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With the success of the genome-wide association studies (GWASs), many candidate loci for complex human diseases have 
been reported in the GWAS catalog. Recently, many disease prediction models based on penalized regression or statistical 
learning methods were proposed using candidate causal variants from significant single-nucleotide polymorphisms of 
GWASs. However, there have been only a few systematic studies comparing existing methods. In this study, we first 
constructed risk prediction models, such as stepwise linear regression (SLR), least absolute shrinkage and selection operator 
(LASSO), and Elastic-Net (EN), using a GWAS chip and GWAS catalog. We then compared the prediction accuracy by 
calculating the mean square error (MSE) value on data from the Korea Association Resource (KARE) with body mass index.  
Our results show that SLR provides a smaller MSE value than the other methods, while the numbers of selected variables in 
each model were similar.
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Introduction

With the development of genotyping technologies, many 
disease-related genetic variants have been verified by 
genome-wide association studies (GWASs). Diagnosis and 
disease risk prediction from the utilization of the genetic 
variants have improved even further [1]. Direct-to-consumer 
genetic companies, such as 23andME (http://www.23andme. 
com/) and Pathway Genomics (https://www.pathway.com/), 
provide personal genome information services. For example, 
the BRCA1 and BRCA2 genes play important roles in breast 
cancer diagnosis and clinical treatment [2, 3]. While several 
disease prediction studies have been conducted using 
disease-related genetic variants, there are some limitations 
to disease risk prediction. It becomes difficult to construct a 
disease risk prediction model, because there are typically a 
larger number of genetic variants than the number of 
individuals in the “large p small n” problem. Also, the effect 
size of genetic variants for most complex human diseases is 

small, and missing heritability exists [4]. Moreover, some 
loss of statistical power to identify significant associations is 
caused by the correlating single-nucleotide polymorphisms 
(SNPs) due to linkage disequilibrium (LD) [5]. Multicolli-
nearity due to high LD among SNPs causes high variance of 
coefficient estimates. In order to solve these issues, various 
statistical approaches have been recently proposed.

Initially, a gene score (GS) was computed using statistical 
models for disease risk prediction [6-8]. These risk predic-
tion models were created from GSs by summing up the 
marginal effect of each disease-associated genetic variant. 
Several studies have shown that GS is useful for risk 
prediction [9]. However, the accuracy of the risk prediction 
is poor when joint effects exist between multiple genetic 
variants [10, 11].

Building a risk prediction model using multiple SNPs is an 
effective way to improve disease risk prediction. Multiple 
logistic regression (MLR) is one of the typical traditional 
approaches. Several studies have shown the usefulness of an 
MLR-based approach for creating disease risk prediction 
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Fig. 1. Box plots of body mass index (BMI) for the given demo-
graphic variables.

Table 1. Demographic variables for KARE cohort

Variable Total

No. of samples 8,838
Sex (male [%]/female [%]) 4,179 (47.3)/4,659 (52.7)
Area (Anseong/Ansan) 4,201/4,637
Age (mean ± SD, yr) 52.22 ± 8.92
BMI (mean ± SD, kg/m2) 24.60 ± 3.12

KARE, Korea Association Resource; BMI, body mass index.

Table 2. List of the SNP sets

SNP-set Description No. of SNPs
(GWAS catalog)

No. of SNPs
(KARE)

No. of 
total SNPs

ASIAN-100 GWAS catalog ＋ KARE 16 84 100
KOREAN-100 GWAS catalog ＋ KARE 1 99 100
ALL-200 GWAS catalog ＋ KARE 136 64 200
ASIAN-200 GWAS catalog ＋ KARE 16 184 200
KOREAN-200 GWAS catalog ＋ KARE 1 199 200
GWAS-ALL Only reported SNPs in GWAS catalog 136 - 136
GWAS-ASIAN Only reported SNPs in GWAS catalog 16 - 16

SNP, single nucleotide polymorphism; GWAS, genome-wide association study; KARE, Korea Association Resource; ASIAN-100, GWAS 
catalog (Asia) ＋ single-SNP analysis; KOREAN-100, GWAS catalog (Korea) ＋ single-SNP analysis; ALL-200, GWAS catalog (All) 
＋ single-SNP analysis; ASIAN-200, GWAS catalog (Asia) ＋ single-SNP analysis; KOREAN-200, GWAS catalog (Korea) ＋ single-SNP 
analysis; GWAS-ALL, GWAS catalog (All); GWAS-ASIAN, GWAS catalog (Asia).

models [12-14]. However, the parameter estimation of MLR 
becomes unstable, and the predictive power of the risk 
prediction model decreases if there is high LD among SNPs.

