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Transforming growth factor b (TGF-b) and structurally related factors use several intracellular
signaling pathways in addition to Smad signaling to regulate a wide array of cellular func-
tions. These non-Smad signaling pathways are activated directly by ligand-occupied recep-
tors to reinforce, attenuate, or otherwise modulate downstream cellular responses. This
review summarizes the current knowledge of the mechanisms by which non-Smad signaling
pathways are directly activated in response to ligand binding, how activation of these path-
ways impinges on Smads and non-Smad targets, and how final cellular responses are affected
in response to these noncanonical signaling modes.

Transforming growth factor b (TGF-b) and
structurally related polypeptide growth fac-

tors, including bone morphogenetic proteins
(BMPs), growth and differentiation factors
(GDFs), activins, nodal, and Müllerian inhibi-
tory substance, have a diverse array of regulatory
functions ranging from specifying tissue pattern
formation as morphogens during embryonic
development to maintaining physiological ho-
meostasis as cytokines in adult organisms (Wu
and Hill 2009; Massagué 2012). The functions
of the specific factors within the TGF-b family
vary and can even be opposing in different cells
and at different developmental stages. A fre-
quently noted example of the context-depen-
dent roles is the dichotomy of TGF-b’s roles in
tumorigenesis. TGF-b is a tumor suppressor for
early-stage tumors and a potent growth inhibi-
tor of cells of epithelial origin, but, in advanced

stage of cancers, promotes tumor growth and
progression by inducing epithelial-to-mesen-
chymal transition (EMT) and subsequent tu-
mor invasion and metastasis (Massagué 2012;
Katsuno et al. 2013). Understanding the diver-
sity of the signaling activities of the TGF-b fam-
ily has been a herculean task and a rich ground
of important discoveries. Intense studies across
different fields over the past three decades have
revealed that all TGF-b-related ligands bind a
heteromeric complex of type I and type II trans-
membrane receptors, each equipped with an
intracellular kinase domain (Shi and Massagué
2003; Feng and Derynck 2005). In the ligand-
bound receptor complex, the type II receptor
kinases phosphorylate and thereby activate the
type I receptors, which are also known as activin
receptor–like kinases (ALKs). Downstream
from this focal complex, the main conduit for
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ligand-initiated signaling events is the Smad
family of transcription factors, among which
Smad2 and Smad3 are activated by type I recep-
tors for TGF-b, activin, or nodal, for example,
ActRIB (ALK-4), TbRI (ALK-5), and ALK-7;
whereas Smad1, Smad5, and Smad8 are activat-
ed by type I receptors of BMP signaling, for
example, BMPRIA (ALK-3) and BMPRIB
(ALK-6), or by ALK-1 and ALK-2, two type I
receptors that mediate both TGF-b and BMP
signaling. These receptor-activated Smads (R-
Smads) then form a trimeric complex with
Smad4, which acts as a common Smad to all
ligand-activated Smad pathways, and accumu-
late in the nucleus to regulate target gene expres-
sion. Inhibitory Smads (I-Smads), that is,
Smad6 and Smad7 in vertebrates, play a crucial
role in repressing Smad-mediated signaling
responses. Against this backdrop of Smad-
mediated, canonical TGF-b signaling mecha-
nisms, the activated receptors also signal
through other signal transducers, for example,
the mitogen-activated protein kinase (MAPK)
pathways, including the extracellular signal-
regulated kinases (Erks), c-Jun amino terminal
kinase (JNK), p38 MAPK, as well as the IkB
kinase (IKK), phosphatidylinositol-3 kinase
(PI3K) and Akt, and Rho family GTPases,
which in the context of TGF-b family signaling
are collectively known as non-Smad signaling
pathways (Moustakas and Heldin 2005; Zhang
2009). These receptor-activated, non-Smad
transducers mediate signaling responses either
as stand-alone pathways or in conjunction
with Smads, and they converge onto Smads to
control Smad activities. This review summariz-
es our current knowledge of the mechanisms
by which the non-Smad signaling pathways
are directly activated in response to ligand
binding, how activation of these pathways im-
pinges on Smads and non-Smad targets, and
the final outcomes of cellular responses to these
noncanonical signaling pathways. We aim to
provide a comprehensive view that incorporates
all data reported. Although we focus the dis-
cussion mostly on those pathways activated
by TGF-b, the paradigms presented may extend
to signaling by other ligands of the TGF-b
family.

ACTIVATION OF ERK MAPK BY
AND TYROSINE PHOSPHORYLATION
OF TGF-b FAMILY RECEPTORS

Already, before the discovery of Smads, Erk
MAPKs were thought to play a role in TGF-b
signaling because it was shown that TGF-b
causes a rapid activation of Ras in normal epi-
thelial as well as colon carcinoma cells (Mulder
and Morris 1992; Yan et al. 1994). Activation
of Erk1/2 by TGF-b was shown to occur within
5–10 min of ligand treatment, a time frame that
is comparable to the kinetics shown by mito-
genic growth factors, such as epidermal growth
factor (EGF), albeit with a lower intensity (Ols-
son et al. 2001). Rapid activation of Ras and/or
Erk1/2 by BMP was also observed in myoblasts,
osteoblasts, stem cells, endothelial cells, and
cancer cells (Gallea et al. 2001; Lai and Cheng
2002; Zhou et al. 2007; Le Page et al. 2009). The
TGF-b- or BMP-induced activation of Erk1/2
is dependent on the cell type and culture con-
ditions, and caution must be taken in observing
Erk activation because Erk activation in re-
sponse to growth factors in the serum, cell–
cell contacts, cell interactions with extracellular
matrix, or oncogenic activation in cancer cells
could easily obscure the much lower Erk1/2
activation in response to TGF-b or BMP. Inter-
estingly, BMP-induced activation of Erk1/2 in
osteoblasts and embryonic stem cells is usually
followed by repression of Erk activation (Kua
et al. 2012; Li et al. 2012). In some other cells,
TGF-b or BMP induces a delayed Erk activa-
tion, typically with peak phosphorylation after
several hours rather than minutes, implying an
indirect mechanism that requires de novo pro-
tein synthesis (Simeone et al. 2001). Smad-me-
diated transcription may play roles in both the
delayed activation of Erk1/2 and the inhibition
of Erk activity (Javelaud and Mauviel 2005; Li
et al. 2012).

