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ABSTRACT Viral entry represents the first step of every viral infection and is a deter-
minant for the host range and disease potential of a virus. Here, we review the lat-
est developments on cell entry of the highly pathogenic Old World arenavirus
Lassa virus, providing novel insights into the complex virus-host cell interaction
of this important human pathogen. We will cover new discoveries on the molec-
ular mechanisms of receptor recognition, endocytosis, and the use of late endo-
somal entry factors.
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Among the arenaviruses, Lassa virus (LASV) represents the most prevalent human
pathogen, with several hundred thousand infections per year (1). Carried by

persistent infection of the reservoir rodent host Mastomys natalensis, LASV is endemic
in large parts of western Africa. Arenaviruses are enveloped negative-strand RNA
viruses with a nonlytic life cycle confined to the cytosol. The arenavirus genome
comprises a small (S) RNA segment encoding the envelope glycoprotein precursor
(GPC) and the nucleoprotein (NP) and an L segment coding for the matrix protein (Z)
as well as the viral polymerase (L) (2). The GPC is synthesized as a single polypeptide
and undergoes processing, yielding a stable signal peptide (SSP), N-terminal GP1, and
transmembrane GP2. GP1 binds to cellular receptors, whereas GP2 mediates viral fusion
and structurally resembles class I viral fusion proteins. Upon receptor binding, LASV
enters the host cell via receptor-mediated endocytosis, with subsequent transport to
late endosomal compartments, where fusion occurs at low pH (3, 4). Arenavirus fusion
has been covered by an excellent recent review (5) and will therefore not be described
in detail here. By an unknown mechanism of “uncoating,” the viral ribonucleoprotein is
released into the cytosol, where viral transcription and replication take place. The
assembly and release of arenavirus infectious progeny are orchestrated by the matrix
protein Z, which recruits endosomal sorting complexes required for transport (ESCRT)
proteins that are crucial for virion budding.

Human LASV infection occurs mainly via reservoir-to-human transmission (6) that
likely involves inhalation of contaminated aerosolized rodent excreta and ingestion of
contaminated food (1). Following early viral multiplication at the site of entry, the virus
disseminates via the bloodstream, reaching the lymph nodes, spleen, and liver, where
productive infection is established. A predictive factor for disease outcome is the viral
load early in infection, indicating a close competition between viral spread and
replication and the patient’s immune system (7). The pathophysiology of the fatal shock
syndrome is not well understood and may involve functional changes in vascular
endothelial cells, liver, adrenal gland, and other organs (8). Current treatment is limited
to supportive care and the antiviral drug ribavirin, which reduces mortality when given
early in disease (9). Due to its proven transmissibility via aerosol (10) and high lethality,
LASV is considered a category A agent by the Centers for Disease Control and
Prevention (11). The lack of a licensed vaccine and limited treatment options make the
development of novel therapeutic strategies against LASV an urgent need. Antiviral
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drugs capable of reducing the multiplication and spread of LASV may provide the
patient’s immune system a window of opportunity to develop an antiviral immune
response. A major challenge for the development of drugs against LASV, however, is
the limited structural information available on the pathogen. As with all viruses, LASV
critically depends on the molecular machinery of the host cell for its multiplication.
Targeting viral entry appears to be a promising strategy for therapeutic intervention, as
it allows blocking of the pathogen before it can take control of the host cell. The
identification of cellular factors required for productive LASV entry and their evaluation
as possible targets for therapeutic antiviral intervention are therefore of great interest.

