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Identification of genomic regions 
for grain yield and yield stability 
and their epistatic interactions
Deepmala Sehgal, Enrique Autrique, Ravi Singh, Marc Ellis, Sukhwinder Singh & 
Susanne Dreisigacker

The task of identifying genomic regions conferring yield stability is challenging in any crop and 
requires large experimental data sets in conjunction with complex analytical approaches. We report 
findings of a first attempt to identify genomic regions with stable expression and their individual 
epistatic interactions for grain yield and yield stability in a large elite panel of wheat under multiple 
environments via a genome wide association mapping (GWAM) approach. Seven hundred and twenty 
lines were genotyped using genotyping-by-sequencing technology and phenotyped for grain yield 
and phenological traits. High gene diversity (0.250) and a moderate genetic structure (five groups) in 
the panel provided an excellent base for GWAM. The mixed linear model and multi-locus mixed model 
analyses identified key genomic regions on chromosomes 2B, 3A, 4A, 5B, 7A and 7B. Further, significant 
epistatic interactions were observed among loci with and without main effects that contributed to 
additional variation of up to 10%. Simple stepwise regression provided the most significant main effect 
and epistatic markers resulting in up to 20% variation for yield stability and up to 17% gain in yield with 
the best allelic combination.

The projected global demand for wheat by 20501, coupled with the predicted detrimental effects of climate 
change on its production2,3, demands a great push towards developing high yielding varieties with stable yields. 
Traditional breeding methods have achieved tremendous success in the last century in pushing the annual 
genetic gain to up to 1% in grain yield, but to cope with 2% yearly increase in world population further efforts 
are required4. It was envisioned a long time ago that the application of molecular markers would strengthen and 
expedite breeding for complex traits. The real scenario is that even though hundreds of publications have reported 
quantitative trait loci (QTL) for yield potentially in almost all crops5,6, marker-assisted selection (MAS) for yield 
or yield stability has never been realistic. This reinforces the complex genetic architecture of grain yield involving 
multiple small effect loci, interacting and displaying significant genotype x environment interactions. Attempts to 
dissect yield QTL using bi-parental populations allowed poor resolution of the QTL due to limited recombination 
events resulting in the overestimation of QTL effects7. The creation of nested association mapping (NAM) and 
multiparent advanced generation intercrosses (MAGIC) designs, offering a balance of statistical power and map-
ping resolution, was a great leap forward towards dissection of genetic architecture of complex traits8. However, 
development of such experimental populations is fairly cumbersome, and can be cost and time-consuming.

The advances in next generation sequencing technologies and high-throughput genotyping systems have rev-
olutionized the field of plant genomics, offering a range of modern tools and methods to scientists to characterize 
their populations. Genotyping-by-sequencing (GBS), which simultaneously performs SNP discovery and gen-
otyping, has taken marker technologies to a next level providing breeders with a cost-effective genome scan of 
their breeding lines9. This has particularly benefited wheat where marker number and density have often been 
the limiting factors10. Therefore, rapidly growing numbers of breeding lines are being genotyped10. This has made 
existing phenotypic data on breeding lines amenable to genome wide association mapping (GWAM), which has 
become a leading approach for complex trait dissection and identification of novel and superior alleles using 
existing germplasm.

Since its first application for milling quality in wheat11, GWAM studies have been extended to a wider set of 
traits, mainly those involved in disease resistance12. Although a few studies have been piloted for mapping grain 

International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Méx-Veracruz, El Batán, Texcoco, 
CP 56237, México. Correspondence and requests for materials should be addressed to S.D. (email: s.dreisigacker@
cgiar.org)

received: 06 November 2015

accepted: 21 December 2016

Published: 01 February 2017

OPEN

mailto:s.dreisigacker@cgiar.org
mailto:s.dreisigacker@cgiar.org


www.nature.com/scientificreports/

2Scientific Reports | 7:41578 | DOI: 10.1038/srep41578

yield and yield components in irrigated or stress environments12,13–18, hitherto no study has reported genomic 
regions associated with yield stability using this approach. The present study is one of the first efforts in this direc-
tion. Yield stability can be defined as the genotype’s ability to perform consistently across a wide range of envi-
ronments or alternatively the genotype’s ability to interact less with the environments. Several indices have been 
reported to quantify yield stability. Here, we have quantified yield stability across six contrasting environments 
using the Lin and Binn’s superiority index19 where superiority of cultivar performance is measured by distance 
mean squares from the maximum responses across all locations (see Materials and methods section for details).

Despite the increasing awareness that epistasis forms the genetic basis of complex traits, the significance of 
epistasis in the genetics of grain yield has been rarely investigated in a wheat GWAM panel20. Unravelling QTL 
with epistatic effects using a GWAM design will have more potential compared to linkage mapping because fixa-
tion of QTL alleles will be less likely in a naturally segregating population, and the power of GWAM will be con-
siderably larger. In the current study, we first identified marker-trait associations (MTA) for grain yield and yield 
stability that are expressed in multiple environments using a large set of breeding lines from the International 
Maize and Wheat Improvement Center (CIMMYT). We then investigated the level of the epistatic interactions 
among them and with loci without main effects. Finally, we performed epistatic scans among all loci without main 
effects to understand the relevance and magnitude of epistatic interactions for the above mentioned traits. To 
extract the best out of the association and epistatic scans, we integrated the most stable main effect and epistatic 
loci into a forward stepwise regression analysis and identified the best marker and allelic combinations conferring 
highest yield stability. In this way, the current study led to the identification of genetic markers that tag genomic 
regions, which confer reliable yields across multiple irrigated and stress environments as well as 21 wheat lines 
that express the beneficial alleles.