Akin to the tyrosine receptor signaling, the
TGF-b-induced GTP loading on Ras could lead
to recruitment of the proto-oncogene product
Raf to the plasma membrane, resulting in acti-
vation of Erk1/2 through MEKs. Well known as
serine-threonine kinases, both type I and type II
TGF-b receptors also phosphorylate on tyrosine
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and are tyrosine phosphorylated. Three tyro-
sines of TbRII, Tyr259, Tyr336, and Tyr424,
were shown to be autophosphorylated, albeit
at a much lower level than the autophosphory-
lation of TbRII on serines and threonines (Law-
ler et al. 1997). Tyrosine phosphorylation of
TbRII may lead to recruitment of Src homology
2 (SH2) domain–containing (Shc) proteins by
analogy to signaling events elicited by receptor
tyrosine kinase (RTK) signaling (Schlessinger
2000; McKay and Morrison 2007). In support
of this view, Src was shown to phosphorylate
TbRII on Tyr284, which serves as a docking
site for the recruitment of growth factor recep-
tor-bound protein 2 (Grb2) and Shc, thus link-
ing TbRII to Ras and Erk activation (Galliher
and Schiemann 2007). Interestingly, high levels
of ectopic TbRII expression preferentially acti-
vate Erk1/2 in dermal cells, whereas high levels
of ectopic TbRI expression channel the signal-
ing toward the Smad pathway in epidermal cells
(Bandyopadhyay et al. 2011), contrasting the
difference in substrate preference between type
I and type II receptors. Additionally, TbRI was
phosphorylated on tyrosine after TGF-b treat-
ment (Lee et al. 2007). Because TbRI is activated
by TbRII on ligand binding and forms a tetra-
meric receptor complex with TbRII, it is not
clear whether the tyrosine phosphorylation re-
sults from autophosphorylation or phosphory-
lation in trans by TbRII. Nevertheless, the acti-
vated TbRI recruits and phosphorylates ShcA
on tyrosine and serine residues, and ShcA tyro-
sine phosphorylation then promotes the forma-
tion of ShcA-Grb2-Sos complexes that lead to
activation of Ras at the plasma membrane (Lee
et al. 2007). The kinase activities of both TbRI
and TbRII are required for ShcA phosphoryla-
tion, and overexpressed ShcA mutants lacking
either its phosphotyrosine binding (PTB) or its
SH2 domain blocked the Erk1/2 activation by
TGF-b (Lee et al. 2007). Therefore, recruitment
of signaling mediators as a result of receptor
tyrosine phosphorylation is one of the mecha-
nisms that enables TGF-b to activate non-Smad
signaling (Fig. 1). With this scenario, both TbRI
and TbRII should be seen as dual-specific kinase
receptors that accommodate the less recognized
roles resulting from tyrosine phosphorylation.

It is not known whether the BMPRII recep-
tor is tyrosine phosphorylated, although c-Src
was shown to interact with a carboxy terminal
sequence of BMPRII (Wong et al. 2005). The
BMPRIA receptor is phosphorylated on tyrosine
residues by c-Abl, a non-RTK (Kua et al. 2012).
However, c-Abl-mediated tyrosine phosphory-
lation of BMPRI inhibits BMP-induced Erk
activation, and enhances Smad1 and Smad5
activity (Kua et al. 2012). Although the role of
tyrosine phosphorylation of BMP receptors re-
mains elusive, Shc is required for BMP-induced
Erk activation. BMP-4 stimulation induces rap-
id dissociation ofb3-integrin from BMPRIA and
BMPRIB, and association of b3-integrin with
focal adhesion kinase (FAK) and Shc, and ulti-
mately, Erk activation (Chang et al. 2009).

A key biological function of TGF-b is the
induction of EMT, which normally occurs in
embryonic development and is pathologically
associated with tumor invasion and dissemina-
tion and fibrosis (Moustakas and Heldin 2012;
Lamouille et al. 2014). During EMT, cells lose
epithelial characteristics and acquire properties
of mesenchymal cells, including down-regula-
tion of adherens junctions and associated pro-
teins (e.g., E-cadherin), increased matrix metal-
loproteinase (MMP) activity, induction of actin
stress fibers, and acquisition of motile and in-
vasive properties. In advanced tumors, TGF-b
promotes tumorigenesis by inducing EMT
through a combination of Smad-dependent and
-independent mechanisms. Erk activation was
shown to be essential in TGF-b-induced EMT,
and is required for disassembly of adherens
junctions and cell motility (Zavadil et al. 2001;
Xie et al. 2004). Target genes that mediate Erk’s
role in TGF-b-induced EMT have been identi-
fied (Zavadil et al. 2001), and their functions
relate to remodeling integrin-based cell–matrix
interactions, and promoting endocytosis, as
well as cell motility.

