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The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for anti-
bacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic 
bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome 
sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study 
divulged 1,499 proteins of F. nucleatum, which have no homolog’s in human genome. These proteins were subjected to 
screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important 
proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good 
candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have 
demonstrated the three dimensional structure of these three proteins. Finally, determination of ligand binding sites of the 2 
key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover 
effective novel therapeutic compounds against F. nucleatum.
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Introduction

Fusobacterium nucleatum is a gram-negative anaerobic 
bacterium which plays vital role in the architecture of oral 
biofilms. This dominant oral bacterium is very much 
associated with periodontitis, a very common infectious 
disease worldwide. F. nucleatum also affects some other 
bodily infections such as peritonsillar abscesses, endocar-
ditis, skin ulcers, and septic arthritis [1-4]. Coincidentally, it 
may cause severe infections in a child’s body. In many 
studies, F. nucleatum is appeared to be related with preterm 
birth and has been found in the placenta, amniotic fluid, and 
chorioamnionic membranes of women delivering ahead of 
time. Preterm birth is the leading cause of child mortality 
and morbidity, accounting for 7% to 11% of all births in the 

United States alone [5]. Moreover, many studies have linked 
F. nucleatum with colorectal cancer; in addition, a mechanism 
has been reported by which F. nucleatum promotes colonic 
tumor formation without following the usual mechanism of 
instigating colonic inflammation or otherwise irritating the 
colon tissue and thereby demonstrating a direct and specific 
colonic carcinogenesis [6, 7]. 

Appropriate antibiotic therapy and surgical drainage 
constitute the basis for treating fusobacterial infections. 
However, the emergence of multidrug resistant strains of F. 
nucleatum has made it difficult to guide the choice of empiric 
treatment. The first case of resistance to penicillin by 
fusobacteria was reported in the mid-1980s. There is 
evidence of an increased frequency of β-lactamase pro-
duction by fusobacteria [8]. The incidence of widespread 
resistance of Fusobacterium spp. to erythromycin and other 
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Fig. 1. Flowchart. A schematic repre-
sentation of process analysis and in-
terpretations. FASTA, FAST alignment;
CD-HIT, Cluster Database at High 
Identity with Tolerance; P BLAST, Pro-
tein Basic Local Alignment Search 
Tool; DEG, Database of Essential 
Genes.

macrolides has been reported as well [9]. Though antibiotics 
like clindamycin, chloramphenicol, carbenicillin, cefoperazone, 
cefamandole [10], and amoxicillin [11] are shown to be 
active against this pathogen, ever evolving antibacterial 
resistance [12], chances of cross resistance [13], and the 
associated untoward effects of antibiotics [14] persistently 
urge the researchers to explore more promising and safer 
drug targets. More importantly, increasing evidence of 
association between Fusobacterium and colorectal cancer has 
even more intensified this urge.

In this context, this study aimed to explore some potential 
novel drug targets other than the aforementioned targets. 
We have adopted an approach focusing on two important 
criteria. Firstly, the identified target protein should be 
indispensable for the survival of the pathogen. Secondly, the 
target protein should not be homologous to any protein of 
the human proteome. The nonhomolog property of these 

target proteins check the chance of the cross-reaction with 
the human host and thus ascertains highly selective 
therapeutic targets. This may facilitate minimizing the 
adverse reactions of the prospective drug [15]. In this way, 
we have identified some potential drug targets which are not 
only human non-homologous essential proteins in unique 
metabolic pathway of the pathogen but also circumvent the 
resistant mechanism of current targets [16]. Moreover, we 
have predicted the three dimensional (3D) structure of these 
target proteins and analyzed ligand binding sites and 
corresponding ligands of the best proteins to facilitate the 
search for novel drugs which might potentially arrest the 
growth of F. nucleatum.

Methods

The sequential diagram to identify and to characterize the 
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putative drug targets of Fusobacterium nucleatum subsp. 
nucleatum ATCC 25586 is illustrated in Fig. 1. 

Retrieval of the proteome of F. nucleatum

The complete proteome of F. nucleatum was retrieved in 
FAST alignment (FASTA) format from National Center for 
Biotechnology Information (NCBI; http://www.ncbi.nlm. 
nih.gov/).

CD-HIT analysis 

The proteins were subjected to Cluster Database at High 
Identity with Tolerance (CD-HIT) analysis (http://weizhong-lab. 
ucsd.edu/cdhit_suite/cgi-bin/ index.cgi) [17]. The program 
takes a FASTA format sequence database as input and 
produces a set of non-redundant, representative sequences 
as output. The process was carried out with a sequence 
identity cutoff of 0.6, thus eliminating redundant sequences 
with more than 60% identity [18-20]. The resultant proteins 
were grouped as Set1 proteome.

