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Abstract

Mesoscopic fluorescence molecular tomography (MFMT) is new imaging modality aiming at 3-D 

imaging of molecular probes in a few millimeter thick biological samples with high-spatial 

resolution. In this paper, we develop a compressive sensing-based reconstruction method with l1-

norm regularization for MFMT with the goal of improving spatial resolution and stability of the 

optical inverse problem. Three-dimensional numerical simulations of anatomically accurate 

microvasculature and real data obtained from phantom experiments are employed to evaluate the 

merits of the proposed method. Experimental results show that the proposed method can achieve 

80 μm spatial resolution for a biological sample of 3 mm thickness and more accurate 

quantifications of concentrations and locations for the fluorophore distribution than those of the 

conventional methods.
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I. Introduction

Mesoscopic fluorescence molecular tomography (MFMT), also known as laminar optical 

tomography (LOT), has been developed to perform depth-resolved functional and molecular 

imaging at the spatial junction between microscopic and macroscopic imaging. This novel 

optical imaging modality that operates in the mesoscopic regime combines the advantages of 

diffuse optical tomography (DOT) image reconstruction and a microscopy-based setup to 

allow noncontact imaging of large areas. MFMT (or LOT) is a subsurface imaging technique 

that relies on an optical inverse problem to generate depth-resolved 3-D images of highly 

scattering tissues at depths of several millimeters and with high sensitivity [1]–[3]. Although 

MFMT can achieve reconstructions with higher resolution compared to DOT, it still faces 

the same challenges as DOT, such as, recovering the depth and size of the biomarkers with 

accuracy. In MFMT, the number of measurements available is often much smaller than the 

number of unknown 3-D image elements, which may result in the nonuniqueness of the 

solution. Moreover, the inverse solution may be more unstable when higher resolution 

performances are sought (high frequencies in the image space). As in all ill-conditioned 

diffusion-based inverse problem, the noise in the measurements data may induce large 

artifacts in the reconstructed image. Furthermore, it becomes harder to obtain accurate 

reconstructions of fluorophore biodistribution at deeper locations due to exponential decay 

of light intensities with depth and limited volume probed in reflectance geometry [4].

Recently, the emerging field of compressive sensing (CS) has shown that sparse signals, 

which have a small number of nonzero entries, can be recovered from far fewer samples or 

measurements than those required by the traditional Shannon–Nyquist sampling theorem. 

The CS theory has been generalized to recover sparse signals in general bases from limited 

number of measurement data. The CS framework has been utilized to solve the inverse 

problems of optical tomography [5]. For fluorescence tomographic imaging, it has been 

reported that sparse fluorophore concentration can be reconstructed by solving an l1-norm 

constraint optimization problem. Alternative optimization methods proposed in [6] and [7] 

are shown to offer improved performance relative to l1-norm. It is demonstrated in these 

contributions that more accurate signal reconstruction can be achieved by solving an l1-

norm-based minimization problem.

However, reconstruction algorithms selection is highly problem dependent. To our 

knowledge, CS-based reconstruction methods have not yet been applied to optical 

tomography in the mesoscopic regime. In this paper, we propose a CS-based reconstruction 

method to solve the optical inverse problem in MFMT. In such applications, the fluorophore 

distribution is often concentrated within a small spatial region, where the fluorophore 

concentrations have large amplitudes, whereas in the background region, the fluorophore 

concentrations are nonexistent or close to zero. In this case, the objective function is 

extremely sparse in the imaging domain, and, hence, very amenable to CS methods. Herein, 

the proposed method introduces an l1-norm regularization to constrain the solution to a 

sparsity subspace, suppressing the background noise, and expressing the true distributions of 

fluorophore concentrations, allowing for an accurate and stable image formation process. We 

apply this CS-based reconstruction approach to an in silico vascular bed phantom and real 

multimodal experimental data. In the following section, we describe our MFMT imaging 

Yang et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



system and image reconstruction algorithm. In the third section, we report our realistic 

numerical simulation results and physical phantom experiments with microCT 

coregistration. In the last section, we discuss relevant issues and conclude this paper.