Like TGF-b, BMPs can also induce EMT,
cell migration, and invasion in certain cancer
cells. Erk activity has been shown to contribute
to BMP-7-mediated morphologic conversion in
prostate cancer cells (Lim et al. 2011). Blocking
Erk activity using chemical inhibitors signifi-
cantly inhibits BMP-2-induced motility and
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invasiveness in lung and gastric cancer cells
(Hsu et al. 2011; Kang et al. 2011). In addition,
Erk activity was shown to be essential for BMP-
induced cell differentiation by regulating BMP
target genes, such as alkaline phosphatase
(ALP), collagen 1, fibronectin, osteopontin, os-
teocalcin, and Runx2 (Gallea et al. 2001; Lai and
Cheng 2002).

One of the mechanisms by which Erk regu-
lates the TGF-b- and BMP-induced biological
functions is through phosphorylation of its
substrates, such as AP-1 family members, p53,
and other transcription factors (Yoon and Seger

2006). Many of these Erk-regulated transcrip-
tion factors interact and cooperate with Smads
to regulate gene expression. In addition, Erk can
also regulate the activities of R-Smads, includ-
ing Smad1, Smad2, and Smad3, through direct
phosphorylation (Kretzschmar et al. 1997,
1999; Funaba et al. 2002). In cell culture sys-
tems, phosphorylation of Smads by Erk often
inhibits the transcription activity of R-Smads,
and this regulation has been invoked to explain
how oncogenic Ras overrides TGF-b-mediated
growth arrest in cancer cells (Kretzschmar et al.
1999). However, others reached different con-
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Figure 1. Transforming growth factor b (TGF-b)-induced activation of the extracellular signal-regulated kinase
(Erk) mitogen-activated protein kinase (MAPK) pathway. On binding of TGF-b to its receptor complex, the
constitutively active type II receptors phosphorylate the type I receptors at Ser/Thr residues, and induce tyrosine
phosphorylation of both the type I and II receptors and ShcA. The phosphorylated tyrosines then recruit Grb2/
Sos to activate Erk1/2 MAPK through activation of Ras, Raf, and MEK1/2 in a Smad-independent manner.
ShcA directs the TGF-b receptors to caveolin-1-containing lipid raft for Erk MAPK activation. Clathrin-de-
pendent internalization of TGF-b receptors into the Smad anchor for receptor activation (SARA)-containing
early endosome is required for Smad activation. Activated Erk MAPK contributes to epithelial-to-mesenchymal
transition (EMT) by phosphorylating targeted transcription factors, which in turn control transcription of
EMT-related genes without or in cooperation with activated Smad complexes. Erk MAPK also directly phos-
phorylates R-Smads, thus controlling their activity.
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clusions, in part based on differences in cell type
and the response examined (Lehmann et al.
2000; Javelaud and Mauviel 2005). Further-
more, ShcA, although critical for TGF-b-in-
duced Erk activation, can also repress Smad
activation by competing with Smad2 or
Smad3 for TbRI binding and directing TbRI
to caveolin-1-containing lipid raft, a membrane
domain that differs from the early endocytic
compartment in which Smads are activated
(Muthusamy et al. 2015).

ACTIVATION OF TGF-b-ACTIVATED KINASE
1 (TAK1) AND DOWNSTREAM JNK, P38
MAPK, AND IKK

Ligand binding also induces TGF-b receptors
to activate the JNK and p38 MAPK signaling
pathways (Fig. 2). These two MAPKs are specif-
ically activated by MAP kinase kinases (MKKs)
MKK4 or MKK3/6, respectively, in response to
cytokines and environmental stress (Weston
and Davis 2007). Similarly to cytokine stimula-
tion, TGF-b induces activation of JNK through
MKK4 (Frey and Mulder 1997; Engel et al. 1999;
Hocevar et al. 1999) and p38 MAPK through
MKK3 or MKK6 in various cell lines (Hanafusa
et al. 1999; Sano et al. 1999; Bhowmick et al.
2001b; Yu et al. 2002). Depending on cell con-
texts, the activation of JNK and p38 MAPK
by TGF-b or BMP can be either rapid or rela-
tively delayed. The delayed activation usually
requires Smad signaling, for example, resulting
from Smad-mediated transcription activation
of Gadd45b, an upstream activator of MKK4,
as seen in pancreatic cancer cells, hepatocytes,
and osteoblasts (Takekawa et al. 2002). In
contrast, rapid and direct transient activa-
tion of JNK and p38 MAPK, independent of
Smad activation, is revealed in Smad32/2 cells,
Smad42/2 cells, and cells that express a domi-
nant-negative form of Smad3 (Engel et al. 1999;
Hocevar et al. 1999). Smad-independent activa-
tion of JNK and p38 MAPK is also observed
using a mutant TbRI receptor with an altered
L45 loop, which renders the receptor defective in
Smad binding and phosphorylation, but still re-
tains intact kinase activity (Yu et al. 2002; Itoh
et al. 2003).

