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Although a large number of genetic variants have been identified to be associated with common diseases through 
genome-wide association studies, there still exits limitations in explaining the missing heritability. One approach to solving 
this missing heritability problem is to investigate gene-gene interactions, rather than a single-locus approach. For gene-gene 
interaction analysis, the multifactor dimensionality reduction (MDR) method has been widely applied, since the constructive 
induction algorithm of MDR efficiently reduces high-order dimensions into one dimension by classifying multi-level 
genotypes into high- and low-risk groups. The MDR method has been extended to various phenotypes and has been 
improved to provide a significance test for gene-gene interactions. In this paper, we propose a simple method, called 
accelerated failure time (AFT) UM-MDR, in which the idea of a unified model-based MDR is extended to the survival 
phenotype by incorporating AFT-MDR into the classification step. The proposed AFT UM-MDR method is compared with 
AFT-MDR through simulation studies, and a short discussion is given. 
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Introduction

For the past several decades, many statistical methods 
have been developed to detect genetic variants in genome- 
wide association studies (GWASs) [1], since high-throughput 
genotyping technologies have provided a large scale of 
genetic information, such as microarray expression data, 
single-nucleotide polymorphisms (SNP), copy number 
variants, and so forth. In most early GWASs, a single-SNP 
approach was widely used to identify genetic variations 
associated with common and complex diseases, because it is 
relatively easy and efficient to estimate and test the effect of 
genetic variants. However, this single-SNP approach yields 
the missing heritability problem [2], because many complex 
diseases are naturally related to multiple genes and their 
interactions, rather than a single-SNP. Thus, many approa-

ches for solving the missing heritability problem have been 
studied, such as meta-analysis, analysis of rare variants from 
next-generation sequencing, and analysis of gene-gene 
interactions. This paper focuses on the analysis of gene-gene 
interactions associated with the survival phenotype in 
prospective studies. Since the analysis of gene-gene inter-
actions involves high-dimension variables, the method for 
reducing high-dimension to lower-dimension variables is 
practically useful to estimate the effects of genes and their 
interactions with the appropriate models.

As a strategy to reduce the dimension of high-order 
variables, the multifactor dimensionality reduction (MDR) 
method has been proposed by Ritchie et al. [3], in which 
multi-level genotypes are efficiently reduced into a binary 
attribute to detect non-linear patterns of gene-gene interac-
tions in GWASs. The MDR method originally was proposed 
for a binary phenotype in a case-control study, and it is a 
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nonparametric and genetic model-free approach. The key 
idea of MDR is to classify multi-dimensional genotypes into 
one-dimensional binary attributes by pooling genotypes of 
multiple SNPs using a well-defined statistic, such as the ratio 
of cases and controls. Many modifications for MDR have 
been proposed by generalizing the binary phenotype to 
quantitative traits and survival time with various classifiers. 
For example, Lou et al. [4] proposed a generalized MDR 
(GMDR), which includes both binary and continuous 
phenotypes and uses a score-based residual to classify 
multi-level genotypes into high- and low-risk groups. In 
addition, the GMDR allows for the adjustment of covariates, 
such as many demographic variables. 

In addition, the constructive induction algorithm of MDR 
has also been extended to investigate gene-gene interactions 
associated with the survival phenotype. Gui et al. [5] first 
proposed a novel approach, called Survival-MDR (Surv- 
MDR), for detecting gene-gene interactions with survival 
times using the combinatorial algorithm of MDR. The 
Surv-MDR method replaces case-control ratios by a log-rank 
test statistic with survival time. Thus, the balanced accuracy 
is replaced by a log-rank test statistic, but the other 
cross-validation procedure for selecting the best model is 
unchanged. It has been shown that Surv-MDR has better 
power than traditional Cox regression models through 
intensive simulation studies. Also, Surv-MD has success-
fully identified the SNP-SNP interactions associated with 
survival time in bladder cancer data, as shown in Andrew et 
al. [6]. However, there exists a weakness of Surv-MDR, 
which can not adjust the effect of the covariate, because it 
uses the log-rank test statistic as a classifier. 