II. Method

A. Imaging Platform

Herein, we employed an MFMT imaging system that has been reported in detail in [3] and 

used to image bioprinted tissues [8] and to retrieve the 3-D distribution of a photosensitizer 

in skin cancer prior to PDT treatment [9]. Briefly, the system is an ultrafast multiwavelength 

MFMT platform using raster scanning of a laser beam and descanned detection of the 

optical signals by seven offset detectors. The system acquires data over a maximum imaging 

area of 8 mm × 5.5 mm at 7.5 Hz (<150 ms/frame) in reflectance geometry. The laser beam 

is raster scanned using a resonant galvo mirror for ultrafast acquisitions. The fluorescence 

backscattered signal is imaged on a 4 × 8 avalanche photodiode detector array (S8550, 

Hamamatsu) from which seven elements are employed. The detectors are evenly linearly 

distributed from 800 to 3900 μm away from the source. The total number of measurements 

acquired is dependent on the imaged area and is 107 520 measurements (15 360 different 

positions ×7 detectors measurements for each source position) for the maximum imaging 

area.

B. Monte Carlo (MC)-Based Inverse Problem

To implement image reconstruction of fluorophore distribution, a numerical model is 

required to simulate photon propagation in the biological sample. The diffusion 

approximation (DA) with Robin-type boundary condition [10] is the most widely used as a 

photon propagation model because of its high computational efficiency. However, it is well 

established that it only works well in weakly absorbing and highly scattering media and 

breaks down at near sources and across boundaries. So, the DA model is not suitable to 

simulate photon propagation in the mesoscopic regime. The MC is the gold standard to 

simulate light propagation in turbid media as it can accurately simulate photon propagation 

without the aforementioned limitations of the DA. With the development of a high 

performance computing technique, MC simulation in a graphics processing unit (GPU) 

environment can be 1000 times faster than those performed on a single standard central 

processing unit (CPU) [11], [12], enabling the use of MC techniques for DOT on a personal 

computer [13], [14]. Herein, a GPU-based MC code has been employed to compute the 

forward problem using an adjoint formulation for computational efficiency (a few minutes) 

[15]. This code is also employed to generate the in silico phantom experiments. In all 

computations herein, 106 photons were employed for good statistical sampling of the 

volume imaged at all optodes spacing. To simulate fluorescence light emission in diffuse 

medium using MC, we follow the formulation described in detail in [13]. We provide briefly 

the main salient points of this formulation later.

The 3-D distribution of the fluorophore’s effective quantum yield η(r) can be obtained by 

solving an integral equation relating the fluorescence signals at time t and η(r):
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(1)

where UF (rs, rd, t) is the fluorescence detected by a detector located at rd at t resulting from 

an excitation at the source rs at t0 = 0, the integration domain Ω is defined as the entire 

imaging volume, and W (rs, rd, r, t), referred to as the weight function or Jacobian, describes 

how sensitive a change in η(r) will result in a change in UF (rs, rd, t). There are a few MC-

based methods to calculate W. Herein, we employed the forward-adjoint MC method to 

produce Jacobians [15] for computational efficiency. In the method, W is computed by 

convolving the Green’s functions and the lifetime decay of fluorophore:

(2)

where Gx and Gm are the time-dependent Green’s functions calculated by MC simulations at 

excitation and emission wavelength, respectively [10], and τ is the lifetime of the 

fluorophore. As customary done in FMT and MFMT, the optical properties at the excitation 

and emission wavelengths are considered similar herein. Moreover, as our datasets are time 

independent, the formulation of (2) is integrated over time to match our data type. The 

system of linear equations representing the measurements detected at different positions and 

time can then be solved to obtain η(r).

In practices, (2) should be discretized to perform numerical computation. First, the ROI Ω is 

discretized into voxels (or tetrahedrons). The size of cubic element is related to the spatial 

resolution of image reconstruction. Each element ei is a potential source of fluorescence, 

which is linearly related to the fluorophore’s effective quantum yield η(r). By tracing 

excitation and fluorescence photon propagation in the sample using MC, we can compute a 

system matrix A (also called sensitivity matrix or Jacobian) to describe the relation between 

the fluorophore effective quantum yield in every 3-D image element (e1, e2, …, en) and 

measurement data. The linear equation system describing the relationship between measured 

photon numbers for each optode combination and the fluorophore bio-distribution is then

(3)

where Y is a vector of the photon fluence rate with noise v measured at each detector 

element for each scanning position, X a vector of unknown fluorophore concentration at 

each voxel element, and A is the Jacobian. The task of MFMT consists in reconstructing the 

unknown fluorophore parameter distribution X based on the linear equation system (3) from 

the measured data Y.

