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Introduction

Patient survival from pancreatic cancer is the lowest of all common

cancers, with 5-year survival rates below 5% in England for both

men and women. Despite significant effort focused on developing

pancreatic cancer targeted therapies, survival rates have not

improved, emphasizing the need for additional therapeutic targets

and treatment strategies.

The predominant cancer form is pancreatic ductal adenocarci-

noma (PDAC), characterized by dense desmoplasia with extensive

myofibroblast proliferation and extracellular matrix (ECM) deposi-

tion, largely composed of bundled collagen fibers (Chu et al, 2007).

The contribution of tumor-associated desmoplasia to PDAC growth

and progression is unclear and controversial (Rath & Olson, 2016).

The dense stroma serves as a barrier that impairs drug uptake (Feig

et al, 2012); acute depletion of tumor-associated stroma using a

Hedgehog pathway inhibitor (Olive et al, 2009); or enzymatic degra-

dation of hyaluronic acid (Provenzano et al, 2012; Jacobetz et al,

2013) in mouse PDAC models increased drug uptake and promoted

survival. Long-term inhibition or genetic deletion of Hedgehog

signaling reduced stromal content and promoted tumor aggression

in preclinical mouse models, while Hedgehog pathway activation

increased desmoplasia and reduced epithelial cell proliferation (Lee

et al, 2014; Rhim et al, 2014). Furthermore, depletion of a-smooth

muscle actin (aSMA) expressing myofibroblasts resulted in invasive,

undifferentiated tumors with reduced PDAC mouse survival, an

observation paralleled by the association between fewer myofibro-

blasts and worse human patient survival (Ozdemir et al, 2014).

Similarly, high PDAC stromal density has been linked with better

patient survival (Bever et al, 2015). These observations are consis-

tent with PDAC desmoplasia restraining tumor growth. However, it

was reported recently that, although total and fibrillary collagen did

not differ significantly in tumors at varying differentiation stages,
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collagen fiber diameters increased adjacent to poorly differentiated

PDAC tumors, which was associated with short patient survival

(Laklai et al, 2016). In addition, elevated levels of the collagen

cross-linking enzyme lysyl oxidase (LOX) or fibrillar collagen were

associated with reduced PDAC patient survival (Miller et al, 2015).

These seemingly contradictory results illustrate the complex role of

PDAC desmoplasia with the possibility of both negative and positive

effects on tumor growth and progression, suggesting that the extent

of desmosplasia alone is not directly responsible for tumor aggres-

siveness. By extension, properties that enabled PDAC cells to over-

come potential inhibitory constraints on tumor growth imposed by

the desmoplastic microenvironment would likely be positively

selected, particularly in advanced tumors with well-established stro-

mal components.

Genomic analysis of pancreatic cancers identified core drivers

including KRAS, TP53, SMAD4, and CDKN2A mutations as well as

copy number variations including amplifications of MET and

NOTCH1 (Waddell et al, 2015; Bailey et al, 2016). The ROCK1 locus

on chromosome 18 was found to be amplified in 15% of pancreatic

patient tumors (Biankin et al, 2012), which was accompanied by

concordant copy number/gene expression changes (Bailey et al,

2016). The Rho GTPase-regulated ROCK1 and ROCK2 kinases

control actomyosin contractility through phosphorylation of

substrates including LIM kinases 1&2 (LIMK), myosin-binding

subunit of the MLC phosphatase (MYPT1), and regulatory myosin

light chain 2 (MLC2) (Rath & Olson, 2012; Julian & Olson, 2014).

What role ROCK-mediated actomyosin contractility might play in

PDAC has not been established, nor has it been determined whether

ROCK2 expression is altered in pancreatic cancer.

In this study, ROCK2 expression was found to increase with

pancreatic cancer progression in human and KrasG12D-driven mouse

tumors. Elevated ROCK1 and/or ROCK2 expression was associated

with shorter survival in human pancreatic cancer patients, while

conditional ROCK activation in KrasG12D-driven PDAC mice was suf-

ficient to accelerate mortality. Conditional ROCK1 or ROCK2 activa-

tion in KrasG12D/p53+/� mouse PDAC tumor cells promoted

collective invasion and proliferation in three-dimensional collagen

matrices. Transcriptome analysis identified ROCK-induced differen-

tially expressed gene networks associated with cell adhesion and

cell–matrix interactions, with most highly induced transcripts being

Mmp10 and Mmp13. ROCK-induced collagen degradation, collective

invasion, and proliferation in three-dimensional collagen were

blocked by MMP inhibition, indicating that ROCK signaling enables

PDAC cells to overcome extracellular matrix imposed restraints on

invasion and growth. Treatment of mice with KrasG12D-driven PDAC

with the ROCK small molecule inhibitor Fasudil prolonged survival.

These findings reveal an ancillary role for increased ROCK signaling

in advanced pancreatic cancer to promote extracellular matrix

remodeling that enables invasive tumor growth by overcoming

microenvironmentally imposed proliferation restraints. An implica-

tion of these results is that ROCK inhibitor administration to pancre-

atic cancer patients might reverse the ability of pancreatic cancer

cells to surmount the growth-restraining properties of tumor-asso-

ciated desmoplasia.

Results

ROCK2 expression increases during pancreatic
cancer progression

To characterize ROCK2 expression in human pancreatic cancer

progression, a tissue microarray containing 78 cases of pancreatic

cancer and five normal pancreatic tissue samples was immunohisto-

chemically stained with a ROCK2 antibody (Fig 1A). The specificity

of the ROCK2 antibody had been validated in Pdx1-Cre; ROCK2fl/fl;

Rosa26-LSL-RFP mouse pancreatic tissue, in which Cre-mediated

recombination induced ROCK2 deletion and concomitant red fluo-

rescent protein (RFP) expression (Appendix Fig S1A and B). ROCK2

levels rose with increasing tumor stage and grade, with the most

progressed Stage III/IV having significantly higher levels than

Normal or Stage I (Figs 1A and EV1A). In addition, ROCK2 was also

present in tumor cells at resection margins (Fig EV1B). Analysis of

The Cancer Genome Atlas (TCGA) Research Network (Cerami et al,

2012) pancreatic adenocarcinoma provisional dataset revealed that

survival of patients with genomic amplification or significantly

elevated mRNA for ROCK1 and/or ROCK2, or truncating ROCK1

mutations similar to previously described cancer-associated activat-

ing ROCK1 truncation mutations (Lochhead et al, 2010), was signifi-

cantly shorter than in patients without ROCK1/ROCK2 alterations

Figure 1. ROCK expression is elevated in pancreatic cancer and promotes disease progression.

A ROCK2 immunohistochemistry-stained sections of normal and stages I, II, and III cases of human pancreas adenocarcinoma (left). Scale bar = 50 lm. Histoscores
of ROCK2 staining (right) in normal pancreas (n = 5) and pancreas adenocarcinoma stage I (n = 22), stage II (n = 46), and stage III/IV (n = 4). One-way ANOVA with
multiplicity adjusted exact P-value by post hoc Tukey multiple comparison test.

B Overall survival of 107 patients without alterations versus 37 patients with ROCK1 and/or ROCK2 gene amplification significantly increased mRNA or truncation
mutation from TCGA research network. Survival P-value determined by log-rank test.

C, D Log2 median-centered ROCK1 or ROCK2 RNA expression in normal (n = 39) vs. PDAC (n = 39), normal (n = 5) vs. pancreatic adenocarcinoma (PAC) (n = 12), or
normal (n = 6) vs. pancreatic carcinoma (PC) (n = 11) samples from indicated studies. Exact P-values determined by Mann–Whitney test.

E ROCK1 and ROCK2 mRNA expression in human PDAC (n = 146) from the TCGA research network. Significance (P-value) of slope deviation from 0 determined by
Deming regression.

F Representative hematoxylin and eosin (H&E)- and ROCK2 immunohistochemistry-stained sections of normal mouse pancreas, acinar-to-ductal metaplasia (ADM),
pancreatic intraepithelial neoplasia (PanIN) stages 1–3, and PDAC from mice with the indicated genotype. Scale bar = 50 lm.