LASSA VIRUS SHOWS COMPLEX RECEPTOR USE

The first LASV receptor was identified as dystroglycan (DG), a ubiquitously expressed
conserved cellular receptor for extracellular matrix (ECM) proteins (12). In mammals, DG
is found in most tissues, where it provides a molecular link between the ECM and the
actin cytoskeleton. Apart from LASV, DG can serve as a receptor for most isolates of the
prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the African are-
naviruses Mopeia virus and Mobala virus, as well as clade C New World arenaviruses (12,
13). The DG core protein is initially synthesized as a single polypeptide chain that
undergoes autoprocessing, yielding the peripheral �-DG, which interacts with ECM
proteins, and the transmembrane �-DG. At the cytosolic face, �-DG associates with the
cytoskeletal adaptor proteins dystrophin and utrophin, anchoring the DG complex to
the actin cytoskeleton (14). During biosynthesis, �-DG undergoes remarkably complex
O-glycosylation that is essential for its biological function (15). The functional glycosy-
lation of �-DG starts with the biosynthesis of the unusual O-linked trisaccharide
O-Man-�1-4-GlcNAc-�1-3GalNAc, which undergoes phosphorylation at the O-mannosyl
residue (16). A ribitol moiety links the trisaccharide to Xyl-�1-GlcA-3-�1-3 copolymers
synthesized by the dually specific glycosyltransferase like-acetylglucosaminyl-
transferase (LARGE) (17, 18). The LARGE-derived Xyl-�1-GlcA-3-�1-3 polysaccharide is
called matriglycan and recognizes laminin globular (LG) domains of ECM proteins via an
unusual lectin-type binding (15, 19, 20). Modification of DG by LARGE is also crucial for
arenavirus binding (21, 22), and a recent elegant haploid screen revealed that LASV GP
strikingly mimics the mechanisms of receptor recognition of host-derived ECM proteins
(23). While the DG core protein is ubiquitously expressed in most mammalian cells,
functional glycosylation by LARGE is under tight tissue-specific control (19). Dystrogly-
can therefore appears as a “tunable” receptor (19), whose virus-binding affinity is
influenced by the length of the LARGE-derived glycans (21). Genome-wide association
studies in human populations revealed positive selection for specific LARGE alleles in
populations from western Africa (6, 24, 25). Although the exact role of the selected
LARGE alleles in LASV susceptibility of carriers is not yet clear, the data suggest a role
of DG’s posttranslational modifications in virus-host coevolution.

Binding of viruses to their receptor(s) frequently induces signaling that functions as
a “knock on the door” to facilitate entry (26). The cytosolic domain of �-DG can
associate with signaling molecules, including the adaptor Grb2 (27); mitogen-activated
protein (MAP) kinases MEK and extracellular signal-regulated kinase (ERK) (28); and
focal adhesion kinase (29). Engagement of cellular �-DG by LASV GP induced tyrosine
phosphorylation of �-DG’s cytosolic domain, resulting in dissociation from the cyto-
skeletal adaptor utrophin, which may promote internalization of the virus-receptor
complex (30). Virus-receptor binding further affected signaling cross talk of DG with
�6�1 integrins, another widely expressed family of ECM receptors that can functionally
cooperate with DG (31, 32). However, since �1 integrins are dispensable for LASV entry,
the role of this phenomenon for viral infection is currently unclear.

More recently, the Tyro3/Axl/Mer (TAM) receptor tyrosine kinases Axl and Tyro3/Dtk,
as well as the C-type lectins dendritic cell (DC)-specific intracellular adhesion molecule
3 (ICAM-3)-grabbing nonintegrin (DC-SIGN) and liver and lymph node sinusoidal en-
dothelial cell C-type lectin (LSECtin), have been identified as novel candidate receptors
for LASV and LCMV (33, 34). Tyro3 and Axl are broadly expressed receptors for the
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phosphatidylserine (PS)-binding serum proteins Gas6 and protein S and are involved in
removal of apoptotic cells (35, 36). Over the past years, TAM kinases have been
implicated in viral entry by “apoptotic mimicry,” which involves recognition of PS
displayed in the viral lipid envelope by cellular PS receptors and is used by a broad
range of enveloped viruses (37–42). The coexpression of DG with TAM receptors in
tissues infected by LASV suggests complex receptor use. However, conflicting data on
the roles of TAM receptors in Old World arenavirus infection have been reported. A role
for Axl and Tyro3 in LASV entry was initially discovered by expression cloning using a
LASV pseudotype platform (34). Antibody perturbation experiments supported a con-
tribution of Axl to LASV entry into cells lacking functional DG (34). However, other
studies found no enhancement of LASV or LCMV entry by overexpression of TAM
kinases, and the authors concluded that these PS receptors are unable to mediate
productive infection (43). Notably, mice deficient in Axl remained highly susceptible to
LCMV infection in vivo (44). More work will be needed to define the exact roles of TAM
kinases in LASV entry into specific human target cells and their role in vivo.

Based on their more restricted expression patterns, DC-SIGN and LSECtin may
contribute to LASV entry into specific cell types, including dendritic cells (DC) that
represent important early targets during infection (45). In vitro studies on monocyte-
derived human DC revealed that high-mannose N-glycans displayed on LASV GP1 may
engage DC-SIGN during attachment (46). However, DC-SIGN seemed dispensable for
subsequent viral entry. This seems in stark contrast to what occurs in arthropod-borne
phleboviruses and Dengue virus (40, 47), which use DC-SIGN as a true entry receptor in
DC. However, the candidate receptor expression pattern of monocyte-derived DC in
vitro may differ from that of authentic DC populations in vivo, putting limitations on this
model.