A is generated for a chosen measurement setup following the formulation provided in [16]. 

Herein, all parameters, such as assigned optical parameters, the position and separation of 

light source and detectors, source radius, width of the detector spot detection, mimic our 
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current LOT optical system [3] applied to vascular bioprinted tissue imaging [8]. For our in 
silico experiments, based on simulated local distribution of fluorophores, we can generate 

measurement data Y via MC simulations. Noise can be added post hoc to the generated 

measurements to replicate specific acquisition settings. Herein, we employ a white Gaussian 

noise and define the signal-to-noise ratio (SNR) as follows:

(4)

where s1, s2, …, sm and n1, n2, …, nm are the entries of measurements matrix and additional 

noise, respectively. m is the number of measurements.

C. CS-Based Reconstruction

The key concept behind CS-based reconstructions is to exploit the prior knowledge that a 

large number of the unknown coefficients are close to or equal to zero (sparse and 

compressible). In optical molecular imaging applications, fluorophore probes are often 

engineered to specifically target cells/receptors of a preferred type and accumulate locally, 

forming a focal distribution of fluorophore concentrations. Hence, in such applications in 

which the image space is populated by relatively few significant pixels with nonzero values 

in image space, the CS-framework provides enhanced reconstruction performances [17], 

[18]. Besides sparsity in the image space, it is required that the CS matrix fulfils the 

incoherence property and that the reconstruction be performed via a solver that enhances 

sparsity, such as the l1-norm. To demonstrate the incoherence property of our problem, we 

employed the same methodology as described in [17].

If the transform point spread function is a natural tool to measure incoherence [19], it is hard 

to judge the incoherence when most of the inner products are tiny. Here, we employed the 

cumulative coherence function (CCF) to evaluate coherence between the transformation 

matrix T and Jacobian matrix A:

(5)

where m denotes the order of the CCF and Ω is the set of all possible subsets of m columns 

selected from the Jacobian. Furthermore, k ranges over a specific subset of Ω at a given 

order and j defines columns of the transformation matrix for all possible subsets. It has been 

shown that a slowly increasing CCF versus order m signifies incoherence [17]. The CCF of 

the CS matrix (AT) of the Jacobian and transformation basis (Fourier basis) was calculated 

for an order of up to 16. The slowly increasing trend of CCF curve, shown in Fig. 1, 

confirms the incoherence property of the CS matrix AT [17].

For the reconstruction of sparse objective function, CS techniques can achieve high-quality 

image reconstruction from far fewer measurements than that required by Nyquist sampling. 
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As one type of CS-based reconstruction strategy, the l0-norm regularization can ensure 

sparsest image reconstruction. The restricted isometry property can guarantee the 

equivalence of the solutions from the l1 and l0 minimization procedures. However, the l0-

minimization is an NP (non-deterministic polynomial)-hard problem that is almost 

impossible to solve. Thankfully, the l1 norm, which is a quantitative index to measure the 

sparsity of a signal, is a convex function which approximates the l0 norm well [20]–[24]. 

Hence, we can formulate the inverse problem as the following linearly constrained 

minimization:

(6)

where the variable is X ∈ Rn, A ∈ Rm×n, and Y ∈ Rm, and m and n are the number of 

measurements and unknowns, respectively. λ is a regularization parameter with the l1-norm 

solution giving preference to a sparse spatial distribution. The l1-regularized problem (6) can 

be transformed to a convex quadratic program, with linear inequality constraints,

(7)

where the variable u ∈ Rn.

The objective function of optimization (6) is convex but not differentiable. This problem can 

be transformed to an unconstraint optimization using interior-point methods. The 

preconditioned conjugate gradients (CG) algorithm is used to compute the search direction 

for the truncated Newton iterations to solve this optimization problem [25].