G Quantification of ROCK2 staining in pancreatic cells of normal (wildtype), ADM/PanIN1 (KC), PanIN2 (KPC), PanIN3 (KPC), and PDAC (KPC) tissue (n = 5 mice per
group). One-way ANOVA with multiplicity adjusted exact P-value by post hoc Tukey multiple comparison test.

H Survival analysis of Pdx1-Cre; LSL-KRasG12D/+; LSL-Trp53R172H/+; LSL-ROCK2:ER (RKPC) mice without (n = 21) or with conditional ROCK activation with tamoxifen
citrate (n = 19). Survival P-value determined by log-rank test.

Data information: Box (upper and lower quartiles divided by median value) and whisker (5th–95th percentile) plots show outliers as individual points.
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(median survival periods: 21 months for patients without alterations

versus 17 months, P = 0.037) (Fig 1B). These observations paral-

leled the significantly elevated ROCK1 (Fig 1C) and ROCK2 (Fig 1D)

mRNA levels observed in pancreatic tumors relative to normal

tissue detected in publicly available datasets (Iacobuzio-Donahue

et al, 2003; Segara et al, 2005; Badea et al, 2008) using Oncomine

(Rhodes et al, 2004). Furthermore, TCGA Research Network data

(Cerami et al, 2012) also revealed significantly coordinated ROCK1

and ROCK2 mRNA expression in pancreatic cancers (Fig 1E), consis-

tent with an observed advantage associated with increased ROCK

signaling in pancreatic cancer (Laklai et al, 2016).

To further investigate ROCK2 expression in PDAC development

and progression, genetically modified mouse models were used that

closely recapitulate human PDAC (Gopinathan et al, 2015). Onco-

genic KrasG12D, preceded by a Lox-Stop-Lox (LSL) transcriptional

termination cassette that can be excised by Cre recombinase

expressed from the pancreas-selective Pdx1 promoter (Pdx1-Cre),

was combined with p53 deletion or mutation (Hingorani et al, 2003,

2005; Morton et al, 2010). ROCK2 immunostaining of normal

pancreata as well as pancreatic tumors from LSL-KrasG12D; Pdx1-Cre

(KC) or LSL-KrasG12D; LSL-p53R172H; Pdx1-Cre (KPC) mice revealed

weak ROCK2 expression in healthy normal tissue from wild-type

mice, with progressive elevation in developing lesions of acinar-

ductal metaplasia (ADM), pancreatic intraepithelial neoplasia

(PanIN) stages 1–3, and highest expression in PDAC tumors (Fig 1F

and G).

To determine whether increased ROCK signaling was sufficient

to influence PDAC mouse survival, LSL-KrasG12D; LSL-p53R172H;

Pdx1-Cre (KPC) mice were crossed with genetically modified mice

containing a Hprt-targeted LSL-ROCK2:ER transgene (Fig EV2A)

(Samuel et al, 2016) to establish a RKPC mouse line (Fig EV2B).

Fusion of the ROCK2 kinase domain with the estrogen receptor (ER)

hormone-binding domain generates a ROCK2:ER chimeric protein

that is inactive in the absence of ligand, but which can be condition-

ally activated by estrogen analogues such as 4-hydroxytamoxifen

(4HT) or tamoxifen (Fig EV2C) both in vitro and in vivo (Croft et al,

2006; Samuel et al, 2009, 2011; Sanz-Moreno et al, 2011; Kumar

et al, 2012). To conditionally activate ROCK2:ER in Pdx1-expressing

KrasG12D/p53R172H pancreatic tumor cells (Appendix Figs S2 and

S3), tamoxifen citrate or vehicle control was administered to RKPC

cohorts for 9 weeks, starting at 10 weeks of age when KPC mice

have typically progressed to the PanIN stage (Fig 1F) (Morton et al,

2010). Conditional ROCK activation significantly (P = 0.022)

reduced RKPC mouse survival time relative to vehicle control-

treated mice (Fig 1H), indicating that the additional ROCK activity

in the PDAC mouse model paralleled the effect of increased ROCK1/

ROCK2 expression on reduced human PDAC patient survival

(Fig 1B).

ROCK kinases drive PDAC cell invasion and proliferation

Pancreatic tumor masses are largely composed of stroma, of which

ECM proteins including collagen are major constituents (Feig et al,

2012). Tumor cells must invade through the collagen-rich microen-

vironment to invade local tissue and to metastasize. A three-dimen-

sional collagen matrix invasion assay, used previously to

characterize PDAC cell invasive behavior (Timpson et al, 2011;

Nobis et al, 2014), in which tumor cells move through a fibroblast-

remodeled collagen meshwork toward serum-containing medium,

was utilized to determine how ROCK signaling might influence inva-

sion. Invasive KPC mouse PDAC cells (Appendix Fig S4) (Timpson

et al, 2011) invaded significantly less into collagen matrix in the

presence of ROCK-selective inhibitor H1152 (Fig 2A).

To understand how additional ROCK signaling input might

promote PDAC progression and reduce survival in human patients

and mouse PDAC models (Fig 1), we adopted a conditional gain-of-

function approach. Conditionally activated ER-fusions with ROCK1

(ROCK1:ER) or ROCK2 (ROCK2:ER) kinase domains, or green fluo-

rescent protein (GFP:ER), were stably retrovirally transduced and

expressed in non-invasive PDAC tumor cells derived from Pdx1-Cre;

LSL-KrasG12D; LSL-p53fl/+ (KPflC) mice (Fig 2B). While antibodies

specific for epitopes in the carboxyl-terminal regions present in full-

length endogenous ROCK1 or ROCK2 showed consistent levels, blot-

ting with an antibody against a kinase-domain epitope shared by

endogenous ROCK1, ROCK2, ROCK1:ER, or ROCK2:ER revealed

comparable expression of the fusion proteins to endogenous ROCK

Figure 2. ROCK activation induces PDAC cell invasion.

A H&E-stained sections of cell invasion into collagen matrix after 8 days. Scale bar = 100 lm. Invasion index of KPC cells in the presence or absence of 10 lM H1152
ROCK inhibitor. Means � SEM (n = 9 for untreated, n = 8 for H1152), P-value by unpaired t-test.

B Schematic representation of ROCK domains (RBD, Rho binding domain; PH, pleckstrin homology domain; CR, cysteine-rich). Conditionally activated human ROCK1,
human ROCK2, and GFP control fusion proteins (EGFP, enhanced green fluorescent protein; hbER, estrogen receptor hormone-binding domain) were expressed in
KPflC mouse PDAC cells and blotted with anti-GFP antibody.

C KPflC cells expressing GFP:ER, ROCK1:ER or ROCK2:ER fusion proteins were treated for 24 h with EtOH vehicle or 1 lM 4HT in the presence or absence of 1 lM or
10 lM H1152. Immunoblotting shows endogenous ROCK1 and ROCK2, ER-fusions, and phosphorylation of MLC2 (T18S19). Total MLC (MRCL3/MRLC2/MYL9) and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were blotted as loading controls.

D H&E-stained sections of cell invasion into collagen matrix after 8 days. Scale bar = 100 lm. Invasion index of KPflC cells treated with 1 lM 4HT. Means � SEM
(n = 6), one-way ANOVA with multiplicity adjusted exact P-value by post hoc Dunnett’s multiple comparison test.

E Cell proliferation determined by Ki67 immunofluorescence. Scale bar = 20 lm.
F Quantification of cell number at the collagen matrix surface per 0.046 mm2 field. Means � SEM (n = 30), one-way ANOVA with multiplicity adjusted exact P-value

by post hoc Dunnett’s multiple comparison test.
G Ki67-positive cell percentages at the surface and within the collagen matrix. Means � SEM (n = 30; n = 12 for GFP:ER/Matrix), one-way ANOVA with multiplicity

adjusted exact P-value by post hoc Dunnett’s multiple comparison test.
H, I Viable cell relative to starting cell numbers were determined after 24 or 48 h treatment with vehicle (�) or 4HT on uncoated plastic surfaces (H) or collagen1-

coated surfaces (I). Means � SEM (n = 3).