Results and Discussion
Suitability of the GWAM panel to dissect grain yield and yield stability.  Our GWAM panel 
contained a large (720 entries) set of candidate wheat lines (Supplementary Table S1) from the CIMMYT 
International Bread Wheat Screening Nursery (IBWSN) in 2012. The panel therefore had the advantage of detect-
ing MTA directly in the relevant current breeding germplasm11,18,21. Previous association studies in wheat have 
been conducted using gene bank accessions including lines of different geographic origin and adaptions to dis-
tinct environments14,22,23. The use of such panels maximizes the genetic diversity and reduces the population 
structure which is ideal for GWAM, but for quantitative traits such as yield, multiple, small effect MTA are dif-
ficult to be directly applied in breeding programs as time consuming and complex gene introgression strategies 
are required.

A comprehensive phenotypic data set was collected on our panel under multiple irrigated (favorable) and stress 
environments (mild to severe drought- and heat-stressed environments; see details in Materials and methods 
section) which allowed us to quantify yield stability by meta-analysis of all environments. Additionally, the size 
of the panel made the study of multi-locus epistatic interactions feasible as reasonable statistical power could be 
obtained with such a large experimental data set, the lack of which has often been a limitation in GWAM studies24.  
Our GWAM panel was therefore well-suited for achieving both purposes; identifying markers associated with 
yield stability and performing epistatic scans.

The panel showed a wide range of variation for grain yield (GY) (Supplementary Table S2), susceptibility 
indices and yield stability coefficient (Supplementary Table S3). A moderate heritability (h2 =​ 0.54) was witnessed 
for grain yield across environments which further raised the scope of obtaining stable MTA. However, days to 
heading (DH) also showed a wide variation in the panel (Supplementary Table S2) and its correlation with GY 
was often significant (Supplementary Table S4 and Supplementary Fig. S1); positive correlation in two irrigated 
environments and negative correlations in stressed low-yielding environments. These results emphasize the effect 
of “escape” of early lines in determining yield under water and heat stressed conditions. Plant height (PH) was 
positively associated with GY in most environments. These results implicated that confounding phenological 
effects need to be taken into account18.

Genetic diversity, population structure and linkage disequilibrium decay.  The average gene diver-
sity (Table 1) of the panel was higher than in other sets of cultivars and breeding lines genotyped with SNP 
markers25–27, an excellent base for GWAM research. Gene diversity was, however, slightly lower than in a pre-
viously compiled CIMMYT germplasm panel, the Wheat Association Mapping Initiative (WAMI) population 
(gene diversity =​ 0.340)18. The higher diversity in WAMI panel is probably due to the high frequency (39%) of 
lines with 1B.1R translocations, and also because relatively diverse synthetic wheat derived lines were included 
in this population.

The principal component analysis (PCA) showed five groups in the panel (Fig. 1). The first principal compo-
nent separated a group of synthetic hexaploid wheat derived lines from a second large group with mixed pedigrees 
including CIMMYT key parents such as Kachu, Kronstad F2004, Murga, Saual, Baviacora 92//Irena/Kauz/3/
Huites and Kingbird#1. Lines with Attila*2/PBW65 in their genetic background formed a third group. Two other 
smaller groups were mainly dominated by lines with key parents Roelfs F2007 and Kingbird, and Waxwing, 
Akuri, Tecue and Tarachi in their genetic backgrounds, respectively. Since the lines included in the panel were 
selected based on pedigree information, the partitioning of the genetic diversity in subgroups remained a distinct 
feature of the panel, similar to what has been observed in other elite wheat collections13,17,26. The presence of 
non-random “background” co-ancestry among accessions is a common feature of cultivars and advanced breed-
ing materials.

The decay of linkage disequilibrium (LD) over physical/genetic distance in a population determines the den-
sity of marker coverage needed to perform GWAM. A faster LD decay indicates that a higher marker density is 
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required to capture the markers close enough to the causal loci28. LD in our panel decayed within 10, 4 and 8 cM 
for A, B and D sub-genomes (Fig. 2a–c), respectively, and for the whole genome, it decayed at 5 cM (Fig. 2d). 
While the genome-wide LD decay is comparable to the recent studies in wheat17,21,26,29, differences were observed 
at sub-genome levels. In most studies, the D sub-genome showed the slowest LD decay among the three 
sub-genomes, whereas we observed a faster LD decay in the D sub-genome as compared to the sub-genome A. 
Faster LD decline in the D sub-genome, compared with A or B sub-genomes, was also observed in the WAMI 
population18 and Chinese germplasm30; which could be related to the use of synthetics and wild relatives driving 
more recombination in the D genome. These results also support the need for higher marker density in the D 
sub-genome to improve gene localization by GWAM. Alternatively, our results suggested that long range haplo-
types in the A sub-genome might have been selected, whether intentionally or unintentionally during the breed-
ing process, thus leading to a slower decay as compared to the D sub-genome.