In order to solve the “large p and small n” problem, many 
penalized regression approaches, like ridge [15-17], least 
absolute shrinkage and selection operator (LASSO) [18], 
and Elastic-Net (EN) [19], have been proposed. For high- 
dimensional data, these penalized approaches have several 
advantages in variable selection, as well as in prediction, over 
non-penalized approaches. For example, several researchers 
showed that the utilization of a large amount of SNPs with 
penalized regression approaches improves the accuracy of 
Crohn’s disease and bipolar disorder risk prediction [20, 21].

It is important to build a risk prediction model that 
pertains to discrete variables, such as disease diagnosis. It is 
also important to make predictions based on continuous 
variables, such as human health-related outcomes. When 
using medicines to treat diseases, we can use genetic infor-
mation to calculate the dosage, in addition to basic physical 
information, such as height and weight. For example, there 
is a prediction model for warfarin responsiveness that was 
made with multivariate linear regression [22]. We can apply 
such a model directly to disease treatment.

In this study, we focus on the prediction of quantitative 
traits using common genetic variants. We systematically 

compared the performance of prediction models through 
real data from the Korea Association Resource (KARE). We 
first selected the prediction variables using statistical 
methods, such as stepwise linear regression (SLR), LASSO, 
and EN. We then constructed commonly used risk predic-
tion models, such as SLR, LASSO, and EN. Finally, we com-
pared the predictive accuracy by calculating the mean square 
error (MSE) value for predicting body mass index (BMI). 
Overall, our results show that LASSO and SLR provide the 
smallest MSE value among the compared methods.



www.genominfo.org 151

Genomics & Informatics Vol. 14, No. 4, 2016

Fig. 2. Venn diagrams give us shared parts from 5-fold CV by 
variables selection methods. CV, cross-validation; ASIAN-100, 
genome-wide association study (GWAS) catalog (Asia) ＋ single- 
single-nucleotide polymorphism (SNP) analysis; KOREAN-100, 
GWAS catalog (Korea) ＋ single-SNP analysis; ALL-200, GWAS catalog
(All) ＋ single-SNP analysis; ASIAN-200, GWAS catalog (Asia) ＋
single-SNP analysis; KOREAN-200, GWAS catalog (Korea) ＋ single-
SNP analysis; GWAS-ALL, GWAS catalog (All); GWAS-ASIAN, 
GWAS catalog (Asia); SLR, stepwise linear regression; LASSO, least
absolute shrinkage and selection operator; EN, Elastic-Net.

Methods
Data

The KARE project, which began in 2007, is an Anseong 
and Ansan regional society-based cohort. After applying SNP 
quality control criteria—Hardy-Weinberg equilibrium p ＜ 

10−06, genotype call rates ＜ 95%, and minor allele frequency 
＜ 0.01—352,228 SNPs were utilized for analysis. Also, after 
eliminating 401 samples with call rates less than 96%, 11 
contaminated samples, 41 gender-inconsistent samples, 101 
serious concomitant illness samples, 608 cryptic-related 
samples, and 4 samples with missing phenotype, 8,838 
participants were analyzed [23]. Table 1 summarizes the 
demographic information. In addition, Fig. 1 shows box 
plots of BMI for the given demographic variables. 

Statistical analysis

We selected SNPs from the KARE data analysis based on 
single-SNP analysis and collected SNPs in the GWAS catalog 
[24]. Then, we performed two steps to make quantitative 
prediction models. First, we selected the variables by using 
SLR, LASSO, and EN and then built quantitative prediction 
models by using the same methods.