D. Objective Quantitative Performance Measure

In this investigation, besides subjective assessment of the performances of the CS approach 

based on visual inspection, we also employed a quantitative metric for objective evaluation. 

We first evaluated the mean square error (MSE) between the real fluorophore yield and the 

reconstructed image over the entire image domain [4]–[6]. Let Xtrue = {xitrue |i = 1, 2, …, k} 

and Xrecon = {xirecon|i = 1, 2, …, k} be the original and reconstruction signal, respectively. 

The proposed quality index is defined as follows:

(8)

The dynamic range of SMSE is [0, +∞). The best value 0 is achieved if and only if Xtrue = 

Xrecon for all i = 1, 2, …, k, and k is the total number of voxels in fluorophore 

concentrations. Hence, a smaller SMSE reflects higher reconstruction fidelity.
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E. Experimental Models

In silico models were designed to assess the performances of the proposed method in terms 

of spatial resolution, depth-dependent performances, and robustness to noise. First, a simple 

regular model representing a bioprinted vascular tree with main trunk and two off-shoots 

was employed. The different diameters of the vascular tree components are 400, 300, and 

200 μm, as shown in Fig. 2. The fluorophore concentrations are assumed to be homogeneous 

over the vessel as shown in Fig. 2(a)–(b) with effective quantum yield equal to 1. The 

simulated imaging domain is a 2 mm × 5 mm surface area with a depth (Fig. 2(c)). We 

assume a homogeneous scattering coefficient ( ) and endogenous absorption 

coefficient (μa = 0.02 cm−1) over the domain. The Henyey–Greenstein phase function was 

used for all computation herein with g = 0.9. These parameters replicate the optical 

properties of the collagen scaffold employed in our bioprinting application at collagen 

density of ~3 mg/mL [3].

The vascular tree was placed at six different depths, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mm, to 

test the impact of depth on reconstruction fidelity. We discretized the imaging domain 

according to the desired resolution. For example, we discretized the imaging domain into 10 

× 25 × 15 voxels when considering a 200 μm discretization, leading to a Jacobian of size 

1750 (250 source positions, seven detectors) by 3750. To investigate higher resolutions, we 

simulated also 100 and 80 μm discretizations. Examples of typical measurements for the 

7000 source positions and for individual detectors are provided in Fig. 3.

Then, two vasculature networks modeled after in vivo data obtained via two-photon 

microscopy were employed to simulate more realistic configuration of complex vascular 

networks in 3-D. To simulate an anatomically accurate vascular bed, we rescaled and 

cropped part of a microvessel network obtained from two-photon microscopy of a rat 

somatosensory cortex obtained from [26], as shown in Fig. 7(a). The segmented vessels 

were simulated to be labeled with fluorophore as reported in [8]. The fluorophore 

concentrations are assumed to be homogeneous over the vessel as shown in Fig. 7(b) and (c). 

The size of the image domain and discretization was identical to the previous in silico 
models.

Finally, the CS method is employed to reconstruct real phantom data and compared to a 

high-resolution anatomical imaging modality, in this case, microCT (Scanco Medical Viva 

CT40). Two sealed glass capillaries (douter = 1 mm, dinner = 0.61 mm) containing 5 μM of 

NIR-664-iodoacetamide (λex = 664 nm, λem = 689 nm; Sigma-Aldrich) in methanol were 

positioned in a 3-mm-thick collagen (9 mg/mL; μa = 0.08 cm−1; ) scaffold at two 

different depths in an orthogonal fashion. The phantom was imaged over a 5.5 mm × 8 mm 

area using our MFMT system (15 360 source positions-7 detectors measurements at each 

source position: 107 520 total measurements). Under microCT, the collagen phantom with 

glass capillaries was visualized with a field of view of 32.8 mm2 at 16 μm voxel size.

In all cases, both visual results and SMSE indexes are given to evaluate the performance of 

the proposed inverse methodology in different scenarios. For the purpose of comparison, we 

also give the reconstruction results by commonly used iterative regularization methods, least 
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square QR factorization (LSQR) and CG. In order to get optimal results for l1-norm, LSQR 

and CG methods, we employ the L-curve method to find the iterative number and 

regularization parameter when residual norm tends to a least value [7].