Marker-trait associations for GY and yield stability.  Since a moderate population structure was wit-
nessed in our panel, a regression analysis was conducted to investigate the effects of population structure on the 
measured traits which revealed a greater influence on PH (14.2 to 17.3%) and a modest effect on DH (4.1 to 7.0%) 
and GY (6.3 to 9.2%) (Supplementary Table S5). A mixed linear model (MLM) which took into account PCA, 
kinship or both for GWAM based on the Bayesian Information Criterion31 was therefore used to deal with the 
confounding effect of the population structure. The use of MLM effectively eliminated the excess of low P-values 
for all traits and indices (see Q-Q plots in Supplementary Figs S2 and S3), when compared with naïve association 
analysis (no population structure adjustment at all). A comparison of MLM was also made with multi-locus 
mixed model (MLMM), which took into account multiple loci instead of single loci, for the identification of 
associations missed using MLM.

Thirty seven MTA for GY, delineating into 27 quantitative trait loci (QTL), were identified considering all 
environments. Of these, 16 MTA belonging to 11 QTL were shared between at least two or more environments. A 

Sub-genome Gene-diversity PIC

A sub-genome 0.31 0.25

B sub-genome 0.27 0.22

D sub-genome 0.18 0.15

Across genome 0.25 0.21

Table 1.   Gene diversity and polymorphic information content (PIC) of sub-genomes and across genome 
with 6040 GBS markers.

Figure 1.  The first and second principal axes from the principal component analysis of C45IBWSN using 
6040 GBS SNPs. Each data point represents a genotype. Representative parents or genetic backgrounds for 
individuals in each of the subgroups are indicated.
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comparison with previously published studies is summarized in Supplementary Table S6 revealing that nine QTL 
identified on chromosomes 1B, 2B, 3A, 4A, 5B, 6A and 7B were novel of which four were shared among multiple 
environments and five were environment specific. Of the environment-specific novel QTL, three QTL were dis-
covered for heat tolerance on chromosomes 1B and 6A and two QTL on chromosomes 2B and 5B were observed 
for drought tolerance, providing additional targets for further QTL validation and fine mapping. MLMM identi-
fied three additional novel environments specific QTL on chromosomes 1B, 3A and 3B (Supplementary Table S7).

For yield stability coefficient, 15 MTA delineating into 11 QTL were identified on chromosomes 2B, 3A, 3B, 
4A, 5B, 7A and 7B (Table 2). The GBS sequences of these markers are provided in Supplementary Table S8). As 
expected, identified associations were shared with GY in different environments, drought susceptibility index 
(DSI) and/or heat susceptibility index (HSI) (Table 2 and Fig. 3). A comparison with previous studies revealed 
that six QTL coincided with known genomic regions (previous known QTL for GY and yield components) and 
five QTL were novel (Table 2). The most significant genomic region identified for yield stability coefficient on 
chromosome 3A at 137.7 cM (associated with GY in all environments) was completely linked with a locus identi-
fied for harvest index (HI) under irrigated and drought conditions in the CIMMYT WAMI population17 and also 
coincided with the genomic region reported to be associated with GY and yield components (kernel per spike, 
thousand kernel weight) in other recent studies32,33. The second QTL on chromosome 3A at 242.7 cM was novel. 
A GY QTL reported in a recent GWAM study15 was ~24 cM away from this second QTL on chromosome 3A. The 
MTA identified on chromosome 3B for yield stability coefficient was unique as it was shared with GY only in the 
drought stress environments and DSI (Table 2). This genomic region, however, has been reported to be associated 
with GY under irrigated and stress (drought and heat stress) environments in a bi-parental cross34.

Two genomic regions were identified on chromosome 4A associated with yield stability coefficient (Table 2), 
of which the first within a 4.8 cM interval explaining 12% of the variation (identified by markers M6564, M612 
and M8365) represents a novel genomic region with almost similar effects on GY in the different environments. 
The second genomic region on chromosome 4A at 233.7 cM, with higher allelic effects in irrigated environment 
compared to stress environments, is within 1.8 to 7.4 cM from QTL reported to be associated with GY, DSI and 
HI on chromosome 4AL13,17,35,36. The genomic region identified at 153.6 cM on chromosome 5B most likely falls 
in the region of the stable QTL for GY identified in three elite populations under irrigated environments by 
GWAM15. The second genomic region between 82.46 and 82.77 cM on chromosome 5B was ~12 to 32 cM away 
from a QTL identified either for GY in irrigated and drought stress environments13,17,34 or HSIGY37 and hence 
was novel.

Two novel QTL for yield stability were identified on chromosome 7B; the first QTL identified by marker 
M7175 with higher allelic effects in irrigated and heat stress environments as compared to drought environ-
ments is within ~12 and 15 cM from a major QTL identified for heat tolerance38 and for grains per spike in 11 
environment39, respectively, while the second QTL identified by marker M1441 is 14 to 16 cM from a major QTL 
identified for GY, HI and DSI36.