SNP sets

First, based on three different populations—overall popu-
lation, Asian-only population, and Korean-only population
—we collected the SNPs registered in the GWAS catalog for 
BMI. Second, the SNPs were selected by single-SNP analysis 
using linear regression with adjustments for sex, age, and 
area. We chose the SNPs based on the p-values. We con-
sidered the following seven SNP sets:

(1) ASIAN-100 (GWAS catalog [Asia] ＋ Single-SNP 
analysis, number of SNPs = 100)

(2) KOREAN-100 (GWAS catalog [Korea] ＋ single-SNP 
analysis, number of SNPs = 100)

(3) ALL-200 (GWAS catalog [All] ＋ single-SNP analysis, 
number of SNPs = 200)

(4) ASIAN-200 (GWAS catalog [Asia] ＋ single-SNP 
analysis, number of SNPs = 200)

(5) KOREAN-200 (GWAS catalog [Korea] ＋ single-SNP 
analysis, number of SNPs = 200)

(6) GWAS-ALL (GWAS catalog [All], number of SNPs = 
136) 

(7) GWAS-ASIAN (GWAS catalog [Asia], number of 
SNPs = 16)

Step 1: Variable selection
In the KARE data, out of 8,838 individuals, we randomly 

selected 1,767 for test sets and composed the training set 
with the rest of the 7,071 participants. We selected SNPs 
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Table 3. The number of overlapping SNPs selected by 5-fold CV for each variable selection method

SNP-sets Variable selection 
method Group 1 Group 2 Group 3 Group 4 Group 5

ASIAN-100 SLR 76 66 61 50 40
LASSO 86 77 71 66 58
EN 100 100 100 100 100

KOREAN-100 SLR 82 69 62 55 44
LASSO 87 77 72 63 57
EN 100 100 100 100 82

ALL-200 SLR 113 81 67 58 38
LASSO 174 143 119 99 69
EN 185 164 134 105 71

ASIAN-200 SLR 156 126 115 100 79
LASSO 171 154 141 127 110
EN 200 200 200 200 200

KOREAN-200 SLR 162 128 115 102 79
LASSO 166 146 136 123 106
EN 200 200 200 200 200

GWAS-ALL SLR 67 44 33 25 11
LASSO 82 58 45 32 20
EN 85 60 45 35 2

GWAS-ASIAN SLR 9 8 8 7 4
LASSO 16 14 14 12 9
EN 16 14 14 11 9

SNP, single nucleotide polymorphism; CV, cross-validation; ASIAN-100, genome-wide association study (GWAS) catalog (Asia) ＋
single-SNP analysis; SLR, stepwise linear regression; LASSO, least absolute shrinkage and selection operator; EN, Elastic-Net; 
KOREAN-100, GWAS catalog (Korea) ＋ single-SNP analysis; ALL-200, GWAS catalog (All) ＋ single-SNP analysis; ASIAN-200, GWAS 
catalog (Asia) ＋ single-SNP analysis; KOREAN-200, GWAS catalog (Korea) ＋ single-SNP analysis; GWAS-ALL, GWAS catalog (All); 
GWAS-ASIAN, GWAS catalog (Asia).

using 5-fold cross-validation (CV) of the training set. In this 
case, we used SLR, LASSO, and EN to select SNPs.

The SLR model is one of the most widely used models. Let 
yi be a quantitative phenotype for subject i = 1, …, n; xij be the 
value of SNP j = 1, …, p for subject i; code be 0, 1, and 2 for 
the number of minor alleles; and εi be the error term for 
subject i. The SLR model is 

yi = β0 ＋ β1xi1 ＋ ... ＋ βpxip ＋ γ1sexi ＋ γ2agei ＋ γ3areai 

＋ εi,
where β0 and βj are the intercept and effect sizes of SNPs, 
respectively. γ1, γ2, and γ3 represent the sex, age, and area 
of the i-th individual, respectively. Variable selection was 
performed by a MSE-based stepwise procedure. The 
stepwise procedure was performed using the R package 
“MASS” [25].