Elimination of human homologous proteins of 
F. nucleatum

Protein Basic Local Alignment Search Tool (BLASTP) 
analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was ca-
rried out for the Set1 proteome against the proteome of Homo 
sapiens. Proteins with an E-value (expectation value) 10–4 
were eliminated; assuming that they have a certain level of 
homology with the host genome [21]. The resultant data set 
(Set2 proteome) of F. nucleatum had no homology with the 
human proteome.

Identification of non-human homologous essential 
proteins in F. nucleatum

Then the Set2 proteome was subjected to BLASTP 
analysis with Database of Essential Genes (DEG; http:// 
tubic.tju.edu.cn/deg/), which contains all the essential 
genes currently available. An E-value of 10–100 was set as the 
cutoff value [22]. Thus, a Set3 proteome of F. nucleatum was 
obtained by grouping the proteins that showed an E-value 
10–100. Set3 proteome contains the proteins of F. nucleatum 
that could be considered as novel drug targets because they 
are not present in the host and are involved in essential 
metabolic functions in the bacterium.

Metabolic pathway analysis

The human non-homologous essential proteins of F. 
nucleatum obtained through BLASTP were then subjected to 
metabolic pathway analysis, which was done by Kyoto 
Encyclopedia of Genes and Genomes (KEGG) Automatic 
Annotation Server (KAAS; http://www.genome.jp/tools/ 
kaas/) [23] at KEGG [24]. The server provides functional 

annotation of genes by Basic Local Alignment Search Tool 
(BLAST) comparisons against the manually curated KEGG 
GENES database. The result contains KEGG Orthology 
(KO) assignments and automatically generated KEGG 
pathways.

Unique pathway identification

After this, unique metabolic pathways of Fusobacterium 
nucleatum subsp. nucleatum ATCC25586 were identified 
through the comparison of metabolic pathways of both 
Fusobacterium nucleatum subsp. nucleatum ATCC25586 and 
Homo sapiens by using KEGG Genome Database [25]. Among 
unique metabolic pathways of only those proteins were 
identified which were human non-homologue essential 
proteins.

Sub-cellular localization of unique essential 
metabolic proteins

The program PSORTb V.3.0 (http://www.psort.org/ 
psortb/index.html), CELLO (http://cello.life.nctu.edu.tw/), 
and SOSUI (http://bp.nuap.nagoya-u.ac.jp/sosui/sosui_ 
submit.html) server was used to characterize whether the 
proteins are soluble or trans-membrane in nature. This 
computational tool illustrates where the protein resides in 
the cell. So if the protein is associated with the cell 
membrane, there is more possibility that it can be 
highlighted as a potential therapeutic target [26, 27].

Homology modelling ofunique essential metabolic 
proteins

To predict the 3D structure of unique essential metabolic 
proteins, homology modelling was done by the server 
Protein Homology/Analogy Recognition Engine (Phyre2). 
The retrieved amino acid sequence in FASTA format was 
used as input data in Phyre2 (http://www.sbg.bio.ic.ac.uk/ 
phyre2/html/page.cgi?id=index). In this respect, the inten-
sive mode of protein modeling was selected in order to get an 
accurate model.

Model refinement

Homology based modeling often contain significant local 
distortions, including steric clashes, unphysical phi/psi an-
gles and irregular H-hydrogen bonding networks, which re-
nder the structure models less useful for high-resolution fu-
nctional analysis. Refinement of structures could be a solu-
tion of this problem [28]. To refine the predicted model Mod-
Refiner (http://zhanglab.ccmb.med.umich.edu/ModRefiner/); 
an algorithm for atomic-level, high-resolution protein str-
ucture refinement is used.
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Table 1. Results of subtractive genomic and metabolic pathway
analysis for Fusobacterium nucleatum subsp. nucleatum ATCC 
25586

Output No.