The MTA for DH and PH are summarized in Supplementary Tables S9 and S10. By comparing MTA of DH 
and PH with that of GY and yield stability coefficient it was observed that many MTA were either common 

Figure 2.  Linkage disequilibrium decay across the A (a), B (b) and D (c) sub-genomes and across the entire 
genome (d) of wheat. The values on the Y-axis represent the squared correlation coefficient r2 and the values at 
X-axis represent genetic distance in centiMorgan.
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between DH, GY and yield stability coefficient or many markers associated with GY were located within 5 cM 
of QTLs of DH, suggesting that many genomic regions were confounded with phenology. These confounding 
effects can be minimized by following one of the two approaches; (a) use DH directly as a co-variable in associa-
tion analysis or (b) identify the genes associated with variation in flowering time and use their marker scores as 
co-variables in GWAM18. We followed the latter approach and first localized the known major genes controlling 
DH on our consensus map (Supplementary Table S11) to identify any co-localization of GY and yield stability 

SNP 
code

Clone 
ID Chr

Pos 
(cM) SNP

Yld Sta GY Bed ZT 5IR GY Flat 5IR GY Bed drip GY Bed 2IR GY Bed heat DSI HSI

CommentR2 R2
All 

Eff** R2 All Eff R2 All Eff R2 All Eff R2 All Eff R2 All Eff R2 All Eff

M1021*,b 1121362 2B 147.53 G/A 5.2 3.7 −​0.183 3.2 −​0.146 5.1 −​0.223 Known17

M5705a 1386000 2B 150.25 C/G 4.3 2.9 −​0.115 4.4 0.148 4.1 −​0.025

M3150*,b 996372 3A 137.76 T/C 4.6 4.2 −​0.124 4.6 −​0.172 4.2 −​0.141 5.6 −​0.183 3.5 −​0.114 3.5 0.023 Known17,32,33

M7482*,a 2265707 3A 242.72 G/C 3.3 3.5 0.089 5.2 0.156 4.5 0.129 Novel

M7810a 1098221 3B 297.56 A/G 3.4 3.4 0.101 5.2 0.119 3.3 −​0.017 Known15,34

M6564*,b 2255707 4A 48.95 G/A 5.6 5.0 0.180 5.6 0.199 4.5 −​0.037 Novel

M612*,b 977534 4A 48.95 G/C 3.5 2.2 0.120 3.4 0.141 3.5 0.126

M8365*,b 1192194 4A 53.74 A/G 3.4 4.5 0.148 3.2 0.138 3.7 0.136

M2195*,a 992502 4A 233.75 C/A 4.2 5.3 0.129 4.2 0.063 4.5 0.069 Known13,15,17,35

Vrn-B1ab 5B 165.80 8.1 3.5 −​0.170 4.6 −​0.157 5.4 −​0.231 4.4 0.027

M5964*,a 1255792 5B 153.69 C/G 4.3 3.3 −​0.101 2.5 −​0.102 3.5 −​0.108 Known13,15

M6272*,b 2266544 5B 82.77 G/C 4.2 3.4 −​0.121 3.1 −​0.089 Novel

M306a 976877 5B 82.46 G/A 4.6 4.4 −​0.138 4.0 0.024

M8490*,a 2267049 7A 170.91 T/C 3.2 4.5 0.095 2.9 0.074 2.6 0.068 Known13,15

M7175*,b 1092695 7B 202.20 G/C 4.8 3.6 0.143 2.3 0.106 4.4 0.150 3.6 −​0.030 Novel

M1441*,b 989685 7B 112.24 A/G 3.4 4.1 −​0.136 2.4 −​0.076 Novel

Table 2.   SNP markers associated (p < 0.001) with yield stability coefficient (Yld Sta) and shared with grain 
yield (GY) under different treatments, drought susceptibility index (DSI) and heat susceptibility index 
(HSI) using MLM and MLMM analyses. For each marker, chromosome (Chr) position (Pos), percentage 
variation (R2) and allelic effects (All Eff) are presented. Underlined markers represent the same genomic 
region on a chromosome. *The asterisk sign represents markers that survived covariate analysis using the 
Vrn-B1 gene as covariate. Markers that were identified within 5 cM of known QTL are reported as known 
and the corresponding reference has been superscripted. For markers belonging to same genomic region/
QTL, the comment has been put only on the first marker reported from that genomic region. The sequences 
of the markers are provided in Supplementary Table S8. The entire set of genotypic data is made available on 
DATAVERSE (http://hdl.handle.net/11529/10479). a,bSigns in superscript indicate markers identified only 
in MLM analysis (superscript a) and in both MLM and MLMM analyses (superscript b). **Sign of the allelic 
effect estimate is with respect to the nucleotide that is second in alphabetical order. From a breeding point of 
view, environments where positive effects have been reported second allele in alphabetical order is favorable, 
and where negative effects have been reported, the first allele is favorable. This is best exemplified from marker 
M5705 where allele ‘G’ is favorable under bed drip conditions and allele ‘C’ is favorable under BedZT 5IR 
conditions.