III. Result

A. MC Computation and Reconstructions

All computations were carried out to generate the Jacobians and synthetic measurements 

were performed under less than 5 min in a desktop computer (CPU: Intel Core i7-3820 

Quad-Core 3.60 GHz 10 MB Intel Smart Cache, GPU: NVIDIA Kepler K20M). Similarly, 

reconstructions were performed in a less than 5 min on the aforementioned computer. For 

instance, reconstructions based on the CS method for a 2 mm × 5 mm × 3 mm volume with 

80 μm voxel size were completed in 285 s (4 min 45 s).

B. Different Depths of Fluorophore Concentrations

Fig. 4(g) shows the calculated SMSE from reconstructions performed using the three inverse 

methods at six different depth locations (from 0.5 to 3 mm with interval 0.5 mm). The CS 

method far outperforms its counterparts at every depth investigated (four order in magnitude 

between SMSE values). For instance, a visual comparison between reconstructions based on 

the different inversion algorithms employed and for a 2 mm depth location is proposed in 

Fig. 4(a)–(f). The reconstructed image obtained via CS provides an accurate anatomical 

description of the simulated vascular tree whereas both CG and LSQR do not recover the 

three components of the vascular tree distinctly.

Moreover, the retrieved quantum yield distribution is far more homogeneous with accurate 

values in the small components of the vascular tree when using the CS method conversely to 

the two common inverse solvers. As for the CS method, its reconstruction performance also 

deteriorates with the depth increasing, shown as in Fig. 4(h). However, the reconstruction 

quality degrades at a slower rate for CS-based reconstructions than the other two methods 

when depth increases; see Fig. 4(i) and (j).

C. Reconstruction at Different Discretization Levels

The effect of discretization on performances of CS-based reconstruction for MFMT was 

investigated by discretizing the imaging domain at three different resolutions: 200, 100, and 

80 μm. We tested these three kinds of discretization resolutions for three different depth 

locations of the vascular tree: 1, 2, and 3 mm deep. Fig. 5(a)–(f) depicts the reconstructions 

results of CS with different resolutions at the depth of 2 mm (200, 100, and 80 μm, 

respectively). Fig. 5(g)–(i) shows the SMSE indexes at different depths for these three 

different imaging domains (1, 2, and 3 mm, respectively) and the three inversion methods 

employed. Fig. 5(j) reports the reconstruction quality versus depth for the CS method at the 

3 voxel resolutions. In all cases, accurate reconstructions were obtained with reconstructions 

at 80 μm providing the most homogenous effective quantum yield estimation within the 

vascular tree.
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D. Reconstruction of Different Levels of Noise

Ten different levels of Gaussian-distributed electronic noise were added to the synthetic 

measurements, with SNR ranging from 100 to 10 (evenly spaced), to evaluate the robustness 

of the proposed reconstruction method. Fig. 6 shows the SMSE versus SNR for all the ten 

different levels of noise and at three different depth locations. The SMSE of CS methods 

becomes significantly larger when SNR decreases below 40, which indicates that 

reconstruction performance of the method is also sensitive to noise. Though, despite this 

decrease in reconstruction quality as the SNR decreases, CS still outperforms CG and LSQR 

methods for all the levels of noise simulated herein. Moreover, with the depth increasing, the 

reconstruction quality of CG and LSQR becomes worse drastically.

E. Synthetic Model

To mimic more closely real applications, a complex vascular network was simulated based 

on the segmentation of the real volumetric data depicted in Fig. 7(a). Two vascular beds 

were simulated, vascular beds with complex 3-D and depth distributions [see Fig. 7(b) and 

(c)]. Fig. 7(d)–(i) displays the reconstructed images of the vasculature using the different 

inversion techniques mentioned previously with a discretization of 100 μm. As can be seen 

from Fig. 7(d) and (g), the results of CG tend to be heavily surface weighted whereas LSQR 

provides more accurate reconstructions but is able to reconstruct only the lager segment of 

the vascular bed and failed to recover the most complex distributions, as shown in Fig. 7(e) 

and (h). Conversely, the CS reconstructions provide accurate rendering of the simulated 

networks, as shown in Fig. 7(f) and (i). In both cases, the structures of the vascular beds 

were retrieved with high fidelity at all depths.