MAP kinase kinase kinases (MAPKKKs) act
upstream of and directly activate MKK3/6 and
MKK4. Among these, the MAPKKK named
TAK1 was identified using a mouse cDNA
screen, based on its ability to substitute a latent
MAPKKK of Saccharomyces cerevisiae in the
yeast-mating pheromone response, and found
to be capable of activating TGF-b signaling
and to be activated in response to TGF-b (Ya-
maguchi et al. 1995). In Xenopus, TAK1 is re-
quired for BMP-induced mesoderm induction
and patterning during embryonic development
(Shibuya et al. 1998), whereas in mice, TAK1 is
required for the proper development of the vas-
culature in both embryo and yolk sac, a process
that also depends on the type I receptor ALK-1
and the type III receptor endoglin (Shim et al.
2005; Jadrich et al. 2006). The requirement
of TAK1 for TGF-b-induced JNK and NF-kB
activation was also shown in Tak1-deficient
mouse embryonic fibroblasts (MEFs) (Shim
et al. 2005).

In contrast to the activation of Smad and
Erk pathways by phosphorylation, TGF-b re-
ceptors enlist an elaborate mechanism that cen-
ters on ubiquitylation by tumor necrosis factor
receptor-associated factor 6 (TRAF6), a RING-
domain E3 ligase, to activate this branch of
non-Smad signaling. Known to control the ac-
tivation of TAK1 that is induced by the interleu-
kin-1 receptor (IL-1R) and Toll-like receptors
(TLRs) (Wu and Arron 2003), TRAF6 was also
found to mediate the TGF-b-induced activation
of TAK1 and, subsequently, JNK and p38 MAPK
(Sorrentino et al. 2008; Yamashita et al. 2008).
Mammalian genomes encode six TRAF pro-
teins, identified by a conserved carboxy-termi-
nal TRAF domain, a RING E3 ligase domain,
and several Zn fingers in the variable amino
terminus (Inoue et al. 2007). Analogous to the
mechanism associated with IL-1R or TLR recep-
tor signaling, TRAF6 associates with the activat-
ed type II and type I TGF-b receptor complex
through its TRAF domain. This binding acti-
vates the E3 ligase activity of the RING domain
and leads to intramolecular polyubiquitylation
of TRAF6 at Lys63 (Yamashita et al. 2008). Un-
like ubiquitylation at Lys48, which targets the
protein for proteasomal degradation, polyubiq-
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uitylation of TRAF6 at Lys63 provides a scaf-
fold for the assembly and activation of protein
kinase complexes (Haglund and Dikic 2005).
Polyubiquitylated TRAF6 thus recruits TAK1
through association and induces TAK1 activa-
tion, allowing TAK1 to activate JNK and p38
MAPK (Fig. 2) (Wang et al. 2001). Recent stud-
ies showed that TRAF4 also interacts with TbRI,
resulting in Lys63-linked polyubiquitylation of

TRAF4 and subsequent activation of TAK1
(Zhang et al. 2013). It will be interesting to de-
termine whether TRAF4 and TRAF6 function
in a common complex to activate TAK1, and
whether TRAF6 and TRAF4 are required for
BMP-mediated TAK1 activation. In addition,
other MAPKKKs, such as MEKK1, MEKK4,
MLK2, MLK3, and ASK1, were also reported
to be involved in TGF-b-mediated activation
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Figure 2. Transforming growth factor b (TGF-b)-induced activation of c-Jun amino terminal kinase (JNK) and
p38 mitogen-activated protein kinase (MAPK) signaling, and the IkB kinase (IKK) pathway. Ligand-bound
TGF-b receptors interact with TRAF6 and TGF-b-activated kinase 1 (TAK1), and induce Lys63-linked poly-
ubiquitylation of TRAF6, which then activates TAK1 and downstream kinases, such as JNK, p38 MAPK, and
IKK. Smad6 inhibits the TGF-b-induced JNK and p38 MAPK activation by recruiting a deubiquitylase A20 to
deubiquitylate TRAF6, whereas Smad7 promotes TGF-b-induced JNK and p38 MAPK activation by directing
the TGF-b receptors to caveolin-1-containing lipid rafts through interaction with Smurf2. Activated JNK and
p38 MAPK then phosphorylate their targeted transcription factors, and IKK phosphorylates nuclear factor-kB
(NF-kB), and these transcription factors cooperate with activated Smads to regulate apoptosis and epithelial-to-
mesenchymal transition (EMT). In addition, JNK directly phosphorylates receptor-activated Smad (R-Smad) to
regulate Smad activity. TRAF6 can also stimulate proteolytic cleavage of TbRI dependent on presenillin 1 and
Lys63 ubiquitylation of TRAF6 to generate the intracellular domain (ICD) of TbRI, which then translocates into
the nucleus to regulate cell invasion. SARA, Smad anchor for receptor activation; MKK, MAP kinase kinase;
TRAF6, tumor necrosis factor receptor–associated factor 6.
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of JNK or p38 MAPK (Atfi et al. 1997; Brown
et al. 1999; Zhang et al. 2003; Kim et al. 2004;
Sapkota 2013). It remains to be determined
whether they can be recruited to TGF-b recep-
tors in the same manner as the TAK1.