The LASSO and EN estimates of β were obtained by 
minimizing
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respectively. The tuning parameters λ1 and λ2 are 
estimated using CV. The penalized methods were performed 
using the R package “glmnet” [26].

Then, we defined five groups.
(1) Group 1 (consists of SNPs that appeared at least one 

time in the 5-fold CV)
(2) Group 2 (consists of the SNPs that appeared at least 

two times in the 5-fold CV)
(3) Group 3 (consists of the SNPs that appeared at least 

three times in the 5-fold CV)
(4) Group 4 (consists of the SNPs that appeared at least 

four times in the 5-fold CV)
(5) Group 5 (consists of the SNPs that appeared in all 

5-fold CVs)
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Table 4. MSE values from test dataset

SNP-set
Variable 
selection 
methods

Group

Prediction method

Only used 
covariates SLR LASSO EN

ASIAN-100 LASSO 1 10.24 12.81 12.06 11.15
2 10.24 13.08 12.35 13.02
3 10.24 13.08 10.77 10.97
4 10.24 12.81 11.72 11.40
5 10.24 9.64 9.66 9.69

EN 1 10.24 9.64 9.70 9.87
2 10.24 9.64 9.70 9.87
3 10.24 9.64 9.70 9.87
4 10.24 9.64 9.70 9.87
5 10.24 9.64 9.70 9.87

SLR 1 10.24 19.99 18.05 12.52
2 10.24 24.72 16.24 19.23
3 10.24 16.94 16.39 14.67
4 10.24 15.30 14.44 11.61
5 10.24 9.75 9.76 9.77

KOREAN-100 LASSO 1 10.24 12.50 13.02 12.40
2 10.24 12.04 13.99 11.51
3 10.24 12.47 12.66 11.72
4 10.24 10.37 14.60 13.55
5 10.24 9.69 9.70 9.72

EN 1 10.24 17.78 9.73 13.41
2 10.24 17.78 9.73 13.41
3 10.24 17.78 9.73 13.41
4 10.24 17.78 9.73 13.41
5 10.24 9.66 9.71 9.77

SLR 1 10.24 20.47 13.75 12.42
2 10.24 20.47 13.25 12.28
3 10.24 18.25 17.19 15.87
4 10.24 17.60 14.99 11.11
5 10.24 9.76 9.76 9.77

ALL-200 LASSO 1 10.24 14.84 11.75 12.59
2 10.24 15.55 12.79 13.20
3 10.24 15.60 15.48 12.98
4 10.24 12.86 13.85 12.24
5 10.24 9.86 9.91 9.92

EN 1 10.24 15.02 11.59 12.06
2 10.24 16.10 12.73 12.64
3 10.24 11.81 13.89 12.86
4 10.24 13.75 12.57 11.80
5 10.24 9.87 9.91 9.93

SLR 1 10.24 16.03 20.81 13.01
2 10.24 16.14 17.97 18.12
3 10.24 20.11 18.24 18.42
4 10.24 20.00 17.80 18.01
5 10.24 9.84 9.85 9.86

ASIAN-200 LASSO 1 10.24 23.87 16.36 12.95
2 10.24 13.13 19.14 13.72
3 10.24 16.07 17.55 17.90
4 10.24 15.46 14.29 12.47
5 10.24 9.67 9.73 9.74

EN 1 10.24 9.80 9.87 10.21
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Table 4. Continued 1

SNP-set
Variable 
selection 
methods

Group

Prediction method

Only used 
covariates SLR LASSO EN

2 10.24 9.80 9.87 10.21
3 10.24 9.80 9.87 10.21
4 10.24 9.80 9.87 10.21
5 10.24 9.80 9.87 10.21

SLR 1 10.24 30.37 15.40 16.63
2 10.24 24.02 21.30 12.51
3 10.24 23.32 26.35 25.17
4 10.24 21.84 17.56 18.25
5 10.24 9.87 9.86 9.87

KOREAN-200 LASSO 1 10.24 23.22 23.37 16.22
2 10.24 13.33 17.80 13.93
3 10.24 16.86 15.26 15.54
4 10.24 18.91 14.15 12.88
5 10.24 9.71 9.78 9.78