To overcome the disadvantage of Surv-MDR, Lee et al. [7] 
proposed a simple method, called Cox-MDR, which uses a 
martingale residual as a classifier and allows for the 
adjustment of covariates. Similarly, Oh and Lee [8] proposed 
another method, called AFT-MDR, which uses a standar-
dized residual as a new classifier. In an accelerated failure 
time model, the standardized residual is the normalized 
difference between the observed log survival time and the 
expected log survival time under the assumed model. Thus, 
it can be interpreted that a positive standardized residual 
implies a longer survival effect, while a negative standar-
dized residual implies a shorter survival effect than expected. 
It is reasonable to classify subjects into high- and low-risk 
groups by the standardized residual, since it can be inter-
preted as a measure of association between putative genetic 
factors and survival time. Furthermore, AFT-MDR can 
adjust for the effect of covariates under the framework of the 
accelerated failure time regression model, unlike Surv-MDR. 

However, both Surv-MDR and AFT-MDR only provide the 
best pair of SNPs, which is selected by 10-fold cross- 

validation, and the significance of a gene-gene interaction is 
achieved by intensive permutations. Recently, Yu et al. [9] 
proposed a unified model-based MDR (UM-MDR) method 
to overcome the disadvantage of MDR, which needs 
permutation tests for the significance of the effect of the best 
pair of SNPs. The UM-MDR method includes two steps for 
investigating gene-gene interactions, in which multi- 
dimensional genotypes are classified into high- and low-risk 
groups, and then, an indicator for the high-risk group is 
defined in the first step. In the second step of the UM-MDR 
method, the indicator variable for the high-risk group is 
considered a covariate, with other adjusted covariates in the 
regression model. Then, the significance of a gene-gene 
interaction is obtained by testing the indicator variable of the 
high-risk group. 

Through simulation studies, we compared the proposed 
method with AFT-MDR with and without the main effect 
using 70 different penetrance models listed by Velez et al. 
[10]. From the simulation results, the power of the proposed 
method is similar to that of AFT-MDR when the main effect 
is not considered, but it performs better than AFT-MDR 
when the censoring fraction is greater than 0.3. In addition, 
the power of the proposed method is much greater than that 
of AFT-MDR when the main effect is considered, while 
AFT-MDR has no power when there is a strong main effect. 
The power of the proposed method also decreases as the 
censoring fraction increases.

Methods

Let Ti denote the survival time for the ith individual and xi 
and zi denote the predictor variable vector coding a 
gene-gene and gene-environment interaction of interest and 
the vector coding for the covariates, respectively. Let β and 
γ be the corresponding parameter vectors to xi and zi, 
respectively. Then, we call β the target effects and γ the 
covariate effects. The parametric regression model repre-
sents the linear relationship between the log survival time 
and covariates as follows:

Y = logT = μ ＋ β'X ＋ γ'Z ＋ σW.

Here, μ is the mean value of the log survival time when 
X = Z = 0, σ is a scale parameter, and W is the error 
distribution. When T has a Weibull distribution, W has a 
standard extreme value distribution. For a log-logistic 
distribution, W has a standard logistic distribution. 

The standardized residual for the ith individual, si =




  ′ , is obtained from the null model of no target 

effects (i.e., β = 0). Since the standardized residual is the 
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Table 1. Type-I errors of the proposed method for two cases when the non-centrality of the chi-square distribution is uncorrected
and corrected

MAF
Cf = 0 Cf = 0.1 Cf = 0.3 Cf = 0.5

Uncorr Corr Uncorr Corr Uncorr Corr Uncorr Corr

0.05 0.17 0.03 0.16 0.03 0.15 0.05 0.07 0.04
0.10 0.16 0.01 0.19 0.03 0.15 0.05 0.11 0.04
0.20 0.36 0.04 0.31 0.02 0.22 0.01 0.21 0.05
0.30 0.61 0.03 0.43 0.02 0.3 0.04 0.24 0.04
0.40 0.68 0.03 0.53 0.03 0.39 0.04 0.32 0.05