Figure 3.  Marker-trait associations (MTAs) identified for yield stability coefficient using 6,040 GBS SNP 
markers. The MTAs shared with grain yield under different irrigated, water and heat stress environments are 
shown with arrows.

http://hdl.handle.net/11529/10479
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coefficient QTL with DH genes and then investigated their association with DH, GY and yield stability coeffi-
cient. Significant associations of Vrn-B1a (dominant spring allele) and Ppd-D1a (photoperiod insensitive allele) 
alleles with DH and GY (Supplementary Tables S6 and S9) were observed, specifically in drought stress environ-
ments (Supplementary Fig. S4). Significant association of Vrn-B1a with yield stability coefficient (Table 2) was 
also found, suggesting that the genes Vrn-B1 and Ppd-D1 were major sources of variation affecting DH, GY and 
yield stability in our panel. Hence, a second GWAM was conducted using Vrn-B1a and Ppd-D1a marker scores 
as co-variables for GY and only Vrn-B1a marker scores as co-variable for yield stability coefficient. For GY, 22 
out of 37 MTA and for yield stability 12 out of 15 MTA were significant after the co-variate analysis (Table 2 and 
Supplementary Table S6).

An important observation was that using MLMM, the Vrn-D3 gene was revealed to be associated with DH 
in most environments (Supplementary Table S12), which was missed using MLM thus indicating the increased 
power of MLMM due to inclusion of multiple causal sites40 as compared to the random single marker approach 
in MLM. Moreover, one additional locus was identified on chromosome 2D, which was significantly associated 
with DH in two irrigated environments (Supplementary Table S12). This locus might be in LD with the Ppd-D1 
gene, although this needs to be confirmed as we could not map the Ppd-D1 gene due to scanty representation of 
GBS markers on chromosome 2D.

Epistatic interactions and stepwise regression of most significant markers.  It is well established 
that in any GWAM study, even the best associations show only modest R2 values for the corresponding SNPs, 
specifically for complex traits such as those undertaken in the present study. In the literature, this has been termed 
as “unexplained or missing heritability”41 and has been attributed to various factors, with the two most important 
being the involvement of complex epistatic interactions41 and unidentified rare variants42. Given the marker den-
sity and sample size, the current study was adequately powered to find alleles that are common, but a larger panel 
coupled with higher density of SNPs would empower us to detect rare variants of small effects. Knowing that we 
could not run additional association scans for identifying rare variants, we ran exhaustive epistatic scans for GY 
and yield stability coefficient to study the contribution of epistasis to their genetic architecture and to identify 
stable epistatic loci to include in forward stepwise regression analysis along with main effect loci to identify the 
best marker and allelic combinations leading to higher yield stability and mean grain yield. Epistatic interactions 
were studied in depth; (1) among marker-associated QTLs; (2) among marker-associated QTLs and the major 
genes controlling DH; (3) among marker-associated QTLs and markers without main effects; and (4) among 
markers without main effects (Fig. 4, Table 3, Supplementary Figs S5 and S6 and Supplementary Tables S13  
and S14). In the first case, 60% of markers associated with GY in different environments were involved in signif-
icant (P <​ 0.001) epistatic interactions and so were 50% of the markers associated with yield stability coefficient 
(Table 3 and Fig. 4). When the genes controlling DH were included in the model (second case), interactions 
were observed among nine marker-associated QTL for GY and Vrn-B1 and Ppd-D1 alleles, and among three 
marker-associated QTL and Vrn-B1 for yield stability coefficient (Table 3 and Fig. 4). In the third case, again 
moderate to strong interactions were observed in all environments, except in one of the irrigated environments 
(Supplementary Table S13). Additional interactions in the genome were witnessed among markers without main 
effect, influencing both GY and yield stability coefficient (Supplementary Table S14). In most cases, interactions 
observed were stronger for yield stability coefficient than for GY. The magnitude of interactions and the frequent 
involvement of Vrn-B1 and Ppd-D1 alleles in interactions with marker-associated QTL for GY and yield stability 
coefficient confirms the complexities of the genetic control of grain yield and yield stability. This also implies that 
many QTL must be manipulated simultaneously in order to obtain a significant impact.

To extract the best from our GWAM and epistatic interaction analyses, the nine most stable markers with 
main and epistatic effects (M6564, M612, M1021, M7175, M1441, M3150, M3125, M2716 and M1401) were 
selected for a forward stepwise regression analysis to identify possible marker combinations resulting in higher 
mean GY across environments. The results of the analysis revealed that the combination of four markers (M3125, 
M6564, M3150 and M1021) resulted in the highest R2 (20%) for yield stability coefficient, and including more 
markers did not result in any further significant increase (Fig. 5a). The R2 for mean GY across environments for 
the same four-marker combination was 17.5% (Fig. 5b). The allele combinations of these four markers resulting 
in the highest mean GY across environments is presented in Fig. 5c. Twenty one lines possessing this allelic 
combination have been identified for future trials, of which 18 lines showed mean GY ≥​ 5 tons/ha across envi-
ronments (Supplementary Table S15). Further, their low DSI and HSI (≤​1.0) indicate their high tolerance for 
drought and heat stress, respectively. An in silico analysis of these four markers was conducted to identify the 
candidate genes. Two of these markers showed hits with genes (heavy metal transport/detoxification superfamily 
protein and DNA J heat shock N-terminal domain-containing protein) having a proven role under stress43,44 
(Supplementary Table S16).