Although independent from R-Smad acti-
vation, the activation of the JNK and p38
MAPK through TAK1 by TGF-b receptors
is regulated by the inhibitory Smad6 and
Smad7. TGF-b and BMP induce expression of
Smad6 and Smad7, which in turn inhibit ca-
nonical, Smad-dependent TGF-b/BMP signal-
ing (Afrakhte et al. 1998; Ishida et al. 2000;
Miyazono 2008). Smad6 and Smad7 also inhib-
it BMP-induced TAK1 and p38 MAPK activa-
tion, possibly through interaction with TAK1 or
the TAK1-binding protein, TAB1 (Kimura et al.
2000; Yanagisawa et al. 2001). Smad6 also in-
hibits the TGF-b-induced activation of TAK1,
JNK, and p38 MAPK. This occurs through a
different mechanism in which Smad6 recruits
the deubiquitylase A20 to TRAF6, thus block-
ing Lys63-linked polyubiquitylation of TRAF6
(Jung et al. 2013). In contrast, Smad7 was
shown to facilitate the TGF-b-induced activa-
tion of JNK and p38 MAPK (Mazars et al. 2001;
Edlund et al. 2003). The possible function of
Smad7 as a scaffold to support the interactions
among TAK1, MKK3, and p38 MAPK in TGF-b
signaling (Edlund et al. 2003) does not explain
how the interaction of Smad7 and TAK1 in
BMP signaling inhibits p38 MAPK activation.
Additionally, Smad7 may act as an adaptor that
bridges TbRI to Smurf2, an HECT-domain E3
ligase, thereby routing TbRI to caveolin-1-con-
taining lipid rafts for turnover by lysosomes
(Kavsak et al. 2000; Ebisawa et al. 2001; Di Gu-
glielmo et al. 2003). Endogenous TRAF6 is sub-
stantially associated with lipid rafts (Ha et al.
2003a), and sequestration of TRAF6 in the lipid
rafts was shown to be required for TRAF6-me-
diated activation of NF-kB in response to TLR
activation or IL-1b signaling (Ha et al. 2003b;
Soong et al. 2004; Oakley et al. 2009). It is,
therefore, possible that Smad7 enhances TGF-
b-induced activation of JNK and p38 MAPK by
routing the TGF-b receptors to lipid rafts where
TRAF6 is localized. Indeed, TbRI localization
in lipid rafts is essential for TGF-b-mediated

activation of Erk, JNK, and p38 MAPK (Zuo
and Chen 2009; Shapira et al. 2014). The local-
ization of BMP receptors in distinct plasma
membrane domains was also shown to have a
major impact on BMP signaling specificity
(Hartung et al. 2006). In contrast to TGF-b
signaling, association of lipid raft with BMP
receptors is important for canonical BMP-in-
duced R-Smad phosphorylation but not p38
MAPK activation (Zhou et al. 2010). This could
explain why Smad7 enhances TGF-b- but in-
hibits BMP-induced p38 MAPK activation.

One of the important consequences of JNK
or p38 MAPK activation is apoptosis, which is
recognized as an activity of BMP in develop-
ment and a mechanism of tumor suppression
by TGF-b. Consistent with this notion, overex-
pression of TAK1 causes cells or Xenopus em-
bryos to undergo apoptosis, whereas cells that
ectopically express a kinase-inactive mutant
TAK1 are protected from TGF-b- or BMP-in-
duced apoptosis (Shibuya et al. 1998; Kimura
et al. 2000; Edlund et al. 2003). Moreover, si-
lencing the expression of TRAF6 using siRNAs
or treating the cells with a pharmacological in-
hibitor of p38 MAPK efficiently blocks TGF-b-
induced apoptosis (Yu et al. 2002; Sorrentino
et al. 2008; Yamashita et al. 2008; Jung et al.
2013). Because Smad3 also plays an essential
role in the proapoptotic function of TGF-b (Ya-
mamura et al. 2000; Jang et al. 2002; Valder-
rama-Carvajal et al. 2002; Yang et al. 2006),
therefore, the JNK and p38 MAPK pathway co-
operates with the Smad pathway in promoting
apoptosis.

Because TAK1 is capable of activating IKKs,
which in turn activates NF-kB (Takaesu et al.
2003), TGF-b and BMPs may cross talk with the
NF-kB pathway. Indeed, activation of TAK1 by
TGF-b has been linked to activation of NF-kB
signaling in hepatocytes, fibroblasts, osteoclasts,
and hepatocellular carcinomas (Arsura et al.
2003; Gingery et al. 2008). Consistent with
this notion, Lys63-linked polyubiquitylation
of TAK1 by TRAF6 is required for activation
of NF-kB signaling by TGF-b in HepG2 hepa-
toma cells (Hamidi et al. 2012). Future studies
are necessary to determine the cellular context
or environmental cues that lead to either the
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proapoptotic activity of TGF-b or the prosur-
vival activity of NF-kB by activating TAK1.

In addition to induction of apoptosis, TGF-
b-induced JNK and/or p38 MAPK signaling
also contributes to TGF-b-induced EMT.
Blocking p38 MAPK activity using small mo-
lecular inhibitors or by expressing a dominant-
negative MKK3 mutant blocks the changes in
cell shape and reorganization of actin cytoskel-
eton that are associated with EMT (Bakin et al.
2002; Yoo et al. 2003). In addition, silencing
TRAF6 expression also causes inhibition of
TGF-b-induced EMT (Yamashita et al. 2008).
The role of TRAF6 in promoting EMTand can-
cer cell invasion may result from its ability to
stimulate proteolytic cleavage of TbRI in a pre-
senillin 1 and Lys63 ubiquitylation-dependent
manner to generate an intracellular domain
(ICD) of TbRI, which was surprisingly found
in the nucleus to promote cell invasion in cer-
tain cancer cells (Mu et al. 2011; Gudey et al.
2014). Moreover, TRAF4 was shown to be re-
quired for migration, EMT, and metastatic dis-
semination in response to TGF-b (Zhang et al.
2013). It is likely that non-Smad signaling
through TRAF4 or TRAF6 and TAK1 leading
to activation of JNK and p38 MAPK signaling
is an obligatory step in TGF-b-induced EMT
and cancer cell invasion.