The number of permutations for estimating the non-centrality is 5 times for Cf = 0.0, 10 times for Cf = 0.1 or 0.3, and 30 times 
for Cf = 0.5. 
MAF, minor allele frequency; Cf, censoring fraction; Uncorr, uncorrected; Corr, corrected.

difference between the observed and expected survival time 
under the null model with no SNP effects, the magnitude and 
sign of the standardized residual provide a measure of the 
association between SNPs and survival time. Those patients 
who have positive standardized residuals are at low risk for 
the disease, because one survives longer than expected 
under the null model. Similarly, those patients who have 
negative standardized residuals are at high risk for the 
disease, because one dies earlier than expected. Thus, each 
individual with a positive standardized residual is classified 
as a control, whereas one with a negative standardized 
residual is classified as a case. In addition, for each 
multi-locus genotype combination of SNPs, we calculate the 
sum of the standardized residuals of those patients who have 
the corresponding genotype and replace the case-control 
ratios with the sum of the standardized residual to 
discriminate between high- and low-risk groups. We assign 
the cell as low-risk if the sum of standardized residuals 
within that cell is greater than or equal to 0 and as high-risk 
otherwise. The process of AFT-MDR is done by following the 
algorithm of the original MDR through 10-fold cross- 
validation to select the best pair of SNPs.

We propose to improve the process of AFT-MDR by 
combining the unified model-based MDR to test the 
significance of gene-gene interactions. In the first step of the 
proposed method, multi-level genotypes are classified into 
high-risk and low-risk groups, as done in AFT-MDR. Then, 
we define an indictor variable, S, as 1 for the high-risk group 
and 0 otherwise. In the second step, the variable S is 
considered with the other adjusting covariates in the 
accelerated failure time regression model. The testing for the 
significance of S implies that there is a significant gene-gene 
interaction associated with survival time. For testing the 
significance of S, a Wald-type test statistic is used, and its 
asymptotic distribution is a chi-square distribution under 
the null hypothesis of no gene-gene interaction. However, as 
described in Yu et al. [9], the asymptotic distribution of the 

Wald-type test statistic is not a central chi-square distribu-
tion, because the expectation of the test statistic is not 0 
under the null hypothesis. To adjust for the bias of the test 
statistic, non-centrality is estimated by a small number of 
permutations—say, 5 or 10 times. Based on the non-central 
chi-square test statistic, the significance of a gene-gene 
interaction can be tested for all possible pairs of SNPs 
without any intensive permutations. The proposed method 
easily tests the significance of a gene-gene interaction for all 
possible higher-order pairs of SNPs in the framework of a 
regression model. It allows for the adjustment of covariates 
and the main effect of SNPs, while the original MDR method 
cannot. 

Results

A simulation study was performed to compare the power 
of the proposed method with that of AFT-MDR in the setting 
constructed similarly to that of Oh and Lee [8]. We consider 
two disease-causal SNPs among 10 unlinked diallelic loci 
with the assumption of Hardy-Weinberg equilibrium and 
linkage equilibrium. For the simulation study, survival time 
is generated from an accelerated regression model as 
follows:

log(T) = μ ＋ βfij ＋ γZ ＋ σW,

where fij = P(high risk|SNP1 = i, SNP2 = j), Z∼N(0,1), W∼

N(0,1). Here, fij is an element from the ith row and the jth 

column of a penetrance function, which defines a pro-
babilistic relationship between a status of high-risk or 
low-risk and SNPs. We consider 14 different combinations of 
two different minor allele frequencies of (0.2 and 0.4) and 
seven different heritabilities of (0.01, 0.025, 0.05, 0.1, 0.2, 
0.3, and 0.4) and 70 epistatic models with 70 various 
penetrance functions, as described by Velez et al. [10]. We 
also consider four censoring fractions (0.0, 0.1, 0.3, and 0.5).
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Fig. 1. Quantile-Quantile Plot of type-I errors for two cases when the non-centrality of the chi-square distribution is uncorrected and
corrected.