Conclusion
Here we identified both, known associations (previously reported QTLs for grain yield) and new candidate 
genomic regions for grain yield and yield stability coefficient. The coincidence of the QTLs for yield stability 
coefficient in the same genomic regions as QTLs reported for GY under drought and heat stress and/or for DSI 
and HSI in previous studies, specifically on chromosomes 3A, 3B and 4A, suggests that many “stability-associated 
genes” could simply be “stress-responsive genes”. We successfully demonstrated a way to use the results of exhaus-
tive association and epistatic scans in molecular breeding of complex traits such as grain yield and yield stability. 
Combining GWAM and the study of epistasis have clear potential for optimizing molecular marker based selec-
tion strategies for GY and yield stability.
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Materials and Methods
Plant materials and field experiments.  The GWAM panel consisted of 720 breeding lines that formed 
the candidate of the 45th IBWSN in 2012 in CIMMYT’s spring bread wheat program (Supplementary Table S1).

The panel was evaluated at the Borlaug experimental research station in Ciudad Obregon, Mexico, during 
the 2009–2010 and 2010–2011 growing seasons in six contrasting environments in combination with three 
management conditions [planting in beds (B), planting on the flat (F) and zero tillage farming (ZT)]. Optimum 
environments included three well-irrigated treatments with five irrigations in different management conditions 
[B-5IR 2009–2010 (I), BZT-5IR 2010–2011 (II) and F-5IR 2010–2011 (III)]. The five irrigations were applied at 
germination and 40, 70, 95 and 115 days after the first irrigation with a total water supply of 550 mm in optimum 
environments. Stress environments included two drought stress treatments [(B-2IR 2010–2011 (IV) and B-drip 

Figure 4.  Epistatic interactions for yield stability coefficient without (above) and with (below) major genes 
included in model. Each matrix indicates one marker. The A and B are the two alleles for each marker. The 
magnitude of marker effect (F value) is represented with shades of blue (dark blue with stronger interaction). 
The magnitude of epistatic interaction is presented with colors from yellow to red (stronger interaction).
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2010–2011(V)] and one high temperature treatment due to a 90 day delay in the planting date [(B-heat 2010–2011 
(VI); average Tmax >​ 32 °C]. For environment V, soil available water was estimated by collecting samples up to 
120 cm at 30 cm interval prior to planting and two irrigations (at germination and 56 days after the first irrigation) 
were applied with the total amount of water available for the plant equaling 180 mm. For environment IV, two 

Treatment DH genes included (+/−) Locus combination studied Marker and gene alleles involved in epistasis Percentage variation explained by interaction (%)

Bed 5IR

−​ 2 M2118(AA) M4418(AA) 3.0
−​ 3 M6533(AA) M2118(AA) M4418(AA) 2.9
−​ 3 M4311(BB) M2118(AA) M4418(AA) 3.0
+​ 2 M2118(AA) M4418(AA) 3.0
+​ 3 M4311(BB) M2118(AA) M4418(AA) 3.0
+​ 3 Ppd-D1a(AA) M2118(AA) M4418(AA) 3.1
+​ 3 Ppd-D1Mercia type(BB) M2118(AA) M4418(AA) 3.1

Bed ZT 5IR

−​ 2 M7175(BB) M8365(AA) 3.6
−​ 2 M6564(BB) M1021(BB) 3.5
−​ 2 M8365(BB) M1021(BB) 3.6
−​ 2 M8365(AA) M2195(AA) 3.5
−​ 3 M6564(BB) M8365(BB) M1021(BB) 3.6
+​ 2 —​ —​
+​ 3 Ppd-B1a(AA) Vrn-B1a(BB) M7175(BB) 3.2

Flat 5IR

−​ 2 M7482(AA) M5994(AA) 4.3
−​ 2 M7482(AA) M7629(AA) 4.4
−​ 3 M5964(BB) M7482(AA) M3762(BB) 3.6
−​ 3 M5964(BB) M7482(AA) M7629(AA) 4.0
−​ 3 M7482(AA) M5994(AA) M7629(AA) 4.4
+​ 2 —​ —​
+​ 3 —​ —​

Bed drip

−​ 2 —​
−​ 3 M1441(AA) M4718(BB) M5705(AA) 3.4
−​ 3 M1441(BB) M7175(BB) M306(AA) 3.4
−​ 3 M7175(BB) M306(AA) M3150(BB) 3.3
+​ 2 Ppd-D1a(AA) Vrn-B1a(AA) 2.9
+​ 2 Ppd-D1Mercia type(BB) Vrn-B1a (AA) 3.3

+​ 3 Ppd-D1Mercia type(BB) Ppd-D1a(AA) Vrn-B1a 
(AA) 3.2

Treatment Major genes included (+/−) Locus combination studied Marker and gene alleles involved in epistasis Percentage variation explained by interaction (%)

Bed 2IR

−​ 2 M612(AA) M1021(BB) 2.6
−​ 2 M612(AA) M9969(AA) 2.5
−​ 3 M612(AA) M9969(AA) M7810(BB) 2.5
+​ 2 Vrn-B1a(AA) M612(AA) 2.7
+​ 3 Vrn-B1a (AA) M612(AA) M1021(BB) 2.3

Bed heat

−​ 2 M612(AA) M4129(BB) 3.2
−​ 2 M3989(AA) M4129(BB) 3.0
−​ 2 M4129(BB) M6564(BB) 3.5
−​ 3 M612(AA) M3989(AA) M4129(BB) 3.0
−​ 3 M3989(AA) M4129(BB) M6564(BB) 3.1
+​ 2 M612(AA) M4129(BB) 3.2
+​ 2 M3989(AA) M4129(BB) 3.0