DYSTROGLYCAN-MEDIATED LASV ENTRY INVOLVES AN UNUSUAL PATHWAY OF
MACROPINOCYTOSIS

Initial studies suggested that Old World arenaviruses enter via an unknown clathrin-
and dynamin-independent pathway (48–50). More recent genome-wide RNA interfer-
ence silencing screens identified sodium hydrogen exchangers (NHE) as host factors
involved in the multiplication of LCMV (51). Based on these findings, Iwasaki and
colleagues validated NHE as entry factors for LCMV and LASV and demonstrated, for the
first time, a link between arenavirus entry and macropinocytosis (52). Employing a
panel of “diagnostic inhibitors” for macropinocytosis proposed by Mercer et al. (53, 54),
LASV entry into human epithelial cells was investigated. In line with earlier studies,
functionally glycosylated DG served as the main receptor for LASV in epithelia, whereas
other candidate receptors were either absent or dispensable (55). Consistent with
previous studies (52), LASV entry was independent of dynamin, was dependent on NHE,
and required the dynamics of the actin cytoskeleton. The small GTPase Cdc42 and its
downstream effectors PAK1 and N-Wasp were required for the regulation of LASV entry,
whereas Rac1, RhoA, the Arp2/3 complex, myosin II, and myosin light-chain kinase
seemed dispensable in the cell types tested. The identification of PAK1 as a LASV entry
factor was further in line with a recent screen for anti-LASV drugs that identified the
PAK1 inhibitor OSU-03012 as a hit (56).

Macropinocytosis is a major pathway of cell entry used by �20 different viruses, and
the pathogens seem to recruit specific sets of regulatory proteins according to their
needs (54, 57). In line with this, LASV entry requires a limited subset of the known
regulators of “classical” macropinocytosis. In most cells, macropinocytosis is not con-
stitutively active but needs to be activated (53). A series of classical studies on other
viruses, including the poxvirus vaccinia virus (VACV), respiratory syncytial virus, influ-
enza A virus, echovirus 1 (58), and African swine fever virus, revealed that the patho-
gens are able to activate the pathway (42, 58–61). As a consequence, virus attachment
to the plasma membrane induces membrane “blebbing,” triggers actin depolymeriza-
tion, and increases bulk fluid uptake. In contrast, LASV entry only minimally affected the
host cell’s membrane and actin dynamics (55), possibly due to distinct receptor use
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and/or differences in virion size. Several kinases implicated in macropinocytosis are
required for LASV entry, including protein kinase C (PKC), phosphoinositol 3 kinase
(PI3K), epithelial growth factor receptor (EGFR), and hepatocyte growth factor receptor
(HGFR) (55, 56). The data at hand suggest that DG can link LASV to a pathway related
to macropinocytosis that causes only minimal perturbation of the host cell, which may
be required for its nonlytic life cycle and the ability to persist in its rodent reservoir.

LAMP1 IS A LATE ENDOSOMAL ENTRY FACTOR FOR LASV THAT FACILITATES
VIRAL FUSION

Like other early endosomal compartments, early macropinosomes undergo matu-
ration (62). Recent studies revealed that macropinosome maturation is crucial for
productive VACV entry (63), but it is unknown to what extent this applies to LASV.
Moreover, the fate of late macropinosomes is unclear and may involve fusion with
classical late endosomes and lysosomes. Since LASV passes through late endosomes
and depends on the endosomal sorting complex required for transport for entry (49),
it will be of interest to see if and at which point incoming LASV “merges” into the
classical late endosomal route. Using an unbiased haploid screening approach, Jae et
al. identified lysosome-associated membrane protein 1 (LAMP1) as a late endosomal
entry factor required by LASV (64). Under the acidic conditions of the late endosome,
the virus dissociated from its high-affinity receptor DG and engaged LAMP1, which
triggered efficient fusion. Recent structural analysis of LASV GP1 combined with
functional studies provided insights into the mechanisms underlying this “receptor
switch” (Fig. 1). X-ray analysis revealed the existence of a stable low-pH conformation
of LASV GP1 displaying a triad of histidine residues that form a binding site for LAMP1
and that is conserved among Old World arenaviruses (65). Recent electron cryotomog-
raphy studies on authentic LASV particles revealed conformational changes in GP1 to
occur under pH 5, in line with the X-ray data (66). Although LAMP1 is crucial for