Source data are available online for this figure.
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kinases (Fig 2C). ROCK:ER fusions were induced and activated by

4HT, with consequent increased phosphorylation of MLC2 (pMLC2)

that could be reversed by the ROCK-selective inhibitor H1152, in

contrast to the lack of effect of 4HT treatment on GFP:ER-expressing

cells (Fig 2C and Appendix Fig S5A). Consistent with previous

observations (Croft et al, 2005), 4HT treatment of ROCK1:ER- or

ROCK2:ER-expressing KPflC cells was sufficient to induce contrac-

tion and rounding compared to vehicle-treated controls, which were

not observed for 4HT-treated GFP:ER-expressing cells (Appendix

Fig S5B).

Non-invasive KPflC mouse PDAC cells (Appendix Fig S4; Timp-

son et al, 2011) expressing GFP:ER and treated with 4HT did not

invade the collagen matrix, while ROCK1:ER- or ROCK2:ER-expres-

sing cells were significantly more invasive (Fig 2D). Comparable

results were obtained if embedded fibroblasts were not removed

prior to addition of ROCK1:ER- or ROCK2:ER-expressing KPflC cells

to the collagen matrix surface (Fig EV3A). Further analysis revealed

thicker ROCK1:ER and ROCK2:ER cell layers at collagen matrix

surfaces (Fig 2D, inserts) with significantly more cells relative to

GFP:ER-expressing cells (Fig 2E and F), associated with significantly

increased cell proliferation as indicated by Ki67 immunoreactivity

(Fig 2E and G). All three cell lines had high Ki67-positive percent-

ages of cells that had successfully invaded collagen matrix, although

both ROCK:ER-expressing cell lines tended to have higher percent-

ages than GFP:ER controls (Fig 2G). However, when cells were

grown on two-dimensional plastic (Fig 2H) or a thin collagen1-

coated surface (Fig 2I), conditional ROCK activation did not affect

viable proliferation. Furthermore, the invasion and proliferation of

ROCK1:ER or ROCK2:ER-expressing cells were significantly reduced

by addition of H1152 ROCK inhibitor to the collagen matrix invasion

assay (Fig EV3B–E). Together, these data indicate that increased

ROCK activity drives PDAC cell invasion, which enables prolifera-

tion by overcoming restraints imposed by three-dimensional colla-

gen matrices that are not influential in two dimensions.

ROCK activation induces collagen remodeling

To determine whether ROCK-induced invasion (Fig 2) was associ-

ated with collagenolysis, collagen matrix sections were immuno-

stained with Col1 3/4C antibody to detect a collagen1 neo-epitope at

the C-terminal end of the ¾ fragment resulting from a1- and a2-
chains cleavage at G775–I776 and G775–L776, respectively, and

local triple helix denaturation. While collagen cleavage was minimal

in GFP:ER-expressing cells, invasive ROCK1:ER and ROCK2:ER cells

had considerable staining below collagen matrix surfaces and

surrounding cell clusters (Fig 3A, left). To quantitatively assess fib-

rillar collagen organization in collagen matrices, second harmonic

generation (SHG) microscopy, which takes advantage of optical

properties of supramolecularly assembled collagen fibers (Chen

et al, 2012), was performed at multiple z-planes below the collagen

matrix surface (Fig 3A, second to fourth panels). When the intensity

of fibrillary collagen detected by SHG was assessed, it was apparent

that fibrillar collagen areas diminished more slowly with increasing

depth of surface penetration in GFP:ER-expressing cells (Fig 3A,

green line) compared to the greater decline observed in ROCK1:ER-

expressing cells (Fig 3A, orange line). Gray-level correlation matrix

(GLCM) texture analysis (Mostaço-Guidolin et al, 2013; Cameron

et al, 2015; Miller et al, 2015) of SHG images confirmed that invad-

ing ROCK:ER cells had extensively remodeled fibrillar collagen

(Fig 3B and C). Transmission electron microscopy (TEM) revealed

that regions of collagen matrix surfaces not associated with invasive

cell clusters lacked protrusions (Fig 3D), while surface cells near

invasive clusters (Fig 3D, black border) or invading cell clusters

(Fig 3D, red or green borders) had extensive protrusions resembling

blebs and microvesicles. Tannic acid-glutaraldehyde fixation (Cotta-

Pereira et al, 1976) allowed visualization of collagen fibers within

the collagen matrix. Long fibers were often visible in regions away

from cells or adjacent to non-invading cells at the collagen matrix

surface (Fig 3E; left, yellow arrows), while there were decreased

apparent long fibers and shorter collagen bundles observed adjacent

to invading cell clusters, protrusions and microvesicles (Fig 3E;

right, red arrows). These results reveal that ROCK:ER-expressing

cells extensively re-modeled three-dimensional collagen matrices,

likely resulting from proximal collagenolysis, physical force from

actomyosin contraction, and pressure produced by invasive cell

cluster expansion.

ROCK regulation of gene expression and MMP release

Although ROCK actions on actin structures and cell morphology

are well-known (Rath & Olson, 2012; Julian & Olson, 2014), the

same signaling pathway regulates gene transcription (Rajakylä &

Vartiainen, 2014). Using RNA sequencing, expressions of 305

genes were found to be significantly (P < 0.05) changed greater

than twofold in 4HT-treated ROCK1:ER-expressing cells relative

to GFP:ER-expressing cells (Fig 4A, left), while 374 genes were

significantly changed in ROCK2:ER versus GFP:ER-expressing

cells (Fig 4A, right), of which 285 were common changes

(Fig 4B) (Rath et al, 2016). The greatest significantly increased

fold-changes were Mmp10 and Mmp13, prostaglandin-endoperoxi-

dase synthase 2 (Ptgs2 also known as Cox2), and Tenascin-C

(Tnc) (Fig 4A and Dataset EV1). COX2 is commonly elevated in

human PDAC (Yip-Schneider et al, 2000), and its overexpression

promoted mouse PDAC development (Hill et al, 2012). TNC is a

component of tumor-specific ECM associated with pancreatic

carcinogenesis (Esposito et al, 2006). MetacoreTM was used to

Figure 3. ROCK activation induces collagen cleavage and remodeling.

A Immunofluorescence of collagen matrix sections co-stained for cleaved collagen neo-epitope Col1 3/4C and DAPI (left panels). Second harmonic generation (SHG)
images of collagen fibers within three-dimensional collagen matrices at 15 lm and 45 lm below the cell surface (middle panels). Scale bar = 20 lm. Graphs
indicate the mean � SEM fibrillary collagen areas at 2.5 lm increments below the cell/collagen interface (n = 5). SHG fibrillar collagen (red); cells (green).

B, C Gray-level correlation matrix (GLCM) texture analysis of SHG correlation (n = 6) and contrast (n = 5). Mean � SEM at each distance.
D Transmission electron microscopy of a collagen matrix section. Scale bar = 1 lm. Positions of magnified areas indicated by corresponding colored squares.
E Transmission electron microscopy of collagen matrix sections with collagen stained by Tannic acid. Yellow arrows indicate long collagen bundles. Red arrows

indicate short collagen bundles. Scale bar = 0.5 lm.
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identify differentially expressed gene process networks (1,036

genes with false discovery rates < 5% and ≥ 1.5-fold increased

(603) or decreased (433) in ROCK1:ER + 4HT vs. GFP:ER + 4HT

and ROCK2:ER + 4HT vs. GFP:ER + 4HT), which ranked Cell

adhesion: Cell-matrix interaction first (Appendix Table S1).

Figure 4C shows the relative expression of 33 differentially

expressed genes from this network in 4HT-treated GFP:ER-,

ROCK1:ER-, or ROCK2:ER-expressing cells from three indepen-

dent experiments. The average number of MMP sequencing

reads from 4HT-treated GFP:ER-, ROCK1:ER-, and ROCK2:ER-

expressing cells were plotted in Fig 4D, indicating the significant

up-regulation of the stromelysin Mmp10 and collagenase Mmp13

(Appendix Table S2). Although not a direct collagenase, MMP10

superactivates procollagenases including proMMP13 (Barksby
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et al, 2006). Expression of several collagens was also altered by

ROCK activation (Appendix Fig S6 and Appendix Table S3).