Total proteins 4,630
Non-paralogous protein 1,991
Non-human homologous protein 1,499
Non-homologous essential protein 32
Essential metabolic protein 30
Unique pathways 12
Proteins present in unique pathways 3

Table 2. SOSUI result of UDP-N-acetylglucosamine 1-carboxyvinyltransferase

No. N terminal Transmembrane region C terminal Type Length

1 290 VSNMLPFVIGGGILLALSFIVER 312 Secondary 23
2 322 LLFDVGAGAFHFLIPVLAGFIAM 344 Secondary 23
3 364 QGAGFLGGLIGGFIAGYSVIFL 385 Primary 22
4 406 PIFSLLITGVLMYFIIGPIFTKI 428 Primary 23
5 440 GTANAVVLGAILGGMMSVDMGGP 462 Secondary 23
6 483 FMAAVMAGGMVPPLAIAFAMTLF 505 Secondary 23
7 517 TISNFILGLSFITEGAIPFAAKE 539 Secondary 23
8 541 VKVIGSCIVGAAIAGGLTQFWSV 563 Secondary 23
9 577 AMPSVHSAIFFVVSIAIGAVISG 599 Primary 23

This amino acid sequence is of a membrane protein which have 9 transmembrane helices.

Verification and validation of the predicted 3D 
model 

To check the accuracy of the predicted 3D structures, 
Protein Data Bank Summary (PDBsum; http://www. 
ebi.ac.uk/thorntonsrv/databases/pdbsum/Generate.html) 
was used [29]. The PDBsum generated result was further 
subjected to documentation analysis by PROgram to 
CHECK the stereochemical quality of protein structures 
(PROCHECK) [30]. ERRAT algorithm (http://nihserver.mbi. 
ucla.edu/ERRAT/) helps in the assessment of the protein 
structure. Verify 3D (http://nihserver.mbi.ucla.edu/Verify_3D) 
Structure Evaluation Server was used for 3D profiling of the 
residue. Qualitative Model Energy Analysis (QMEAN; 
http://swissmodel.expasy.org/qmean/cgi/index.cgi) was also 
done which is a composite scoring function that derives both 
global and local error estimates on the basis of one single 
model. Global error is estimated for entire structure and 
local one for per residue error.

Prediction of ligand binding sites and corresponding 
ligands 

Once the final model of our best considered predicted 
proteins was built, the possible ligand binding sites and their 

corresponding ligands were revealed using COACH (http:// 
zhanglab.ccmb.med.umich.edu/COACH/), a meta-server 
approach which uses BioLip database for predicting pro-
tein-ligand binding site [31]. 

Verification of the pharmaco-chemical properties of 
the best predicted ligands 

The pharmaco-chemical properties of the best predicted 
ligands were retrieved from the DrugBank Database 
(http://www.drugbank.ca/drugs/) to demonstrate them as 
potential inhibitors of the best considered target proteins.

Results

Among a total of 4,630 proteins of Fusobacterium nucleatum 
strain ATCC 25586, 2,639 proteins were nullified. In effect, 
we found 1,991 proteins as non-paralogous. BLASTP 
screening of these proteins against the Homo sapiens genome 
results in 1,499 proteins which were non-homologous to 
human proteome. 

Furthermore, the 1499 host non-homologous proteins 
were then screened through DEG with an E-value cutoff 
score of 10–100 revealing 32 essential proteins. The DEG 
houses the records of presently available essential genes of a 
number of organisms. 

With a view to identify the metabolic function of 32 
essential proteins, metabolic pathway was analyzed by 
KAAS server at KEGG identifying a set of 30 proteins as 
putative drug targets. After that, comparative metabolic 
pathway analysis of human host and F. nucleatum was 
performed at KEGG Genome Database [32, 33]. This 
comparison reveals 12 unique pathways which are present 
exclusively in F. nucleatum and among those 12 pathways 3 
non-human homologous essential proteins were found to be 
present on two different unique pathways. The results are 
shown in Table 1. Two out of three metabolic proteins are 
involved in phosphotransferase system (PTS) and one 
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Fig. 2. SOSUI result of UDP-N-acetylglucosamine 1-carboxyvinyltransferase.

Fig. 3. Homology modeling of phosphoenolpyruvate-protein phosphotransferase (A), UDP-N-acetylglucosamine 1-carboxyvinyltransferase 
(B), and phosphotransferase system fructose-specific IIABC component (C).

Fig. 4. ModRefiner derived model of
phosphoenolpyruvate-protein phosp-
hotransferase (A) and UDP-N-acetyl-
glucosamine 1-carboxyvinyltransferase
(B).

protein is known to incorporate in peptidoglycan biosyn-
thesis.

Psortb and CELLO, the two bacterial protein subcellular 
localization prediction tools, demonstrated that these three 

proteins locate in the cytoplasmic membrane and thereby 
implying these proteins to be promising drug target site. The 
server SOSUI discriminates whether the proteins are soluble 
or membranous. Two proteins were soluble namely pho-
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Table 3. Z-scores of QMEAN for individual component

Scoring function term
Z-score

Phosphoenolpyruvate-protein phosphotransferase UDP-N-acetylglucosamine 1-carboxyvinyltransferase

C_β interaction energy 0.38 –0.12
All atom pairwise energy 0.33 –0.04
Solvation energy 0.74 0.75
Torsion angle energy –1.46 –1.91
Secondary structure 
agreement

1.83 0.50

Solvent accessibility 
agreement

0.08 –0.00

QMEAN6 score –0.13 –0.64

QMEAN, Qualitative Model Energy Analysis.