THE PI3K-AKT PATHWAY IN TGF-b FAMILY
SIGNALING

The serine/threonine kinase protein kinase B,
more commonly known as Akt, regulates many
biological processes, including cell survival,
proliferation, increase in cell size, and metabo-
lism (Carnero et al. 2008; Fruman and Rommel
2014). Growth factors, hormones, and cyto-
kines are known to activate Akt through PI3K.
TGF-b and BMP were also shown to activate
Akt through PI3K, and Smad-independent or
-dependent mechanisms have been reported
(Fig. 3) (Bakin et al. 2000; Vinals and Pouyssé-
gur 2001; Ghosh-Choudhury et al. 2002; La-
mouille and Derynck 2007; Gamell et al. 2008;
Boergermann et al. 2010). By immunoprecipi-
tation, p85, the regulatory subunit of PI3K was
found constitutively associated with TbRII, but

its association with TbRI was shown only in the
presence of TGF-b (Yi et al. 2005). Although the
interaction between TGF-b receptors and p85
may not be direct, the receptor kinase activities
are essential for activation of PI3K, and TbRI
kinase inhibitors block the TGF-b-induced ac-
tivation of Akt by PI3K (Bakin et al. 2000; La-
mouille and Derynck 2007). TGF-b-induced
PI3K and Akt signaling was also shown to be
activated through receptor-mediated Lys63-
ubiquitylation of TRAF6, which in this way
not only activates TAK1, but also induces ubiq-
uitylation, membrane recruitment, and activa-
tion of Akt (Yang et al. 2009). Besides these
direct, Smad-independent mechanisms, TGF-b
was also shown to activate the PI3K-Akt path-
way by inducing the expression of the miR-
216a/217 microRNA cluster in kidney glo-
merular mesangial carcinoma and liver hepato-
cellular carcinoma cells (Kato et al. 2009; Xia
et al. 2013). MiR-216a/217 is capable of induc-
ing hyperactivation of the PI3K-Akt pathway by
repressing the expression of Smad7 and PTEN
(phosphatase and tensin homolog), an inhibi-
tor of Akt. TGF-b was also reported to activate
Akt signaling in mesangial cells by inducing the
expression of another microRNA, miR-21, that
represses PTEN expression (Dey et al. 2012).
Finally, TGF-b can also indirectly activate
PI3K-Akt signaling by inducing the expression
of TGF-a that activates EGF receptor signaling
and, thus, PI3K-Akt signaling (Vinals and
Pouysségur 2001). Conversely, the TGF-b-in-
duced, Smad-dependent expression of the lipid
phosphatase SHIP (SH2-containing inositol 50-
phosphatase) can down-regulate PI3K-Akt sig-
naling (Valderrama-Carvajal et al. 2002), and
this mechanism may account for or contribute
to the transient nature of TGF-b-induced Akt
phosphorylation.

Activation of the PI3K-Akt pathway also
contributes to TGF-b-induced EMT. Pharma-
cological inhibitors have implicated PI3K acti-
vation in the actin filament reorganization and
cell migration during EMT induced by TGF-b.
However, caution must be taken when inter-
preting results with PI3K inhibitors because
the dosage routinely applied to block PI3K-
Akt-mTOR (mammalian target of rapamycin)
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signaling also reduces the Smad2 and Smad3
activation (Bakin et al. 2000; Edlund et al.
2004), which may result from interference with
the SARA (Smad anchor for receptor activa-
tion)-dependent association of Smad2 and/or
Smad3 to the TGF-b receptors (Tsukazaki et al.
1998; Hayes et al. 2002).

mTOR, a target of the Akt kinase, plays im-
portant roles in the contribution of the PI3K-
Akt pathway to TGF-b-induced EMT. In mam-
mary epithelial cells and keratinocytes, TGF-b
induces rapid activation of mTOR complex 1
(mTORC1) and S6 kinase (S6K), leading to in-
creased protein synthesis, cell size, motility, and

invasion (Lamouille and Derynck 2007). TGF-b
also induces activation of mTOR complex 2
(mTORC2), which promotes cytoskeletal reor-
ganization, RhoA activation, and cell migration
(Lamouille et al. 2012). In addition, mTORC2
contributes to enhanced Akt activation at a
late stage of EMT (Lamouille et al. 2012), thus
forming a positive feedback loop in the PI3K-
Akt pathway activation. Besides mTOR, Akt
also regulates key EMT transcription factors.
By phosphorylating glycogen synthase kinase
(GSK) 3b, Akt stabilizes NF-kB and the EMT
transcription factor Snail, thus enhancing Snail-
dependent transcription in EMT (Zhou et al.
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2004; Julien et al. 2007). Akt also phosphory-
lates the EMT transcription factor Twist1, en-
hancing its activity to induce expression of
TGF-b2, which in turn promotes TGF-b recep-
tor signaling, PI3K-Akt pathway activity, and
EMT (Xue et al. 2012). Furthermore, TGF-b-
activated Akt2 was shown to phosphorylate
hnRNP E1 (heterogeneous nuclear ribonucleo-
protein E1) and disrupt the hnRNP E1–eEF1A1
(eukaryotic translation elongation factor 1 a1)
interaction, thereby releasing translational inhi-
bition of several genes required for EMT (Hus-
sey et al. 2011). Besides its role in EMT, PI3K also
affects the TGF-b-induced fibroblast prolifera-
tion and morphological transformation (Wilkes
et al. 2005).