F. Vascular Structure Mimicking in a Collagen Scaffold and Validation

The reconstructions employing experimental data are provided in Fig. 8. The experimental 

data were acquired from a collagen sample, which hosted two orthogonal capillaries. The 

dye filled capillaries place beneath the surface and ~1 mm apart in depth. Prior to 

reconstruction, background data were subtracted from fluorescence data similarly to the 

procedure described in [27]. Examples of fluorescence, background, and subtracted data are 

provided in Fig. 8(f) and (g). The contrast-to-noise ratio was estimated to be >1000, owing 

to very small noise standard deviation (~5). Two reconstruction methods, CG [8] and l1-

norm, were used to solve the optical inverse problem using the subtracted dataset and 

reconstructions are provided in Fig. 8(c) and (b), respectively. Fig. 8(d), (e), (h), and (i) 

demonstrates the overlaid image of CS and CG reconstructions with microCT. The slices 

were taken along the y-axis. In both cases, the two capillaries were individually 

reconstructed at their exact locations. However, the CS-based approach provided more 

accurate results with better shape over the whole length of the capillaries and more 

homogenous fluorescence distribution conversely to CG. Also, we defined a coregistration 

ratio (the number of voxel inside or outside tube reconstructed divided by the total number 

of voxel in tube) to assess the reconstruction performance of CS for experimental data by 

counting the total number of voxels in the optical reconstructions that are located inside and 

outside of the ground-truth location of each tube as estimated by microCT. The values of 

these coregistration ratios are provided in Table I. The CS method provides better volumetric 
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registration than CG for both tubes with an agreement at least up to 92% between CS-based 

optical reconstruction and microCT versus only 76% in the best case scenario for CG (see 

Table I and Fig. 8).

IV. Discussion

Herein, we have investigated the performances of CS-based reconstruction versus commonly 

employed methods (CG and LSQR) when performing mesoscopic fluorescence tomography. 

In all cases investigated, both in silico and experimental, the CS-based reconstruction 

outperformed their counterparts both in terms of retrieving the structure of the inclusions 

with high fidelity but also in recovering quantitatively the biodistribution of the relative 

quantum yield. The CS approach demonstrated higher resolution performances (as 

expected), more accurate quantification (homogeneity), and more robust against noise. 

These results suggest that CS-based reconstruction techniques are very suitable for 

fluorescence tomographic imaging in the mesoscopic regime as the image domain is 

generally sparse. As long as optimal regularization parameters are established via techniques 

such as the L-curve, the l1-norm is a robust technique that can be implemented easily 

without much penalty in terms of computation time. Applied to imaging of sparse 

fluorescence signal, resolution to the scale of the element of volume (voxel) can be attained. 

This is very significant for numerous applications that require imaging deep thick tissue at a 

high resolution. However, as one refines the discretization of the image space, the size of the 

inverse problem becomes the most challenging part due to the sheer size of the matrices/

vectors to be manipulated. Massively parallel implementation or matrix reduction based on 

CS techniques can be employed to solve this issue. This will be investigated in subsequent 

studies to attempt to identify what the optimal resolution attainable for MFMT is. Note that 

such resolution is system dependent. In our current implementation, we collect data from 

only seven detectors. We are currently integrating a new detection module that will allow 

acquiring 64 × 64 measurements at each source position. Increasing the spatial density of the 

measurements is also expected to contribute to better reconstructions performances.

V. Conclusion

In this paper, based on the sparsity of the fluorophore distribution in the image domain, we 

have proposed image reconstruction methods with CS framework to solve the MFMT 

inverse problem. The proposed method was compared with the conventional method, such as 

CG and LSQR methods by a synthetic model of microvessel network in different voxel sizes 

(200, 100, and 80 μm). Simulations and experimental results demonstrate that the CS-based 

method yields higher fidelity reconstructions of vascular bed with better resolution and 

improved image reconstruction stability for MFMT. We plan to employ this technique to 

assess the maturation process of printed vasculature in tissue constructs [8] as well as in vivo 
imaging during PDT treatments [9].
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Fig. 1. 
CCF between Jacobian (A) and the discrete Fourier transform (T) for several orders (m = 1 – 