Yield 
stability 

+​ 2 M4129(BB) M6564(BB) 3.5
+​ 3 M612(AA) M3989(AA) M4129(BB) 3.0
+​ 3 M3989(AA) M4129(BB) M6564(BB) 3.1
−​ 2 M1441(BB) M612(AA) 9.3
−​ 2 M612(AA) M1021(BB) 9.0
−​ 3 M1441(BB) M306(AA) M612(AA) 9.2
−​ 3 M1441(BB) M306(AA) M6564(BB) 9.3
−​ 3 M1441(BB) M612(AA) M1021(BB) 9.2
−​ 3 M7175(BB) M612(AA) M1021(BB) 8.9
−​ 3 M612(AA) M6564(BB) M1021(BB) 9.3
+​ 2 Vrn-B1a (AA) M612(AA) 8.6
+​ 2 Vrn-B1a (AA) M6564(BB) 8.6
+​ 3 Vrn-B1a (AA) M612(AA) M6564(BB) 8.5
+​ 3 Vrn-B1a (AA) M612(AA) M1021(BB) 8.5

Table 3.   Epistatic interactions for grain yield and yield stability coefficient among associated markers and 
among associated markers and major genes. Underlined markers represent main epistatic locus interacting 
with other marker associated QTL.
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irrigations (at germination and 40 days after the first irrigation) were applied using furrow irrigation with a total 
water supply of 280 mm. Six irrigations (at germination and 30, 48, 60, 70 and 80 days after the first irrigation) 
were applied in environment VI using furrow irrigation. The experimental design was an alpha lattice design with 
three replications. Each experiment included 28 lines and two checks. For each of the trials conducted in beds, 
the plots comprised of two 0.80 m raised beds of 2.8 meters long with three planting rows on the top of each bed. 
The ZT management was different from the bed trials in complete absence of tilling for three consecutive years. 
For the flat plot trial, experimental plots were 1.3 by 4.5 m.

The phenotypic traits evaluated in this study were grain yield (GY), days to heading (DH) and plant height 
(PH) for all environments except V for which PH was not recorded. DH was recorded as the number of days from 
planting until 50% of the spikes in each plot had completely emerged above the flag leaves. PH was recorded as the 
average of three values for each plot measured in centimeter from the soil surface to the tip of the spike excluding 
awns.

Phenotypic data analysis.  For each environment, the adjusted entry mean of the genotypes were calcu-
lated for GY relative to the performance of the two check cultivars Roelfs F2007 and RSM NORMAN F2008 in 
SAS 9.4 using PROC GLM. The traits for which single replications (DH and PH) were measured, the adjusted 
mean was calculated by the formula Y =​ (Yij −​ Yi) +​ Yall trials, where Yij is value of the entry for a trial, Yi is mean of 
checks of that trial and Yall trials is the mean of checks of all trials.

Broad sense heritability (h2) was calculated across environments from variance components obtained from 
REML analysis in GenStat edition 14th using formula h2 =​ Vg/((Vg +​ Vge/n) +​ (Verr/nr)) where, Vg =​ geno-
typic variance, Vge =​ genotype x environment variance, Verr =​ error variance, n =​ number of environments and 
r =​ replicates. Pearson phenotypic correlation coefficients among traits were obtained in Minitab 15 (http://www.
minitab.com/en-IT/products/minitab/).

A drought and heat susceptibility index (DSI and HSI, respectively) was calculated as described by Fisher and 
Maurer45 and expressed by the relationship for DSI as (1 −​ Yd/Yi)/S, where Yd =​ yield of each line in drought stress 
environment (B-drip 2010–2011), Yi =​ yield of each line under fully irrigated conditions (II) and S =​ 1 −​ (Ydm/Yim) 
where Ydm and Yim are the mean yield over all genotypes evaluated under drought stress and irrigated conditions, 
respectively. Similarly, HSI was calculated as (1 −​ Yh/Yi)/S, where Yh =​ yield of each line under high temperature 
conditions (VI), and S =​ 1 −​ (Yhm/Yim) where Yhm is the mean yield over all genotypes evaluated under high tem-
perature conditions. These susceptibility indices indicate tolerance of genotypes under drought and heat stress 

Figure 5.  Stepwise regression of the nine markers for (a) yield stability coefficient and (b) adjusted mean GY 
across six environments. The starred column in part a of the figure indicates the best marker combination that 
resulted in highest R2 for yield stability and in part b it indicates the R2 of the mean GY for the four marker SNP 
combinations. The best allelic combination resulting in highest mean GY is shown in part c. Lines with ‘A’ calls 
for the SNPs associated with markers M3125 and M6564 and ‘B’ calls for markers M3150 and M1021 showed 
the highest mean GY.

http://www.minitab.com/en-IT/products/minitab/
http://www.minitab.com/en-IT/products/minitab/
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environments. DSI and HSI values greater than 1 indicate above average susceptibility to drought and heat stress, 
respectively.

A yield stability coefficient was calculated for all entries using Lin and Binn’s superiority index (Pi)19 in 
GenStat edition 14th. This index determines the mean squared distance between genotype i and the genotype with 
the maximum yield within each environment as a genotypic superiority measure (Pi) with following expression:

∑= −
=

( )Pi X M n/2
j

n

ij j
1

2

where Pi =​ superiority index of the i-th entry, Xij =​ yield of the i-th entry in the j-th environment, Mj =​ maximum 
response obtained among all the entries in the j-th environment, and n =​ number of environments. The genotypes 
with small Pi values considered to have a stable performance across environments.