Fig. 2. The power of PBonf, PRank, and AFT-MDR over the combinations of MAF (0.2 and 0.4), heritability (0.01, 0.025, 0.05, 0.1,
0.2, 0.3, and 0.4), and Cf (0.0, 0.1, 0.3, and 0.5). AFT-MDR, accelerated failure time multifactor dimensionality reduction; MAF, minor
allele frequency; Cf, censoring fraction.

We generate 200 high-risk patients and 200 low-risk 
patients from each of the 70 penetrance models to create one 
simulated dataset, and we generate 100 datasets for each 
model. We set μ = 0.0, β = −1.0, γ = 1.0, σ = 1.0. First, 
we check whether or not a type-I error is well preserved 
under the null hypothesis. As shown in Table 1 and Fig. 1, 
there are two kinds of type-I errors: uncorrected and 

corrected. The uncorrected type-I error is obtained from the 
asymptotic central chi-square distribution, whereas the 
corrected type-I error is calculated from the non-central 
chi-square distribution. For the non-centrality parameter, 5 
or 10 permutations are performed when the censoring 
fraction is less than 0.3, but 30 permutations are needed to 
estimate the non-centrality under censoring heavier than 



170 www.genominfo.org

S Lee, et al. Gene-Gene Interaction Analysis for AFT UM-MDR

Table 2. The power of PBonf, PRank, and AFT-MDR over the combinations of MAF, heritability, and Cf

MAF Herit-
ability

Cf = 0.0 Cf = 0.1 Cf = 0.3 Cf = 0.5

PBonf PRrank PAFT PBonf PRrank PAFT PBonf PRrank PAFT PBonf PRrank PAFT

0.2 0.01 0 0.038 0.052 0 0.04 0.04 0 0.016 0.024 0 0.022 0.012
0.2 0.025 0.002 0.072 0.052 0 0.054 0.052 0 0.04 0.044 0.002 0.048 0.036
0.2 0.05 0.002 0.15 0.122 0.006 0.132 0.12 0.004 0.12 0.082 0.004 0.106 0.048
0.2 0.1 0.032 0.356 0.308 0.042 0.306 0.278 0.048 0.306 0.19 0.022 0.268 0.132
0.2 0.2 0.27 0.686 0.6 0.18 0.674 0.588 0.19 0.64 0.444 0.11 0.632 0.266
0.2 0.3 0.484 0.866 0.81 0.396 0.872 0.732 0.36 0.844 0.664 0.262 0.77 0.394
0.2 0.4 0.742 0.964 0.908 0.69 0.956 0.832 0.598 0.93 0.77 0.53 0.896 0.554
0.4 0.01 0 0.044 0.038 0 0.026 0.044 0 0.032 0.024 0 0.02 0.018
0.4 0.025 0 0.056 0.04 0 0.038 0.054 0 0.034 0.03 0 0.03 0.024
0.4 0.05 0 0.112 0.084 0.002 0.102 0.078 0.002 0.072 0.066 0 0.05 0.036
0.4 0.1 0.03 0.33 0.27 0.026 0.282 0.194 0.028 0.228 0.172 0.004 0.196 0.076
0.4 0.2 0.162 0.63 0.48 0.16 0.652 0.484 0.152 0.58 0.354 0.054 0.448 0.222
0.4 0.3 0.54 0.902 0.776 0.488 0.9 0.764 0.446 0.858 0.572 0.278 0.786 0.386
0.4 0.4 0.758 0.966 0.884 0.714 0.958 0.866 0.626 0.926 0.706 0.52 0.898 0.514

AFT-MDR, accelerated failure time multifactor dimensionality reduction; MAF, minor allele frequency; Cf, censoring fraction.