ROCK-induced increases in Mmp10 (Fig 4E) and Mmp13 (Fig 4F)

mRNA transcripts were confirmed by qPCR. In addition, the

ROCK inhibitor H1152 reversed ROCK-induced Mmp10 and

Mmp13 expression (Fig 4E and F). Furthermore, higher MMP10

histoscores correlated with higher pancreatic adenocarcinoma

grades (Fig 4G).

Immunofluorescence indicated that ROCK:ER activation led to

MMP10 and MMP13 accumulation in bleblike protrusions (Fig 5A),

effects that could be reversed by H1152 ROCK inhibitor (Fig EV4A

and B). Conditioned media contained increased MMP10 and MMP13

following ROCK:ER activation, with little difference in MMP10 levels

in cell lysates (Fig 5B), suggesting that MMP protein release was not

rate-limiting. Given that MMP10 release has been reported to be

mediated via microvesicles (de Lizarrondo et al, 2012) and that

ROCK signaling was shown to promote microvesicle formation (Li

et al, 2012), we sought to determine whether ROCK activation

promoted MMP10 release via microvesicles. Consistent with the

appearance of microvesicles associated with ROCK activation in

collagen matrix invasion assays (Fig 3D and E), microvesicle enrich-

ment by ultracentrifugation of conditioned media yielded signifi-

cantly more protein following ROCK activation (Fig 5C). Western

blotting revealed significantly increased MMP10 protein, which

could be detected in isolated microvesicles by immunogold staining

in TEM images, as well as increased MMP10 to caveolin and

MMP10 to microvesicle protein ratios in ultracentrifuge-enriched

protein (Fig 5D). In contrast, the caveolin to microvesicle protein

ratio (Fig 5E) as well as MMP10 to GAPDH or caveolin to GAPDH

ratios in cell lysates (Fig 5F) were not affected by ROCK activation.

Together, these findings indicate that ROCK-induced Mmp10 and

Mmp13 mRNA expression was associated with increased release of

microvesicles that enable efficient MMP release into the surrounding

environment.

ROCK kinases induce collagen remodeling to enable
invasive growth

To directly test whether ROCK-induced MMP release drives colla-

gen degradation, GFP:ER- and ROCK1:ER-expressing cells were

plated on FITC-labeled collagen1 and collagenolysis was detected

by reduced FITC fluorescence. Greater areas of collagen degrada-

tion were apparent in ROCK1-activated cells (Fig 6A and B),

which were significantly reduced by H1152 to below GFP:ER

control levels (Fig 6A and B). Treatment with the myosin

ATPase inhibitor Blebbistatin to reduce actomyosin contraction

Figure 4. MMP induction by ROCK activation.

A Volcano plots of RNA sequencing data of genes that pass a threshold false discovery rate (FDR) < 5%, with log10 fold-change (FC) in expression in 4HT-treated
ROCK1:ER-expressing cells relative to GFP:ER-expressing cells (left) or 4HT-treated ROCK2:ER-expressing cells relative to GFP:ER-expressing cells (right) versus
log10-adjusted P-value (n = 3). ROCK1:ER + 4HT vs GFP:ER + 4HT: 3,828 genes. ROCK2:ER + 4HT vs. GFP:ER + 4HT: 4,481 genes.

B Venn diagram of genes with FDR < 5% and ≥ 2-fold expression changes for ROCK1:ER + 4HT vs. GFP:ER + 4HT and ROCK2:ER + 4HT vs. GFP:ER + 4HT.
C Heatmap of 33 differentially expressed genes in the MetaCoreTM process network Cell adhesion: Cell-matrix interaction. High relative expression in red and low

relative expression in blue.
D MMP average RNA sequence reads. Mean � SEM (n = 3). * indicates adjusted P-value < 0.05.
E Left: Mmp10 mRNA levels relative to Gapdh determined by qPCR following treatment with EtOH vehicle (�) or 1 lM 4HT for 24 h. Means � SEM (n = 4), P-value by

unpaired t-test. Right: Mmp10 mRNA levels relative to Gapdh determined by qPCR following treatment with EtOH vehicle (�), 1 lM 4HT or 4HT + 1 lM H1152 ROCK
inhibitor for 24 h. Means � SEM (n = 3), one-way ANOVA with multiplicity adjusted exact P-value by post hoc Tukey multiple comparison test.

F Left: Mmp13 mRNA levels relative to Gapdh determined by qPCR following treatment with EtOH vehicle (�) or 1 lM 4HT for 24 h. Means � SEM (n = 4), P-value by
unpaired t-test. Right: Mmp13 mRNA levels relative to Gapdh determined by qPCR following treatment with EtOH vehicle (�), 1 lM 4HT or 4HT + 1 lM H1152 ROCK
inhibitor for 24 h. Means � SEM (n = 3), one-way ANOVA with multiplicity adjusted exact P-value by post hoc Tukey multiple comparison test.

G MMP10 immunohistochemistry-stained sections of human pancreas adenocarcinoma (left). Scale bar = 100 lm. Histoscores of MMP10 staining (right) in
normal pancreas (n = 5) and pancreas adenocarcinoma grade 1 (n = 23), grade 2 (n = 27), and grade 3 (n = 13). One-way ANOVA with multiplicity adjusted
exact P-value by post hoc Tukey multiple comparison test. Box (upper and lower quartiles divided by median value) and whisker (5th–95th percentile) plots
show outliers as individual points.

Figure 5. MMP proteins are efficiently released in response to ROCK activation.

A Confocal microscope images of ROCK1:ER-expressing cells co-stained for F-actin, MMP10 (left) or MMP13 (right), and DAPI following treatment with vehicle or 1 lM
4HT for 24 h. Multiple z-planes were used to generate x�z and y�z images. Scale bar = 5 lm.

B Representative immunoblot of MMP13 and MMP10 in conditioned media, as well as MMP10 and GAPDH in cell lysates. Cells were treated with vehicle (�) or 1 lM
4HT for 48 h.

C Representative stained gel of ultracentrifuge-enriched microvesicle protein from GFP:ER or ROCK1:ER-expressing cell-conditioned media following treatment with
vehicle (�) or 1 lM 4HT for 24 h (top). Absolute arbitrary unit values for total microvesicle protein levels in stained gels (bottom). Means � SEM (n = 4), P-value by
ratio paired t-test.

D Representative immunoblot of MMP10 and caveolin in ultracentrifuge-enriched microvesicle proteins from cell-conditioned media following treatment with vehicle
(�) or 1 lM 4HT for 24 h as well as MMP10, caveolin, and GAPDH in cell lysates (top left). Transmission electron microscopy of ultracentrifuge-enriched microvesicles
(top center), and immunogold labeling of MMP10 in ROCK1:ER 4HT-treated microvesicles, indicated by red arrows (top right). Absolute arbitrary unit values for
MMP10 levels in Western blots of ultracentrifugation-enriched microvesicle proteins (bottom left). Ratios of MMP10 to caveolin (bottom center) or to total
microvesicle proteins (bottom right). Means � SEM (n = 4), P-value by ratio paired t-test.

E Absolute arbitrary unit values for caveolin levels in Western blots of ultracentrifugation-enriched microvesicle proteins (left). Ratio of caveolin to total microvesicle
proteins (right). Means � SEM (n = 4), P-value by ratio paired t-test.

F Ratios of MMP10 to GAPDH (left) and caveolin to GAPDH (right) in Western blots of whole-cell lysates. Means � SEM (n = 3), P-value by ratio paired t-test.

Source data are available online for this figure.
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(Straight et al, 2003) or the broad-spectrum MMP inhibitor

GM6001 (Grobelny et al, 1992) reduced GFP:ER control and

ROCK1:ER-induced collagen degradation (Fig 6C). Further, ROCK-

induced MMP10 and Mmp13 were present at invasive cell inter-

faces with collagen matrix (Fig 6D and E). The critical impor-

tance of MMP activity for ROCK-induced three-dimensional

collagen matrix invasion was demonstrated by sensitivity to

GM6001 (Fig 7A and B). While ROCK:ER activation increased

the total number of cells (Fig 2F) and Ki67-positive cells at the

collagen matrix surface (Fig 2G), GM6001 blocked ROCK-induced

cell layer thickening (Fig 7A, inserts and C) and significantly

reduced the number of Ki67-positive cells (Fig 7D and E).