EN 1 10.24 9.82 9.86 10.23
2 10.24 9.82 9.86 10.23
3 10.24 9.82 9.86 10.23
4 10.24 9.82 9.86 10.23
5 10.24 9.82 9.86 10.23

SLR 1 10.24 38.31 18.12 13.61
2 10.24 37.07 18.31 15.04
3 10.24 29.48 18.61 16.80
4 10.24 18.60 16.16 15.84
5 10.24 9.93 9.93 9.92

GWAS-ALL LASSO 1 10.24 10.79 10.90 10.84
2 10.24 10.99 11.23 10.84
3 10.24 10.99 10.88 10.77
4 10.24 10.52 10.62 10.56
5 10.24 10.27 10.27 10.27

EN 1 10.24 10.84 10.67 10.83
2 10.24 10.92 11.00 10.66
3 10.24 10.92 11.24 11.02
4 10.24 11.00 10.94 10.86
5 10.24 10.26 10.26 10.26

SLR 1 10.24 12.21 10.67 10.62
2 10.24 11.95 11.69 10.74
3 10.24 11.50 10.92 10.41
4 10.24 11.36 11.20 10.63
5 10.24 10.26 10.26 10.25

GWAS-ASIAN LASSO 1 10.24 10.12 10.23 10.23
2 10.24 10.12 10.23 10.43
3 10.24 10.12 10.23 10.43
4 10.24 10.12 10.42 10.43
5 10.24 10.12 10.13 10.13

EN 1 10.24 10.12 10.22 10.35
2 10.24 10.12 10.35 10.36
3 10.24 10.12 10.35 10.36
4 10.24 10.12 10.32 10.33
5 10.24 10.12 10.13 10.13

SLR 1 10.24 10.35 10.37 10.36
2 10.24 10.35 10.35 10.34
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Table 4. Continued 2

SNP-set
Variable 
selection 
methods

Group

Prediction method

Only used 
covariates SLR LASSO EN

3 10.24 10.35 10.35 10.34
4 10.24 10.18 10.18 10.18
5 10.24 10.17 10.17 10.17

MSE, mean square error; SNP, single nucleotide polymorphism; SLR, stepwise linear regression; LASSO, least absolute shrinkage 
and selection operator; EN, Elastic-Net; ASIAN-100, GWAS catalog (Asia) ＋ single-SNP analysis; KOREAN-100, GWAS catalog (Korea) 
＋ single-SNP analysis; ALL-200, GWAS catalog (All) ＋ single-SNP analysis; ASIAN-200, GWAS catalog (Asia) ＋ single-SNP analysis; 
KOREAN-200, GWAS catalog (Korea) ＋ single-SNP analysis; GWAS-ALL, GWAS catalog (All); GWAS-ASIAN, GWAS catalog (Asia).

Fig. 3. Each set by MSE value, x-axis
are the number of CV containing the 
selected variable. Group 1, 5 is a mo-
del from variables of the union of CV 
and of the intersection of CV, res-
pectively. The gray bar indicates the 
SLR, the orange bar indicates the 
LASSO, the blue bar indicates the EN
and the black line is MSE value of 
10.24 from the prediction model using
only covariates. MSE, mean square 
error; CV, cross-validation; ASIAN-100,
genome-wide association study (GWAS)
catalog (Asia) ＋ single-single-nucleo-
tide polymorphism (SNP) analysis; 
KOREAN-100, GWAS catalog (Korea) 
＋ single-SNP analysis; ALL-200, GWAS
catalog (All) ＋ single-SNP analysis; 
ASIAN-200, GWAS catalog (Asia) ＋
single-SNP analysis; KOREAN-200, 
GWAS catalog (Korea) ＋ single-SNP
analysis; GWAS-ALL, GWAS catalog 
(All); GWAS-ASIAN, GWAS catalog 
(Asia); SLR, stepwise linear regression;
LASSO, least absolute shrinkage and 
selection operator; EN, Elastic-Net.
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Fig. 4. The comparison of the results from variables selected by 
different methods and from creating a model using stepwise. MSE, 
mean square error; SNP, single-nucleotide polymorphism; ASIAN- 
100, genome-wide association study (GWAS) catalog (Asia) ＋ single-
SNP analysis; KOREAN-100, GWAS catalog (Korea) ＋ single-SNP
analysis; ALL-200, GWAS catalog (All) ＋ single-SNP analysis; 
ASIAN-200, GWAS catalog (Asia) ＋ single-SNP analysis; KOREAN-200,
GWAS catalog (Korea) ＋ single-SNP analysis; GWAS-ALL, GWAS
catalog (All); GWAS-ASIAN, GWAS catalog (Asia); SLR, stepwise 
linear regression; LASSO, least absolute shrinkage and selection 
operator; EN, Elastic-Net.