Akt also directly affects Smad activities in
response to TGF-b and, thus, Smad-mediated
transcription responses. For example, the asso-
ciation of Akt with unphosphorylated Smad3
restricts TbRI-induced activation and nuclear
localization of Smad3 and, thus, attenuates the
Smad3-mediated transcription (Conery et al.
2004; Remy et al. 2004). Consistent with this,
activation of PI3K or Akt can protect cells from
TGF-b-induced apoptosis and growth inhibi-
tion (Chen et al. 1998; Shin et al. 2001; Song
et al. 2006), whereas TGF-b stimulation inhibits
the association of Akt with Smad3, allowing
Smad3 to escape Akt-mediated cytoplasmic se-
questration (Conery et al. 2004; Remy et al.
2004). Akt can also regulate Smad-mediated
transcription by phosphorylating the forkhead
transcription factor FoxO, which is required in
several Smad-mediated responses important
in growth arrest, for example, the induction of
p15INK4B and p21CIP1 expressions (Seoane et al.
2004; Gomis et al. 2006). Phosphorylation of
FoxO proteins by Akt hampers their nuclear
localization, and prevents their participation
in Smad-mediated transcription regulation.
Akt activation directly promotes TbRI stability
by phosphorylating and promoting membrane
localization of a deubiquitylating enzyme,
USP4 (ubiquitin-specific peptidase 4), which
deubiquitylates and thus stabilizes TbRI and
promotes non-Smad pathways (Zhang et al.
2012). On the other hand, activation of Akt
was shown to enhance TGF-b and BMP-in-

duced transcription responses by stabilizing
Smad1 and Smad3. This increased stability re-
sults from inactivating GSK3b, because phos-
phorylation of Smad1 and Smad3 by GSK3b
leads to ubiquitylation and degradation (Sap-
kota et al. 2007; Guo et al. 2008).

ACTIVATION OF RHO-LIKE GTPases
IN RESPONSE TO TGF-b PROTEINS

The Rho-like GTPases, RhoA, RhoB, Rac, and
Cdc42, control the dynamics of cytoskeletal or-
ganization, cell motility, and gene expression
through a variety of effectors (Jaffe and Hall
2005). TGF-b and BMP can activate Rho-
like GTPases in a cell-type-dependent manner
(Fig. 4). For example, in epithelial cells and pri-
mary keratinocytes, TGF-b activates RhoA in its
GTP-bound state within 5 min, and this activa-
tion is followed by a rapid attenuation by 15 min
(Bhowmick et al. 2001a; Edlund et al. 2002). In
mesenchymal stem cells, BMP induces a rapid
activation of RhoA and Rho-associated protein
kinase (ROCK) after cell spreading (Wang et al.
2012). Activation of RhoA by TGF-b or BMP is
likely independent of Smad2 or Smad3, as sug-
gested by the rapid onset and the inability of
a dominant-negative Smad3 mutant or Smad4
deficiency to block RhoA activities (Bhowmick
et al. 2001a; Voorneveld et al. 2014). Interesting-
ly, JNK and p38 MAPK can be activated by direct
association with these Rho GTPases, as an alter-
native to the mode of activation by MAPKKKs
(Coso et al. 1995; Minden et al. 1995); however,
it is not clear whether this mechanism plays a
role in TGF-b- or BMP-induced JNK and p38
MAPK activation.

Paradoxically, TGF-b was found to down-
regulate RhoA protein levels through Par6 (Oz-
damar et al. 2005), a scaffold protein that binds
TbRI at tight junctions and regulates cell polar-
ity in polarized epithelial cells. Engagement
with TGF-b causes the receptor complex to ac-
cumulate at tight junctions, which then leads to
phosphorylation of Par6 by TbRII and, subse-
quently, recruitment of the ubiquitin E3 ligase
Smurf1 to the activated receptor complex. The
Par6–Smurf1 complex then mediates localized
ubiquitylation and turnover of RhoA in a pro-
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tein kinase Cz (PKCz)-dependent manner,
which enables TGF-b-dependent dissolution
of tight junctions, a prerequisite for EMT. It is
therefore possible that TGF-b regulates RhoA
activity in two different phases and in two dif-
ferent cell compartments. Rapid activation of
RhoA in the early phase of signaling may be
complemented by localized down-regulation
of RhoA levels at tight junctions at a later stage.
Both phases of this regulation of RhoA in re-
sponse to TGF-b appear to be essential for the
TGF-b-induced EMT.

In addition to RhoA, TGF-b also activates
the Cdc42 GTPase. Similarly to activation of
RhoA, Cdc42 activation occurs independently
of Smads, and blocking both Smad2 and Smad3