Although GM6001 significantly blocked ROCK-induced invasion

(Fig 7A and B), the Ki67 positivity of successfully invaded cells

was not affected by GM6001 (Fig 7D and F). Proliferation was

not affected by GM6001 on two-dimensional uncoated (Fig 7G)

or collagen1-coated surfaces (Fig 7H). These results indicate that

ROCK activation enables PDAC proliferation by promoting ECM

degradation to relieve constraints imposed by three-dimensional

microenvironments.
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Figure 6. ROCK activation promotes collagen degradation.

A Representative fluorescence images of cells treated with 1 lM 4HT in the absence or presence of 10 lM H1152 for 18 h on Collagen1-FITC (Col1-FITC). Co-staining
for F-actin, MMP10 (red), and DAPI (blue). Scale bar = 10 lm.

B Quantification of collagen degradation by cells treated with 1 lM 4HT or 4HT + 10 lM H1152 for 16 h. Means � SEM (n = 15), one-way ANOVA with multiplicity
adjusted exact P-value by post hoc Tukey multiple comparison test.

C Quantification of collagen degradation by cells treated with 1 lM 4HT, 4HT + DMSO vehicle, 4HT + 50 lM Blebbistatin or 4HT + 10 lM GM6001 for 16 h.
Means � SEM (n = 15), one-way ANOVA with multiplicity adjusted exact P-value by post hoc Tukey multiple comparison test.

D Immunofluorescence of collagen matrix sections co-stained for MMP10 and DAPI. Scale bar = 20 lm.
E Mmp13 in situ hybridization-stained sections of collagen matrices. Scale bar = 50 lm.
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ROCK inhibition promotes PDAC mouse survival

Finally, we wished to determine whether ROCK signaling was a

pharmacologically actionable target in the mouse pre-clinical PDAC

model. The ROCK inhibitor Fasudil has been safely used in Japan

since 1995 to reverse the effect of ROCK-mediated blood vessel

constriction during cerebral vasospasm (Olson, 2008). Administra-

tion of Fasudil to KPC mice from 10 weeks of age significantly

increased survival (Fig 8A), with 123-day median survival for vehi-

cle-treated mice and 168-day median survival for Fasudil-treated

mice (P = 0.043). Endpoint tumors showed many similar character-

istics (Appendix Fig S7A–E), including the staining of collagen with

picrosirius red (Lattouf et al, 2014) (Fig 8B) revealing no difference

in total collagen area (Fig 8C, top). However, pancreatic tumors

from Fasudil-treated mice had significantly higher average collagen

staining intensity than vehicle controls over the positive staining

regions (Fig 8C, bottom), indicating that ROCK inhibition was asso-

ciated with increased collagen content. These results reveal an asso-

ciation between pancreatic cancer survival in mice with increased

collagen in PDAC tumors following ROCK inhibition.

Discussion

Previous studies have reported significantly higher levels of ROCK1

(Iacobuzio-Donahue et al, 2003; Segara et al, 2005; Badea et al,

2008) (Fig 1C) and ROCK2 (Segara et al, 2005; Badea et al, 2008)

(Fig 1D) mRNA in pancreatic tumors relative to normal tissue.

ROCK1 protein was also detected in 18 of 21 pancreatic cancer

samples and five cell lines, but not in 10 normal pancreas specimens

(Kaneko et al, 2002). Regression analysis of data from the TCGA

Research Network (Cerami et al, 2012) revealed that ROCK1 and

ROCK2 mRNA expression appear to be coordinately regulated

(Fig 1E). In this study, using a rigorously validated anti-ROCK2 anti-

body (Appendix Fig S1A), we found that ROCK2 expression

increased with tumor progression in human PDAC (Fig 1A) and in

mouse pancreatic cancer models (Fig 1F and G). Mutant Kras induc-

tion of eukaryotic translation initiation factor 5A, which plays a crit-

ical role in PDAC tumor growth (Fujimura et al, 2014), facilitates

elevation of ROCK1 and ROCK2 protein levels in pancreatic cancer

cells (Fujimura et al, 2015), indicating that there are also post-tran-

scriptional mechanisms that may contribute to increased ROCK

expression in PDAC. These results suggest that, although ROCK1

and ROCK2 are unlikely to be cancer drivers, their frequent elevated

expression in advanced tumors is consistent with their providing

ancillary functions.

The role of the PDAC-associated desmoplastic reaction in tumor

growth is unclear and controversial. Although the dense stroma

limits drug efficacy due to poor tumor vascularization (Olive et al,

2009) and high interstitial fluid pressure (Provenzano et al, 2012),

anti-stromal therapies have not been approved for clinical use

(Neesse et al, 2015). Recent studies found that mice with reduced

stroma developed more aggressive tumors with undifferentiated

histology, increased proliferation, and reduced survival (Ozdemir

et al, 2014; Rhim et al, 2014), suggesting that the desmoplastic

microenvironment serves to restrain PDAC tumor growth. Consis-

tent with these observations, high stromal collagen density has been

associated with better pancreatic cancer patient prognosis (Bever

et al, 2015). In opposition to these findings, high levels of large

diameter fibrillary collagen adjacent to tumor margins have been

associated with poor patient survival (Miller et al, 2015; Laklai et al,

2016). These apparently contradictory results suggest that PDAC

desmoplasia may have both negative and positive properties that

act in opposition. Thus, the extent of desmosplasia alone is not

likely to correlate directly with tumor aggressiveness or patient

outcome. By implication, PDAC cells are likely to favor properties,

particularly in advanced tumors with dense stromal components,

which enable them to overcome inhibitory constraints on tumor

growth imposed by the desmoplastic microenvironment.

Matrix metalloproteinases are proteolytic enzymes that influence

tissue homeostasis and tumor growth through processes including

ECM remodeling and tissue invasion (Kessenbrock et al, 2010). It

was recently shown that leptin, which uses ROCK as a critical signal

mediator (Huang et al, 2012), induces migration and invasion of

human pancreatic cells via MMP13 up-regulation, while increased

MMP13 expression in patients was associated with lymph node

metastasis and pathological stage (Fan et al, 2015). MMP10 was

also found to enhance the proliferation, invasion, and metastatic

potential of PDAC cells (Zhang et al, 2014). MMP10 lacks collage-

nase activity itself, but MMP10 was found to play a critical role in

tissue remodeling by promoting the expression and/or activity of

collagenolytic MMPs, in particular MMP13 (Barksby et al, 2006;

Rohani et al, 2015).

Although expression of some collagens increased in mouse

PDAC cells following ROCK activation (Appendix Fig S6 and

Appendix Table S3), the most profound gene expression changes

were in networks associated with extracellular matrix remodeling

(Fig 4C and D, and Appendix Table S1). Recently, it was found

that actomyosin contractile force in rounded melanoma cells

increased the expression of several MMPs and that these MMPs

promoted amoeboid migration (Orgaz et al, 2014). Consistent

with these findings, our gene expression profiling of PDAC cells

Figure 7. ROCK activation promotes MMP-dependent invasive growth.

A H&E-stained sections of cell invasion into collagen matrix after 8 days, in the absence (top) or presence of 10 lM GM6001 (bottom). Scale bar = 100 lm.
B Invasion index of KPflC cells. Means � SEM (n = 4), P-value by unpaired t-test.
C Quantification of cell number at the collagen matrix surface per 0.046 mm2 field. Means � SEM (n = 20), P-value by unpaired t-test.
D Cell proliferation determined by Ki67 immunofluorescence. Scale bar = 20 lm.
E Ki67-positive cell percentages at the collagen matrix surface. Means � SEM (n = 20; n = 19 for GFP:ER/vehicle, n = 18 for GFP:ER/GM6001), one-way ANOVA with

multiplicity adjusted exact P-value by post hoc Tukey multiple comparison test.
F Ki67-positive cell percentages in collagen matrix. Means � SEM (n = 20; n = 8 for GFP:ER/vehicle, n = 10 for GFP:ER/GM6001, n = 17 for ROCK1:ER/GM6001,

n = 15 for ROCK2:ER/GM6001), one-way ANOVA with multiplicity adjusted exact P-value by post hoc Tukey multiple comparison test.
G, H The increase in viable cell numbers of cells plated on uncoated plastic surfaces (G) or collagen1 (Col1)-coated surfaces (H) and treated with 1 lM 4HT for 24 h was

not affected by 10 lM GM6001. Means � SEM (n = 3), one-way ANOVA with multiplicity adjusted exact P-value by post hoc Tukey multiple comparison test.