Step 2: Quantitative prediction
To build a quantitative prediction model, we used the 

same prediction methods that were applied for the variable 
selection step for the comparison of these three methods in 
the variable selection and quantitative prediction. Each 
prediction model was created by using 7,071 training 
individuals via 5-fold CV. To compare the performance of the 
quantitative prediction models, we calculated the MSE by 
applying each quantitative prediction model using the test 
set (n = 1,767).

Results

To create the SNP sets associated with BMI, single-SNP 
analysis was performed by linear regression with adjust-
ments for sex, age, and area. As shown in Supplementary Fig. 
1, we found one significant SNP (rs17178527) after Bonferroni 
correction (1.45 × 10−07). rs17178527 of LOC729076 has 
been reported as BMI-associated SNP in previous GWASs 
[23, 27]. In addition, Supplementary Table 1 shows the 
results of the single-SNP analysis with p-values less than 
5.00 × 10−05. The SNPs that were reported to be associated 
with BMI in the GWAS catalog are summarized in 
Supplementary Table 2. Seven SNP sets are summarized in 

Table 2.

Step 1: Variable selection

Variable selection in each SNP set was performed via 
5-fold CV of the training set. Fig. 2 shows the overlapping 
number of selected SNPs by the variable selection methods. 
In addition, Table 3 provides more detailed information. 
Overall, SLR selected fewer SNPs than LASSO and EN. All 
SNPs were selected when EN was used in ASIAN-100, 
ASIAN-200, and KOREAN-200.

Step 2: Quantitative prediction

We made quantitative prediction models based on SLR, 
LASSO, and EN using the entire training dataset. Then, the 
MSE was calculated by applying the quantitative prediction 
models to the test dataset. Table 4 and Fig. 3 show the 
performance of each quantitative prediction model in the 
test dataset. The model using only covariates yielded an MSE 
value of 10.24. As can be seen from Fig. 3, the prediction 
model created from Group 5 yielded the smallest MSE. Fig. 
4 describes the comparison results between the numbers of 
SNPs and MSEs from the prediction models using SLR.

Among all sets, the case that used LASSO to select 
variables and SLR to create the model showed the smallest 
MSE value of 9.64 in ASIAN-100, with 51 SNPs. Among the 
51 SNPs of LASSO-SLR with one set from ASIAN-100, 28 
SNPs were mapped to genes (Table 5). Some genes, such as 
FTO, GP2, AKAP6, ANKS1B, ADCY3, and ADCY8, have been 
reported to be associated with BMI [28-33].

Discussion

In this study, we used statistical methods (SLR, LASSO, 
and EN) to select variables and build quantitative prediction 
models. Then, we compared the performance of the quanti-
tative prediction models by each SNP set (ASIAN-100, 
KOREAN-100, ALL-200, ASIAN-200, KOREAN-200, GWAS- 
ALL, and GWAS-ASIAN). As a result, the performance of the 
prediction models using the GWAS catalog and KARE data 
was better than that of the prediction models using only 
SNPs reported in the GWAS catalog. For the case that 
selected variants using LASSO in ASIAN-100 and created a 
prediction model using SLR, the MSE value was the smallest, 
9.64. At this time, the number of SNPs was 51. Also, for the 
model with the fewest SNPs, we selected variables using SLR 
from ALL-200 and created a model using SLR. The number 
of SNPs was 38, and the MSE value was 9.84. Through the 
5-fold CV, we developed a quantitative prediction model. 
After calculating MSE from groups 1 to 5, when assembled 
with SNPs that were included in all CVs, the resulting values 
of MSE were small. However, when a different group was 
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Table 5. Development of LASSO-SLR prediction model with one set from ASIAN-100 for predicting BMI