0.3. The results of Table 1 show that the type-I error is well 
controlled over all combinations of minor allele frequencies 
and censoring fractions. Fig. 1 displays the result of Table 1.

For the comparison of power, we define two powers, PBonf 
and PRank. PBonf is the proportion of p-values less than the 
nominal sizes after adjusting for multiple testing among 100 
cases. However, the power of AFT-MDR is defined as the 
percentage of times that it correctly chooses the disease- 
causal model out of each set of 100 datasets. Thus, we 
comparably define the power of the proposed method as 
PRank, which is estimated as the percentage of times that the 
causal model has the smallest p-value out of all possible 
multi-locus models. We compared these three powers in the 
simulation study. In addition, we simulated two different 
scenarios according to the main effect. 

In the first scenario, we consider the model without any 
main effect of SNPs; Fig. 2 and Table 2 display the power of 
the PBonf, PRank, and AFT-MDR methods over various 
combinations of two different minor allele frequencies, 
seven different heritabilities, and four different censoring 
fractions. As indicated in Fig. 2, PRank is greater than PBonf 
and the power of AFT-MDR for all cases, whereas the power 
of AFT-MDR is less than PBonf, although the difference is 
smaller, as the censoring fraction is larger than 0.5. The trend 
of these three powers is similar, in the sense that they 
increase as the heritability increases, whereas they decrease 
as the censoring fraction increases. In addition, it is shown 
that the power is relatively larger when the minor allele 
frequency (MAF) is 0.2 than when the MAF is 0.4. When the 
heritability is smaller than 0.1, the power is not larger than 
0.3, but PRank rapidly increases as the heritability is greater 

than 0.1, but both PBonf and the power of AFT-MDR slowly 
increase. 

On the other hand, in the second scenario, we generated 
the survival time by considering the main effect of SNP3 as 
follows: 

log(T) = μ ＋ βfij ＋ γZ ＋ αSNP3 ＋ σW.

After classifying the high-risk and low-risk groups by the 
standardized residual, as done in AFT-MDR, the indicator 
variable for the high-risk group, S, is defined, and the 
significance of the gene-gene interactions between SNP1 and 
SNP2 is tested under the following model:

log(T)  = μ ＋ β1SNP1 ＋ β2SNP2 ＋ δS ＋ γZ ＋ σW.

From the simulation results, the power of PBonf, PRank, 
and AFT-MDR is similarly obtained and displayed in Fig. 3 
and Table 3.

As shown in Fig. 3, the power of AFT-MDR is almost 0 for 
all cases, whereas PRank shows a similar trend, as shown in 
Fig. 2, when the main effect is not considered. However, the 
size of PBonf is also smaller, as shown in Fig. 2, and has 
almost no power when the MAF is 0.4 and censoring fraction 
is larger than 0.1. The effect of the censoring fraction is much 
larger on these three powers when the main effect is 
considered. Comparing PRank with the power of AFT-MDR, 
AFT-MDR hardly detects any interaction effect when the 
main effect of SNPs is considered in the model. However, 
PRank has slightly moderate power when MAF is 0.2 and the 
censoring fraction is smaller than 0.5.
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Fig. 3. The power of PBonf, PRank, and AFT-MDR over the combinations of MAF (0.2 and 0.4), heritability (0.01, 0.025, 0.05, 0.1,
0.2, 0.3, and 0.4), and Cf (0.0, 0.1, 0.3, and 0.5). AFT-MDR, accelerated failure time multifactor dimensionality reduction; MAF, minor
allele frequency; Cf, censoring fraction.