▸
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revealed that Mmp10 and Mmp13 were the most differentially

expressed genes upon ROCK activation. Although MMP10 was

not increased in cell lysates by ROCK activation (Fig 5B and D),

both MMP10 and MMP13 were elevated in cell-conditioned

medium (Fig 5B). Furthermore, when microvesicles were

enriched by ultracentrifugation from conditioned medium, ROCK

activation increased total protein (Fig 5C) and MMP10 content in

this fraction (Fig 5D), with significantly greater ratios of MMP10

to total protein or MMP10 to caveolin, a lipid raft scaffolding

protein found in microvesicles (Lee et al, 2011). Consistent with

our observations, MMP10 release has been reported to be medi-

ated via microvesicles (de Lizarrondo et al, 2012) and the Rho-

ROCK pathway was previously shown to contribute to microvesi-

cle initiation by inducing membrane protrusions akin to blebs

(Antonyak et al, 2012; Li et al, 2012). These results indicate that

ROCK activation contributes to stromal remodeling through the

combined effects of inducing changes in the expression of genes

associated with ECM remodeling and increasing the efficient

delivery of the corresponding encoded proteins to the proximal

microenvironment.
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Figure 8. ROCK kinase signaling influences PDAC mouse survival.

A Survival analysis of Pdx1-Cre; LSL-KRasG12D/+; LSL-Trp53R172H/+ (KPC) mice without (n = 13) or with Fasudil treatment (n = 13). Survival P-value determined by Gehan–
Breslow–Wilcoxon test.

B Representative images of picrosirius red stained endpoint tumors from KPC mice. Scale bar = 1 mm.
C Picrosirius red percentage of positive staining area (top) or average staining intensity of positive area (bottom) in pancreatic tumors from vehicle (n = 8) and Fasudil

(n = 7)-treated mice. Box (upper and lower quartiles divided by median value) and whisker (5th–95th percentile) plots show outliers as individual points, with exact P-
value by Mann–Whitney test.

D Schematic diagram of the contribution made by ROCK signaling to pancreatic cancer invasive growth.
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ROCK activation also led to significant collagen degradation and

remodeling associated with increased invasive growth (Figs 2, 3, 6

and 7). Importantly, treatment of ROCK-activated invasive cells with

the MMP inhibitor GM6001 blocked invasion and reduced prolifera-

tion in three-dimensional collagen (Fig 7A–E), but not in two-

dimensional contexts (Fig 7G and H), indicating that ROCK-induced

collagen remodeling enables PDAC proliferation by relieving stro-

mally imposed constraints (Fig 8D). Consistent with these observa-

tions, conditional ROCK activation in vivo reduced pancreatic

cancer mouse survival (Fig 1H), while treatment with the ROCK

inhibitor Fasudil prolonged survival and increased collagen levels

(Fig 8A and C).

Despite much effort, new treatment regimens for pancreatic

cancer have only minimally improved patient survival. The standard

chemotherapeutic agent for PDAC is gemcitabine, either as a single

agent or combined with albumin-bound paclitaxel, or a combination

of fluorouracil, irinotecan, oxaliplatin, and leucovorin (FOLFIR-

INOX) (Cid-Arregui & Juarez, 2015), which benefits a minority of

patients and often leads to drug resistance over time. Our results

indicate that ROCK inhibitors (Rath & Olson, 2012) as pancreatic

cancer therapy might be beneficial due to reduced invasive growth

of tumor cells due to the effect on impairing stromal collagen remod-

eling. In addition, these findings are in agreement with the concept

that by reducing collagen remodeling activity it is possible to tip the

balance such that dense collagen hinders, rather than promotes,

pancreatic cancer. As with any systemically administered therapy,

cell types in addition to tumor cells are potentially affected. Given

that ROCK inhibition has previously been shown to block the activa-

tion of pancreatic stellate cells (Masamune et al, 2003) that have a

tumor-promoting role in PDAC growth and progression (Apte et al,

2013), the therapeutic effect of Fasudil on PDAC mouse survival may

be due to combined actions on tumor and non-tumor cells. We previ-

ously showed that conditional ROCK activation in mouse skin led to

increased collagen deposition and accelerated progression of epider-

mal papillomas to invasive carcinomas (Samuel et al, 2011). The

difference between these observations illustrates the context-

dependence of the relationships between ROCK activation, collagen

deposition/remodeling, and tumor progression.

Materials and Methods

Animal models

All mouse experiments were performed according to UK Home

Office regulations. Pdx1-Cre, LSL-KRasG12D, LSL-Trp53fl, and LSL-

Trp53R172H mice have been described previously (Jackson et al,

2001; Jonkers et al, 2001; Hingorani et al, 2003; Liu et al, 2004; Olive

et al, 2004). Conditional ROCK2 knockout (ROCK2tm1a(KOMP)Wtsi)

embryonic stem cells were supplied by the trans-NIH Knock-Out

Mouse Project (KOMP, clone EPD0492_1_C01). Mice were subse-

quently crossed to Actb (ActFLPe) mice for removal of the lacZ/neo

cassette, to Pdx1-Cre mice to generate pancreas-specific ROCK2

knockout mice, and to Rosa26-LSL-RFP reporter mice.

LSL-ROCK:ER mice were generated by gene-targeting to the Hprt

locus (Fig EV2A) using an approach we have previously described

(Samuel et al, 2009). Briefly, the sequence encoding the cytokeratin

14 promoter in the constructs pHprtK14-ROCK:ER and pHprtK14-KD:ER

was replaced with a sequence encoding the chimeric synthetic

promoter CAG (Niwa et al, 1991) and a floxed transcription termi-

nation sequence. The constructs were then used to separately target

HM1 ES cells by electroporation, and targeted cells were selected in

HAT medium as previously described (Samuel et al, 2009).

KPC experimental males were treated with 100 ll Fasudil

(20 mg/ml) or water vehicle by gavage from 10 weeks of age until

endpoint. RKPC experimental males were treated with Tamoxifen

citrate salt in 1% EtOH (100 mg/l) or 1% EtOH vehicle in the drink-

ing water from 10 weeks of age till endpoint, or for a maximum

period of 9 weeks. Animals were sacrificed as per institutional

guidelines. Organs and tumors were fixed in 10% formalin at room

temperature and processed using standard histological methods.

Human pancreas tissue

A commercial tissue microarray with normal pancreatic tissue and

78 cases of pancreatic cancer, including TNM, clinical stage, and

pathology grade, was purchased from US Biomax (PA961c). Clinical

data associated with these samples can be found in

Appendix Table S4.

Tissue from border areas of resected tumors was collected

prospectively following informed patient consent. The West of

Scotland Research Ethics Committee 4 approved the study.

Small molecules

Y27632 (Tocris 1254), H1152 (Tocris 2414), Fasudil (Selleckchem

S1573, LC Laboratories F-4660), Blebbistatin (Tocris 1760), GM6001

(Millipore 142880-36-2), Tamoxifen citrate salt (Sigma T9262), 4HT

(4-Hydroxytamoxifen, Sigma H7904).

Antibodies

ROCK1 (BD-611136), ROCK2 (BD-610623), ROCK1/2 (Millipore 07-

1458), phospho-MLC2 (Cell Signaling 3674), MRCL3/MRLC2/MYL9

(Santa Cruz sc-28329), MMP13 (Abcam ab39012), MMP10 (Leica

NCL-MMP10), GFP (Abcam ab6556), RFP (Rockland 600-401-379),

Ki67 (Vector VP-K452), Col1 3/4C (ImmuGlobe 0207-050), GAPDH

(Millipore MAB374), Caveolin-1 (Santa Cruz sc-894), CD3 (Vector

VP-RM01), CD31 (Abcam ab28364), a-Smooth Muscle Actin (Sigma-

Aldrich A2547).