16).
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Fig. 2. 
Vascular tree model. (a) Three-dimensional visualization with maximum projection on the 

bounding planes. (b) XY view. The dimensions of three components of the vascular tree are 

0.4 mm × 2.8 mm × 0.4 mm, 0.7 mm × 0.3 mm × 0.3 mm, and 0.5 mm × 0.2 mm × 0.2 mm, 

respectively, for the main tree, bigger off shoot, and smaller off shoot. (c) yz-slices of the 

sensitivity matrix; seven detectors are placed along y-axis on the volume surface.
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Fig. 3. 
Synthetic measurements for the vascular model of Fig. 2. Each pixel corresponds to a source 

position for a specific detector offset with the vascular model embedded at depth of (a) 0.5 

mm and of (b) 3 mm (SNR of 60). The colorbar represents the spatial contrast distribution 

acquired by each individual detector (ΔR) normalized to the overall dynamical range of 

measurements (R).
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Fig. 4. 
Reconstruction results at different depths. (a)–(c) Reconstruction results were presented for 

CG, LSQR, and CS at depth of 2 mm. (d)–(f) Cross section of (a)–(c); colorbars represent 

the quantum efficiency (η(r)). (g) Reconstruction results of three methods at six different 

depths. (h) Reconstruction results of CS at six different depths. (i) and (j) Three-dimensional 

rendering of the reconstructions for CS at 0.5 and 2.8 mm, respectively (voxel size of 100 

μm and no noise added in the measurements).
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Fig. 5. 
Reconstruction performance for 3 voxel sizes at three different depths: (a)–(c) CS 

reconstruction results at depth of 2 mm with voxel sizes of 200, 100, and 80 μm, 

respectively. (d)–(f) Cross section of (a)–(c). Colorbars represent the quantum efficiency 

(η(r)). (g)–(i) CG, LSQR, and CS reconstruction results of three different resolutions at 

depth of 1, 2, and 3 mm with different discretization levels. (j) Reconstruction result of CS 

with 3 voxel sizes.
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Fig. 6. 
Reconstruction performance for ten levels of additional noise at three different depths. (a)–

(c) Reconstruction results of three methods at depth of 1 mm with SNR of 40. (d)–(f) SMSE 

of the three methods reconstruction results at depth of 1, 2, and 3 mm with ten levels of 

noise. (g) SMSE of CS reconstruction results at depth of 1, 2, and 3 mm with ten levels of 

noise.
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Fig. 7. 
Reconstruction results for complex vasculature by three regularization methods. (a) Raw 

data were represented in 3-D. (b) and (c) Raw data were segmented for two different sets of 

vascular channels, T1 and T2. (d)–(f) Segmented vessel, T1, was reconstructed by CG, 

LSQR, and CS, respectively. (g)–(i) Segmented vessel, T2, reconstructed by CG, LSQR, and 

CS, respectively (no noise added in the vascular network model).
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Fig. 8. 
Experimental validation of CS reconstruction results in a collagen scaffold compared with 

microCT and CG methods. (a) Ground truth for localizations of glass wall of two capillaries 

in the collagen scaffold obtained from a microCT scanner. (b) and (c) Reconstruction results 

of CS and CG, respectively. (d) and (e) Merged 3-D images of (b) and (c) with (a). (f) Raw 

data and line profile for fluorescence (blue), background (green), and subtracted (red) data, 

respectively. (g) Line profiles from two sets of data: left and right profiles. Upper figure 

shows the left profile for fluorescence (blue square), background (solid green), and 

subtraction (red circle). Lower figure follows the same convention for right region. (h) and 

(i) Overlaid reconstruction of CS and CG merged with microCT, respectively, at three 

different slices along y-axis.
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TABLE I

Quantitative Comparison Between CS and CG Reconstruction Results

Coregistration ratio CS for upper tube CG for upper tube CS for bottom tube CG for bottom tube

MircoCT (ground truth) 98% 98% 98% 98%

Inside voxels 94% 76% 92% 71%

Outside voxels 16% 22% 19% 30%
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