FIG 1 Current model for receptor use, cell entry, and the late endosomal receptor switch of LASV (64, 65, 67). At the cell
surface, LASV GP1 engages the O-linked matriglycan polysaccharides displayed by �-DG, followed by endocytosis via an
unusual pathway related to macropinocytosis. Progressive acidification of late endosomes induces a structural change in LASV
GP1, which dissociates from DG and adapts a low-pH conformation displaying a histidine triad. Protonation of residue H230
“locks” GP1 in the prefusion state, preventing premature fusion. Engagement of LAMP1 neutralizes the positive charge on
H230 of GP1 and triggers efficient fusion with the limiting membrane of the late endosome/lysosome (for details, please see
the text).
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productive LASV entry (64), LAMP1 binding is not strictly required for fusion per se,
evidenced by mutations within the histidine triad that were still able to undergo fusion,
albeit at lower pH (67). Elegant functional studies demonstrated that residue H230
within the histidine triad on LASV GP1 undergoes protonation around pH 5.5, when
GP1 starts dissociating from DG (Fig. 1). A positive charge at residue H230 had an
inhibitory effect on LASV GP fusion activity, preventing premature fusion. Engagement
of GP1 protonated at H230 with LAMP1 may neutralize the positive charge via a
countercharge provided by LAMP1, promoting fusion triggering (67) (Fig. 1). These
studies reveal a remarkable role of the histidine triad in orchestrating the fusion activity
of LASV GP with the timing and location of the receptor switch from DG to LAMP1. This
scenario further suggests a division of labor between DG and LAMP1 in LASV entry.
Functional DG appears to serve as a high-affinity receptor that efficiently captures free
virus at the cell surface via its matriglycan polysaccharides that likely reach above the
glycocalyx, followed by rapid endocytosis. Whether DG requires assistance by other
yet-unknown coreceptor(s) for virus internalization is currently unknown. Engagement
of the late endosomal receptor LAMP1 likely guarantees optimal spatial conditions for
fusion in proximity to the limiting membrane of the late endosome. The use of late
endosomal entry factors by LASV has further interesting parallels to filoviruses and may
reflect a more common strategy of late-penetrating viruses, as discussed in an excellent
recent review (68).

PERSPECTIVES AND CHALLENGES

Recent developments on LASV entry provided novel insights into the complex
interaction of this pathogen with the host cell. At the same time, new questions arose
that need to be addressed. As pointed out above, several lines of evidence support the
notion that DG’s function as a LASV receptor critically depends on posttranslational
modification. However, the tissue tropism of the virus does not always correlate with
the extent of DG’s functional glycosylation. This is illustrated by skeletal muscle that
expresses DG with long matriglycan chains and high LASV binding affinity (19) but
seems largely resistant to infection by LCMV (69) and LASV (70, 71). Recent studies
revealed that the resistance of differentiated myotubes against LCMV lies at the level
of viral entry (72), suggesting that expression of functionally glycosylated DG per se is
insufficient for productive infection. Considering the complex interaction pattern of DG
with cellular proteins, cell type-specific DG complexes likely represent the “functional
units” of virus entry. Preexisting steady-state interactions of DG with specific cellular
factors may thus influence DG’s ability to function as a viral receptor. Moreover, some
data at hand suggest that virus binding to DG induces receptor signaling and affects
the molecular composition of the complex. It is therefore conceivable that virus
engagement of the receptor induces a dynamic pattern of protein-protein interactions
involved in the entry process, as recently illustrated in a groundbreaking study on
hepatitis C virus entry (73). The advent of unbiased shotgun proteomics approaches,
including sensitive label-free quantification, provides new and powerful techniques to
address these questions (74).

Cell entry of LASV critically depends on cellular kinases (55, 56), indicating a role of
signaling in LASV entry. The virus may actively induce cellular signaling to promote
entry, as well as to “prime” the host cell to facilitate subsequent steps of infection. Since
viruses are opportunistic and may create their own pathways by reshuffling cellular
factors according to their needs, a focus on specific signaling pathways may face some
limitations. Recently, quantitative phosphoproteomics was successfully used to dissect
the complex signaling events following the attachment of human immunodeficiency
virus type 1 (75), paving the way for similar studies on emerging viruses. Candidate
signaling pathways involved in productive LASV entry might be integrated into an
“LASV entry network,” allowing the identification of promising drug targets. Since
candidate signaling molecules may represent already-known drug targets in other
human disorders, clinically approved drugs or drug candidates in advanced stages of
development may be repurposed to combat this important human pathogen.
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