Pancreatic tumor cell lines

Pancreatic ductal adenocarcinoma tumor cell lines were established

from Pdx1-Cre; LSL-KRasG12D/+; LSL-Trp53R172H/+ (KPC) and Pdx1-

Cre; LSL-KRasG12D/+; LSL-Trp53fl/+ (KPflC) mice (Morton et al,

2010). Retroviral pBABE puro constructs with conditionally active

human ROCK1 (EGFP-ROCK1:ER), human ROCK2 (EGFP-ROCK2:

ER), or GFP control (EGFP:ER) have been described previously

(Croft et al, 2004). Stable KPflC cell lines were selected by standard

procedures using 2.5 lg/ml Puromycin. PDAC cell lines were

cultured in DMEM supplemented with 10% FBS, 2 mmol/l L-gluta-

mine, and penicillin–streptomycin (complete DMEM). For experi-

ments, cells were plated in complete DMEM or serum-free DMEM

containing EtOH vehicle or 1 lM 4HT to activate ROCK kinase

activity.
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Cell growth assay

The CellTiter-Glo Luminescent Cell Viability Assay (Promega) was

used to determine cell growth in monolayer. 5 × 103 cells were

plated into the wells of a 96-well cell culture dish. Wells were pre-

coated with 0.05 mg/ml rat tail collagen type I (BD Biosciences) as

indicated. Cells were left to settle and grow overnight in DMEM

complete, and a first baseline measurement was taken. Then, 1 lM
4HT or EtOH vehicle was added to the medium, and second (24 h)

and third (48 h) measurements were taken. The increase in viable

cells at 24 h and 48 h time points was calculated relative to the

baseline measurement.

Immunoblotting

Standard protocols were used for Western blot analysis. Primary

antibodies were routinely used at 1:500 or 1:1,000 dilutions. Alexa

Fluor 680 and DyLight 800 (Thermo Fisher Scientific)-conjugated

secondary antibodies were detected by infrared imaging (Li-Cor

Odyssey). Pancreatic tissue was homogenized using the hard tissue

homogenizing CK28-R Precellys lysing kit. Cells were grown in

6-well plates. Whole-cell lysates were prepared in cell lysis buffer

(1% SDS, 50 mM Tris pH 7.5), and protein concentration was deter-

mined by Bicinchoninic assay (Sigma).

For validation of the conditional ROCK:ER activation in KPflC

cell lines, 1 × 106 cells were plated in DMEM complete and allowed

to settle and grow overnight. Next day, cells were washed 3× with

serum-free DMEM and 2 ml serum-free DMEM with EtOH vehicle or

1 lM 4HT in the presence or absence of 1 lM or 10 lM H1152 was

added to the cells. After 24 h of treatment, cell lysates were

prepared for Western blot analysis.

For analysis of matrix metalloproteinase expression and release,

1 × 106 KPflC cells were plated in DMEM complete and allowed to

settle and grow overnight. Next day, cells were washed 3× with

serum-free DMEM and 2 ml serum-free DMEM with EtOH vehicle or

1 lM 4HT was added to the cells. After 48 h of treatment, cell

lysates were prepared for Western blot analysis. Conditioned media

were harvested at the same time. To remove cell debris, media were

centrifuged 30 min at 10,000 × g, 4°C and the supernatant was snap

frozen. For detection of MMP10, concentration of media was not

required. For detection of MMP13, media were concentrated using

10K spin columns (Amicon Ultra-0.5 ml, UFC501096).

Immunofluorescence

IF images were taken on a Zeiss 710 confocal microscope. Primary

antibodies were routinely used at 1:50 or 1:100 dilutions. Alexa

Fluor 488 phalloidin, Alexa Fluor 647 phalloidin, Alexa Fluor 488,

and Alexa Fluor 594 (Thermo Fisher Scientific) secondary antibod-

ies were used. Fluorescently labeled cells and tissue samples were

mounted with ProLong Gold/ProLong Diamond incl. DAPI (Molecu-

lar Probes).

Cells were fixed in 4% paraformaldehyde (PFA) for 15 min and

permeabilized with 0.5% Triton X-100/PBS for 5 min. Non-specific

antibody binding was blocked by incubation of cells with 1% BSA/

PBS for 5 min. Cells were then incubated with primary antibody for

1 h, followed by incubation with secondary antibody and/or phal-

loidin for 1 h.

To stain cells in three-dimensional collagen matrix invasion

assays, PFA-fixed, paraffin-embedded sections were rehydrated and

immersed in 10 mM citric acid buffer at pH 6.0, boiled for 20 min,

cooled, and blocked with 10% normal goat serum in PBS. Sections

were then incubated with primary antibody for 1 h, followed by

incubation with Alexa Fluor 594 antibody for 1 h.

To stain cleaved collagen1 in three-dimensional collagen matrix

invasion assays, PFA-fixed, paraffin-embedded sections were rehy-

drated and equilibrated in PBS. Sections were then incubated with

collagen1 3/4C antibody for 1.5 h, followed by incubation with

Alexa Fluor 594 antibody for 1 h.

Immunohistochemistry

IHC slides were imaged and analyzed using the Leica SCN 400f

scanner and Leica Slidepath Digital Image Hub software. Primary

antibodies were routinely used at 1:50 or 1:100 dilutions. Forma-

lin-fixed, paraffin-embedded sections were rehydrated and

immersed in 10 mM citric acid buffer at pH 6.0, boiled for 20 min,

cooled, and sequentially blocked with 3% H2O2 and 10% normal

goat serum in PBS. Sections were then incubated with primary

antibody, followed by incubation with Envision + System-HRP

labeled Polymer (Dako). Staining was visualized with Liquid

DAB + Substrate (Dako).

For collagen staining, formalin-fixed, paraffin-embedded sections

were rehydrated and immersed in Picrosirius Red for 2 h.

To stain Mmp13 in three-dimensional collagen matrix invasion

assays, the RNAscope Probe Mm-Mmp13 (ACD 427601) was used

according to manufacturer’s instructions. Images were taken on an

Olympus BX51 microscope.

To determine the ROCK2 and MMP10 histoscores of human

pancreas adenocarcinoma cases, DAB staining intensities of pancre-

atic acinar cells (normal) or pancreatic tumor cells were scored. A

weighted histoscore was calculated from the sum of (1 × % area of

weak staining) + (2 × % area of moderate staining) + (3 × % area

of strong staining), providing a semi-quantitative classification of

staining intensity on a scale from 0 (negative) to 300 (strongest).

Two researchers (N.R. and J.P.M.) quantified the TMA in a blinded

fashion, and means were used for statistical analyses. Images of

tissue microarrays were taken on an Olympus BX51 microscope.

Microvesicle enrichment

Cells were cultured in serum-free DMEM containing either 1 lM
4HT or EtOH vehicle for 24 h. For each condition, 135 ml medium

was collected and subjected to differential centrifugation and ultra-

centrifugation steps all performed at 4°C. Media were centrifuged at

300 × g for 10 min, followed by centrifugation at 2,000 × g for

10 min to pellet live and dead cells, respectively. Then, media were

centrifuged in an ultracentrifuge (Optima L-90K, Beckman) at

10,000 × g for 30 min to remove cell debris, followed by ultracen-

trifugation at 100,000 × g for 70 min. The microvesicle pellet was

washed with 36 ml PBS, followed by a second ultracentrifugation

step at 100,000 × g for 70 min to re-pellet the microvesicles. The

supernatant was discarded, and microvesicles were resuspended in

200 ll PBS. For Western blot analysis and Coomassie staining, 6×

lysis buffer (1% SDS, 50 mM Tris pH 7.5) was added for protein

extraction.
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Collagen degradation assay

Glass coverslips were placed on top of 25 ll Collagen type I, FITC

conjugate 1 mg/ml (Sigma), and incubated at room temperature in

the dark for 15 min. They were then placed on top of 50 ll 0.5%
glutaraldehyde for 30 min. After three washes with PBS,

6 × 104 cells were plated on collagen-coated coverslips in 500 ll
DMEM complete containing either 1 lM 4HT or EtOH vehicle in the

absence or presence of the following drugs: 10 lM H1152 dihy-

drochloride, 10 lM GM6001, 50 lM Blebbistatin, or DMSO vehicle.