Genotyping-by-sequencing.  Genomic DNA was extracted from dried leaves collected from five plants per 
line using a modified CTAB method described in CIMMYT laboratory protocols (http://repository.cimmyt.org/
xmlui/handle/10883/3221). Genotyping was accomplished using GBS developed by DArT Pty. Ltd., Yarralumla, 
Australia. The detailed methodology is described elsewhere46. A consensus map version 3.0 (http://www.diversit-
yarrays.com/sequence-maps) was provided as a part of the service which contained ~64 K GBS markers and 4000 
DArTs as anchored markers.

Genotyping with known allele-specific markers associated with major genes controlling flow-
ering time and plant height.  The GWAM panel was also genotyped with 22 allele-specific markers 
(Supplementary Table S17) for major genes controlling vernalization response (Vrn-1, Vrn-3), photoperiod sen-
sitivity (Ppd-1) and plant height (Rht-1, Rht-2). SNP marker genotyping was performed using the LGC Genomics 
KASP chemistry (www.lgcgenomics.com). The detailed protocols used for PCR reaction mixtures and thermal 
cycling conditions for amplifying SNP and STS markers are described elsewhere18.

Diversity parameters and linkage disequilibrium.  Out of a total of 11,221 GBS SNP markers, 
6,040 markers with known map positions, filtered with minor allele frequency >​0.05 and missing data points  
<​30% were used for diversity and LD analyses. The two diversity parameters, gene diversity47 and polymorphic 
information content (PIC)48, were calculated for sub-genomes and across the whole genome using an in-house 
script in R. The LD measure r2 (squared correlation coefficient) was calculated among all pairs of loci using 
TASSEL version 4.0 (http://www.maizegenetics.net) and were plotted against the genetic distance in centiMor-
gans to determine the pattern of LD decay across the three sub-genomes and whole genome. A cut off of r2 =​ 0.1 
was considered as the critical distance up to which a QTL region extends.

Genome wide association mapping.  GWAM was conducted using two models; the mixed linear model 
(MLM) in the “EMMAX” (Efficient Mixed Model Association-Expedited) package and multi-locus mixed model 
(MLMM) designed for mapping complex traits in structured populations40. The kinship matrix was calculated 
by the VanRaden algorithm49. The covariance matrix was derived by PCA using the function PRCOMP from 
the STATS package in R. A forward model selection approach using the Bayesian information criterion (BIC)31 
was used to select the best model for GWAM of each phenotype. In the case of trait being unaffected by popu-
lation structure, only kinship matrix representing cryptic relatedness (very common in breeding lines having 
shared ancestries) was taken in subsequent GWAM analysis while in the other scenario where population struc-
ture did affect trait means, appropriate number of PCs were selected based on highest BIC value to include in 
GWAM along with kinship matrix. The susceptibility indices and yield stability coefficient were treated as traits in 
GWAM. A false discovery rate (FDR) adjusted at 0.05 was initially used to determine the P-values threshold for 
declaring significant MTA. However, due to high stringency of FDR-adjusted P-values and the potential risk of 
type II error, the criterion of selecting the P-values obtained within the bottom 0.1 percentile of the distribution 
was utilized50. Thus, a threshold of P <​ 0.001 was used to declare significant MTA.

Adjacent co-segregating markers of a MTA were assigned to a unique QTL region upon meeting the following 
conditions: ≤​5 cM of inter-marker genetic distance (based on LD decay across genome) and presence of strong 
LD among markers (with r2 values ≥​ 0.5).

Assessment of epistatic interactions.  The genotypic and phenotypic data, PCA and kinship matrices 
were used to analyze epistatic interactions. A linear regression model was used to calculate P values for two- and 
three-locus marker interactions for grain yield and yield stability coefficient using an in house designed script in 
R environment (https://www.rproject.org/). A significant threshold of P <​ 0.001 was used to declare significant 
marker-marker interactions.

Stepwise regression.  To discover the best allelic combination for yield stability and highest yield across 
environments, a stepwise regression analysis was conducted in GenStat 14th Edition. All possible combinations of 
the selected markers were utilized and drawn against the adjusted R2 for yield stability and mean adjusted grain 
yield across environments.

In-silico analysis.  GBS sequences of the markers were aligned to Synthetic W7984/Opata M85 PopSeq con-
tigs and wheat genome assembly IWGSC1.0 using Bowtie2 version 2.2.2.951. The Variant Effect Predictor (VEP) 
available on the Ensemble website at http://www.ensembl.org/info/docs/tools/vep/index.html was used to deter-
mine the functional consequences of the variant within 5 kb of the SNP location.

http://repository.cimmyt.org/xmlui/handle/10883/3221
http://repository.cimmyt.org/xmlui/handle/10883/3221
http://www.diversityarrays.com/sequence-maps
http://www.diversityarrays.com/sequence-maps
http://www.lgcgenomics.com
http://www.maizegenetics.net
https://www.rproject.org/
http://www.ensembl.org/info/docs/tools/vep/index.html
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