SNP β Region Gene SNP β Region Gene

rs17411146 −0.41 Upstream - rs11984203 0.19 Intron NUP205
rs4121165 −0.16 Intron FAM73A rs2726602 −0.22 Downstream TOX
rs12142366 0.27 Intron ELTD1 rs2721109 −0.18 Upstream -
rs17130257 −0.26 Downstream - rs16904384 0.71 Intron ADCY8
rs4081366 0.16 Downstream - rs10961819 0.18 Upstream -
rs527248 0.21 downstream - rs4287251 0.64 Intron -
rs1281296 −0.32 Downstream ZNF648 rs11000212 0.28 Intron ASCC1
rs12092943 0.19 Intron PIK3C2B rs11193517 −0.26 Downstream -
rs6545814 0.12 Intron ADCY3 rs11030104 −0.11 Intron -
rs12615642 0.11 Intron - rs652722 −0.13 Intron -
rs10207849 0.18 Upstream - rs7108746 −0.20 intron -
rs11893160 −0.29 Intron FHL2 rs7107562 0.25 downstream -
rs7424822 0.28 Intron THSD7B rs402590 0.50 Intron ANO2
rs9839685 0.52 Intron ATP2B2 rs4272863 −0.30 Intron AMN1
rs1399903 0.20 Downstream - rs17092358 0.16 Downstream -
rs4626221 −0.22 Intron - rs2373011 0.09 Intron ANKS1B
rs1491332 −0.21 Downstream - rs12229654 −0.15 Upstream CUX2
rs10056782 0.18 Intron PPP2R2B rs2296189 −0.21 CDS FLT1
rs6893893 −0.20 Intron ATP10B rs7995818 −0.11 Downstream -
rs792965 −0.43 Intron ERGIC1 rs9569190 0.33 Downstream -
rs3857596 0.21 Downstream - rs10483416 0.22 Intron AKAP6
rs1342644 0.16 Intron PEX7 rs12597579 −0.11 Downstream GP2
rs17178527 −0.28 - - rs9939609 0.31 Intron FTO
rs4509217 0.61 Intron HECW1 rs633265 0.22 Upstream -
rs9987062 0.28 Downstream C7orf66 rs4802919 0.16 Upstream ZNF480
rs2188187 −0.29 Intron GRM8

LASSO, least absolute shrinkage and selection operator; SLR, stepwise linear regression; ASIAN-100, GWAS catalog (Asia) ＋ single-SNP 
analysis; BMI, body mass index; SNP, single-nucleotide polymorsphism.

used, the MSE value was bigger than when using the 
covariates to build the model. Therefore, with CV, when 
using SNPs that match each of their CVs, the efficiency of 
their quantitative prediction model was high. In the variable 
selection, SLR performed better than other methods. SLR 
selected fewer SNPs than the other methods in all SNP sets 
while providing smaller MSEs. It seems that LASSO and EN 
tended to select SNPs with little contribution to BMI. For 
further research, we plan to perform simulation studies and 
a real-data analysis with other continuous traits.

There are many ways to extend the analysis of quantitative 
prediction studies. First, along with the application of 
recently developed methods, such as bootstrapping methods 
[34, 35], we will continue to explore new ways to develop 
more prediction models. Second, the incorporation of rare 
variants can improve the performance of a quantitative 
prediction model. Advanced sequencing technology has 
made it possible to investigate the role of common and rare 
variants in complex disease risk prediction. Additionally, we 
can use biological information while choosing the variables. 
By using single-SNP analysis, we can use gene or pathway 

information to find useful SNPs [36], and from here, we can 
assemble an SNP set by adding an SNP list from the 
pathways related to the disease of interest.

Supplementary materials

Supplementary data including two tables and one figure 
can be found with this article online http://www. 
genominfo.org/src/sm/gni-14-149-s001.pdf.
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