phosphorylation does not affect the activation
of p21-activated kinase 2 (PAK2), downstream
from Rac and Cdc42 activation (Wilkes et al.
2003). Association of Cdc42 with TGF-b recep-
tor complexes at the cell surface has been shown
(Barrios-Rodiles et al. 2005), and a cluster of
proteins involved in Cdc42 and PAK signaling
was found in the TGF-b receptor–associated
protein complex. This complex includes the
PAK-interacting Cdc42 GTPase, the Rac1 ex-
change factors a-PIX and b-PIX, PAK1 itself,
a PAK1-interacting partner, oxidative stress-
responsive kinase-1 (OSR1), and occludin, a
tight-junction accessory protein (Barrios-Ro-
diles et al. 2005). Additionally, LIM kinase 1
(LIMK1), an effector of the PAK network, asso-
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ciates with BMPRII and this interaction syner-
gizes with Cdc42 and activates the catalytic ac-
tivity of LIMK1, increases the phosphocofilin
level, and induces changes in the actin cytoskel-
eton (Foletta et al. 2003; Lee-Hoeflich et al.
2004). As in the TGF-b pathway, BMP-induced
activation of Rho, ROCK, and LIMK is also im-
portant for cancer cell dissemination (Voorne-
veld et al. 2014). It is noteworthy that a delayed
peak of RhoA and Cdc42 activation, dependent
on new protein synthesis, is observed in certain
cells. Induction of this peak of GTPase activity
by TGF-b may require expression of NET1,
a RhoA-specific guanine exchange factor that
activates RhoA through Smad-mediated tran-
scription (Shen et al. 2001).

ACTIVATION OF OTHER NON-Smad
SIGNALING PATHWAYS

In some mesenchymal cell lines, but not in ep-
ithelial cell lines, TGF-b was shown to activate
the c-Abl tyrosine kinase, likely independent
of Smad2 or Smad3 activation (Daniels et al.
2004). Moreover, inhibition or loss of c-Abl pre-
vents TGF-b-induced morphological changes,
extracellular matrix gene expression, and cell
proliferation in fibroblasts (Daniels et al. 2004;
Wang et al. 2005). In BMP signaling, c-Abl was
found to associate with and phosphorylate
BMPRIA, thus skewing BMP signaling toward
activation of the Erk1/2 MAPK pathway instead
of the Smad pathway, to regulate osteoblast
expansion (Kua et al. 2012). It is not clear
whether BMP can induce c-Abl activation, nor
is the mechanism known that enables TGF-b-
induced c-Abl activation. Given the similarity
in activation kinetics and promoting TGF-b-
mediated morphological changes in the same
cell types (Wilkes et al. 2003; Daniels et al.
2004), it is possible that c-Abl functions down-
stream from the Cdc42-PAK2 pathway. Further-
more, Akt activation in response to TGF-b or
BMP may also lead to c-Abl activation.

Activation of Jak-Stat signaling has also
been seen in response to TGF-b in several cell
types. TGF-b can activate Jak1-Stat3 signaling
in hepatic stellate cells, and Jak2 in fibroblasts,
and involves Jak-Stat signaling in its ability to

promote fibrosis (Dees et al. 2012; Liu et al.
2013). Furthermore, Jak-Stat3 signaling coop-
erates with TGF-b or BMP pathways in neural
progenitor cells and hepatoma cells (Nakashima
et al. 1999; Yamamoto et al. 2001). However,
conflicting reports suggest that TGF-b inhibits
IL-6-induced Stat3 activation in acute myeloid
leukemia blast cells and hepatocellular carcino-
ma and IL-12-induced Jak-Stat signaling in
T lymphocytes (Bright and Sriram 1998; Wier-
enga et al. 2002; Tang et al. 2008). The molecu-
lar mechanisms underlying these regulations re-
main to be determined.

Finally, protein kinase A (PKA) was report-
ed to be activated in response to TGF-b (Wang
et al. 1998). Unlike activation of MAPK or
GTPase signaling, TGF-b-induced activation
of PKA requires the formation of Smad3–
Smad4 complexes. However, rather than par-
ticipating in transcriptional regulation, the
Smad3–Smad4 complex interacts with the reg-
ulatory subunit of PKA, thereby releasing the
catalytic subunit from the PKA holoenzyme
and causing its activation (Zhang et al. 2004).
Activation of PKA may play an important role
in the TGF-b-induced phosphorylation of tran-
scription factor CREB (cAMP-response ele-
ment-binding protein) and expression of fibro-
nectin (Wang et al. 1998).

CONCLUDING REMARKS

As apparent from this overview, many signaling
pathways are controlled by TGF-b and BMP
receptors, and the heteromeric receptor com-
plexes that are activated by TGF-b family pro-
teins act as nodal points for multiprotein
assemblies that activate different signaling path-
ways. Future characterization of receptor-asso-
ciated proteins using proteomics and/or phos-
phoproteomics analyses may reveal other
previously unappreciated non-Smad pathways
that are activated in response to TGF-b pro-
teins. The differential activation of non-Smad
pathways is often highly context dependent, yet
plays important roles in a variety of cellular
functions. It is of special importance to deter-
mine how TGF-b can direct membrane-bound
receptors at the cell surface to recruit and acti-
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vate multiple effectors, and how the selectivity
in downstream signaling is achieved. It is likely
that different proteins that associate with the
receptor complexes at different activation states
or subcellular locales regulate the receptor func-
tions, routing, and pathway activation. A com-
bination of in vivo imaging and manipulation
of gene expression through RNA interference,
CRISPR/Cas9-mediated genomic editing or
traditional gene silencing approaches will be
powerful in addressing the roles and mecha-
nisms of TGF-b receptors, their regulators,
and their effectors in eliciting the many signal-
ing responses through Smad-dependent and
-independent signaling pathways.

As we continue to advance our understand-
ing of TGF-b family signaling networks, the
complexity of signaling cross talk with other
pathways becomes increasingly apparent, and
we start appreciating how subtle perturbations
can result in pathological dysregulation. A ma-
jor challenge is to identify the targets in different
context for treatment of different diseases to
truly benefit individual patients.
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