Table 3. The power of PBonf, Prank, and AFT-MDR over the combinations of MAF, heritability, and Cf

MAF Herit-
ability

Cf = 0.0 Cf = 0.1 Cf = 0.3 Cf = 0.5

PBonf PRank PAFT PBonf PRank PAFT PBonf PRank PAFT PBonf PRank PAFT

0.2 0.01 0 0.046 0 0.007 0.026 0 0.002 0.034 0.008 0 0.066 0.034
0.2 0.025 0 0.056 0 0.005 0.066 0.002 0.002 0.048 0.012 0 0.06 0.044
0.2 0.05 0.002 0.12 0 0.009 0.106 0.006 0.007 0.118 0.006 0 0.112 0.064
0.2 0.1 0.019 0.276 0.002 0.021 0.254 0.01 0.013 0.184 0.014 0.009 0.152 0.048
0.2 0.2 0.156 0.594 0.014 0.146 0.526 0.034 0.122 0.4 0.054 0.069 0.32 0.09
0.2 0.3 0.333 0.76 0.032 0.275 0.684 0.052 0.185 0.534 0.068 0.153 0.484 0.08
0.2 0.4 0.552 0.854 0.062 0.464 0.852 0.08 0.322 0.71 0.08 0.285 0.606 0.086
0.4 0.01 0 0.038 0 0 0.044 0 0 0.038 0.012 0 0.032 0.032
0.4 0.025 0 0.038 0 0 0.042 0 0 0.042 0.016 0 0.036 0.052
0.4 0.05 0 0.068 0 0 0.064 0 0 0.052 0.012 0 0.042 0.036
0.4 0.1 0 0.118 0 0.005 0.106 0.004 0 0.072 0.008 0 0.046 0.028
0.4 0.2 0.028 0.322 0 0.022 0.218 0.002 0.034 0.114 0.008 0 0.08 0.028
0.4 0.3 0.084 0.384 0.002 0.062 0.266 0.004 0.051 0.142 0.014 0.010 0.078 0.034
0.4 0.4 0.191 0.63 0.004 0.153 0.486 0.008 0.066 0.268 0.01 0.015 0.122 0.038

AFT-MDR, accelerated failure time multifactor dimensionality reduction; MAF, minor allele frequency; Cf, censoring fraction. 

Discussion

In this study, the AFT UM-MDR method was proposed by 
extending the UM-MDR method to the survival phenotype. 
In the first step, the standardized residual of the accelerated 

failure time model is used to classify the multi-level 
genotypes into high-risk and low-risk, as done in AFT-MDR, 
and a binary variable is defined for indicating the high-risk 
group. Then, in the second step, the significance test for an 
indicator for the high-risk group, defined in the first step, is 
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conducted in the framework of the regression model, as done 
in UM-MDR. The big advantage of the proposed method 
over AFT-MDR is that it can test the significance of 
gene-gene interactions without intensive permutation 
procedures. Thus, the computing time is substantially 
reduced, and it is also flexible enough to consider the main 
genetic effect, as well as gene-gene interactions, in a model. 
Throughout the simulation studies, it is shown that the 
proposed method performs better than AFT-MDR for both 
with and without the main effect. These powers tend to 
increase as the heritability increases but decrease as MAF 
changes from 0.2 to 0.4 and the censoring fraction increases. 
Especially, the power of AFT-MDR is almost 0 under a model 
with a main effect, which implies that the gene-gene 
interaction can not be detected by AFT-MDR when any main 
genetic effect exists. On the other hand, the proposed 
method still detects gene-gene interactions, even when there 
is any main genetic effect. Interestingly, the censoring 
fraction critically affects the power when the main effect is 
considered, because the trend of the three powers seems to 
be robust over the censoring fraction when the main effect is 
not considered, as shown in Fig. 2. 

As mentioned in Yu et al. [9], the UM-MDR is very flexible 
in the sense that various classification rules can be applied. 
We have an ongoing study in extending the UM-MDR to the 
Cox model, in which the martingale residual of a Cox model 
is used as a classification rule, as done in Cox-MDR. 
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