Collagen and cells were fixed and IF stained after 16 or 18 h. Images

of DAPI-stained cells and FITC-labeled collagen were taken on the

Zeiss 710 confocal microscope. ImageJ was used to quantify the

area of collagen degradation.

Collagen matrix invasion assay

Collagen matrix invasion assays were performed as previously

described (Timpson et al, 2011). Primary human fibroblasts were

mixed with rat tail collagen1 and left in a cell culture incubator for a

week to allow conditioning of the collagen. To remove fibroblasts

from the collagen matrices, the disks were incubated with 5 lg/ml

Puromycin for at least 24 h and then washed twice with medium.

2 × 105 cells were seeded in DMEM complete without or with 1 lM
4HT on top of the disks and allowed to settle and grow over 2 days.

Afterward, the collagen matrices were mounted onto grids to gener-

ate an air/liquid interface. DMEM complete containing 1 lM 4HT,

10 lM H1152, 10 lM GM6001, or DMSO was added to the dishes as

indicated. After 8 days of invasion, the collagen matrix disks were

fixed in 4% paraformaldehyde overnight and processed using stan-

dard histological methods.

H&E-stained sections were scanned and analyzed using Digital

Slide Server (Slidepath) software. For quantification of invading

cells, the polygon tool was used to draw a rectangle covering the

whole collagen matrix disk but omitting the stationary cells at the

surface. An algorithm was written to specifically detect H&E-stained

PDAC cells in collagen matrices. The area of invading cells was

divided by the total area and percentages were used to calculate the

invasion index, relative to the respective control, for graphs and

statistics.

Immunofluorescence-stained sections were analyzed with the

ImageJ cell counter plugin. 4–10 immunofluorescence images were

taken at 40× magnification of each disk. For graphs and statistics,

total counts of cells at the surface or percentages of Ki67-positive

cells over total cell number were used.

Determination of collagen quantity and quality

Collagen second harmonic images were collected using a LaVi-

sion Biotec Trim-scope equipped with a Coherent Chameleon Ti:

Sapphire femtosecond pulsed laser and analyzed in ImageJ as

described in (Miller et al, 2015). An excitation wavelength of

890 nm was used so that the second harmonic generation (SHG)

would be generated at a central wavelength of 445 nm and

focused to the sample plane by a long working distance 20×

(NA = 0.95) water immersion objective from Olympus. A z-stack

of 100 lm deep was imaged over a region of 500 lm by

500 lm, with at least three duplicates of each condition. The

UMB GLCM plugin was used as the basis for the texture analy-

sis, but modified so as to run automatically through the four

directions of comparison, for each of the 100 comparison

distances. Firstly, the user selected a directory containing the

collagen stack images. A maximum projection image was then

produced and duplicated. The duplicate image was then auto-

matically thresholded to produce a mask that was then applied

to the original maximum projection image. This removed the

background noise bias introduced in the GLCM analysis by

selecting only the collagen SHG signal. The masked image was

then passed to the GLCM texture plugin (Kvaal et al, 2008),

which had been modified so that it could be operated in a

nested loop for varying pixel comparison distances and alterna-

tive directions of comparison. The output of the plugin for each

image was 100 rows of the five texture parameters over each of

four directions, totaling 2,000 parameter values. These were

saved as a text data file for each image. When all the images in

the directory were analyzed, the data files were processed using

a MATLAB script that produced the mean of each texture

parameter for each image. These were then imported into Prism,

where a double exponential decay model was fit to the data for

the correlation GLCM parameter and the weighted mean decay

distance for each sample was calculated in Excel.

Transmission electron microscopy

For contrast staining, ultrathin collagen matrix sections were

incubated with 2% methanolic uranyl acetate for 5 min and then

Reynolds’ lead citrate for 5 min. Collagen was visualized by

incubation with 2% aqueous uranyl acetate for 10 min, 2%

aqueous tannic acid for 10 min, and then Reynolds’ lead citrate

for 5 min.

Ultracentrifuge-pelleted microvesicles were fixed in 2% PFA/PBS

for 1 h at 4°C. All other processing steps were performed at room

temperature. 5 ll droplets of microvesicles were placed onto

300mesh Formvar/carbon-coated Nickel grids and left to settle for

30 min. For routine negative staining, grids were rinsed by floating

sample side down on droplets of distilled water (6 × 2 min) before

staining with 2% Ammonium Molybdate for 30 s, and then left to

dry before imaging. For immunogold labeling, grids were floated

sample side down on droplets of PBS (6 × 5 min), followed by

droplets of 0.05 M Glycine/PBS (4 × 5 min) and droplets of 3%

BSA/PBS (6 × 5 min). Next, grids were transferred onto droplets of

MMP10 primary antibody in 3% BSA/PBS (1:50 dilution) for 1 h.

Grids were passed through droplets of 3% BSA/PBS (6 × 5 min)

and then incubated on droplets of gold conjugate GAM (1:20 dilu-

tion) for 1 h. Grids were washed with 3% BSA/PBS (6 × 5 min),

PBS (6 × 5 min), fixed with 1% Glutaraldehyde/PBS for 5 min, and

rinsed 10× in droplets of distilled water. Grids were transferred onto

droplets of Uranyl-Oxalate solution (pH 7) for 5 min and then onto

droplets of Methyl Cellulose-UA for 10 min on ice. Finally, grids

were scooped up on platinum loops and left to dry after excess

Methyl Cellulose-UA was carefully removed with filter paper (Théry

et al, 2001).

Images were viewed on the FEI Tecnai T20 transmission electron

microscope running at 200 kV, and images were captured using a

GATAN Multiscan camera 794 and GATAN Digital Imaging

software.
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RNA sequencing and quantitative polymerase chain reaction

1 × 106 KPflC cells were seeded into 6-well plates in DMEM

complete and allowed to settle and grow overnight. Next day, cells

were washed three times with serum-free DMEM and 2 ml serum-

free DMEM with drugs was added: 1 lM 4HT or 1 lM H1152. After

24 h of treatment, total RNA was extracted from cells with the

RNAeasy kit (Qiagen) and RNA was quantified using a nanodrop

spectrophotometer (NanoDrop Tech).

For RNA sequencing, RNA quality was assessed using the Agilent

2100 Bioanalyzer with the RNA 6000 Nano LabChipVR reagent set

(Agilent Technologies). The Illumina TruSeq RNA Library Prepara-

tion kit v2.0 was used to prepare an oligo dT-based library. The

library was sequenced on the NextSeq 500 platform using the High

Output 75 cycles kit (2 × 36 cycles, paired-end reads, single index).

Quality control of raw RNASeq data files was performed by fastqc

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and

fastq_screen (http://www.bioinformatics.babraham.ac.uk/projects/

fastq_screen/). Then, RNASeq reads were aligned to the mouse

genome (GRCm38.75) using TopHat2 (Kim et al, 2013) and result-

ing bam files processed with htseq_count (http://www.huber.emb

l.de/users/anders/HTSeq/doc/count.html). The final counts were

normalized and analyzed with DESeq2 (Love et al, 2014). Statisti-

cally significant differences in gene expression were determined

with a false discovery rate (FDR) of 5%.

For quantitative polymerase chain reaction (qPCR), comple-

mentary DNA was synthesized using the QuantiTect Reverse

Transcription Kit (Qiagen). Quantitative reverse transcriptase

(RT)–PCR primers for Mmp10, Mmp13 and Gapdh were acquired

from Qiagen (Quantitect Primer Assay). QPCR was set up with

the DyNAmo HS SYBR Green qPCR Kits (Thermo Fisher

Scientific) and run on the 7500 Fast Real-Time PCR System

(Applied Biosystems).

Statistical analyses

Calculations were done in GraphPad Prism, and the statistical tests

used are indicated in each figure legend. Bar graphs represent

means � SEM. Box (upper and lower quartiles divided by median

value) and whisker (5th–95th percentile) plots show outliers as indi-

vidual points.

Expanded View for this article is available online.
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