Fig. 5. Ramachandran plot of phosphoenolpyruvate-protein phosphotransferase (A) and UDP-N-acetylglucosamine 1-carboxyvinyltransferase 
(B).

sphoenolpyruvate-protein phosphotransferase, PTS system 
fructose-specific IIABC component, and UDP-N-acetylgluco-
samine 1-carboxyvinyltransferase was trans-membrane pro-
tein (Table 2, Fig. 2).

3D structures of the three unique and essential metabolic 
proteins were obtained by homology modeling using Phyre2 
(Fig. 3). 

ModRefiner derived refined model (Fig. 4) of phosphoe-
nolpyruvate-protein phosphotransferase and UDP-N-acetyl-
glucosamine 1-carboxyvinyltransferase were analyzed. In 
case of phosphoenolpyruvate-protein phosphotransferase in 
initial model the percent of residues in favored region were 
91.0% whereas 92.1% in the final model. Though in case of 
N-acetylglucosamine 1-carboxyvinyltransferase amino acids 
residue in favored region were same in both the initial and 
final model but has a change in disallowed region, initially 

disallowed region had 0.5% residues and after refinement it 
narrowed down to 0.0%.

After that, PROCHECK was used to measure the ste-
reo-chemical quality of protein models at a resolution of 1.8. 
PROCHECK renders information about the protein chains 
and stereo-chemical properties such as Ramachandran plot 
quality, peptide bond planarity, bad non-bonded interac-
tions, main chain hydrogen bond energy, C alpha chirality 
and overall G factor [34]. Ramachandran plot regarding this 
analysis is shown in Fig. 5. 

Moreover, verification of the refinement was performed by 
Errat, QMEAN server, and Verify 3D. Errat is particularly 
appropriate for assessing the progress of crystallographic 
model building and refinement. Errat showed the com-
parative error value of the structured model. The overall 
quality of model of phosphoenolpyruvate-protein phospho-
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Fig. 6. Ligand binding pocket of the protein molecular interactions of PPR with phosphoenolpyruvate-protein phosphotransferase (A) and 
molecular interactions of SKP with N-acetylglucosamine 1-carboxyvinyltransferase (B).

transferase in ERRAT analysis was 81.961 while in case of 
N-acetylglucosamine 1-carboxyvinyltransferase is 79.952. 
The respective values of torsion angle energy, C_β inte-
raction energy, solvation energy, secondary structure, and 
solvent accessibility are –1.46, 0.38, 0.74, 1.83, and 0.08 in 
case of phosphoenolpyruvate-protein phosphotransferase 
where –0.12, 0.75, –1.91, 0.50, –0.00 in case of N-ace-
tylglucosamine 1-carboxyvinyltransferase. The QMEAN for 
phosphoenolpyruvate-protein phosphotransferase and N- 
acetylglucosamine 1-carboxyvinyltransferase is 0.751 and 
0.714, respectively. Z score result is also shown in Table 3.

COACH generates protein-ligand binding site on the basis 
of two developed method (TM-SITE, based on binding-sp-
ecific substructure comparison and S-SITE, based on seq-
uence profile alignment) along with considering COFACTOR, 
FINDSITE, and CONCAVITY results. 

CONCAVITY results showed that a total number of 27 
residues (–196, 199, 281, 301, 303, 305, 306, 339, 342, 343, 
344, 345, 347, 361, 365, 436, 438, 459, 461, 462, 466, 472, 
509, 510, 531, 532, and 533) of phosphoenolpyruva-
te-protein phosphotransferase are associated with creating 
ligand binding pocket. A similar pattern of concavity result 
was also found for N-acetylglucosamine 1-carboxyviny-
ltransferase in which a total number of forty amino acid 
residues were involved in comprising the ligand binding 
pocket of the proteins (23, 24, 27, 50, 91, 94, 95, 115, 116, 
118, 120, 123, 124, 125, 128, 164, 165, 166, 167, 170, 191, 
193, 234, 235, 236, 240, 261, 300, 301, 302, 306, 307, 308, 
330, 331, 373, 374, 400, 401, and 402).

Furthermore, S-SITE result represents the possible 
ligands that can bind with phosphoenolpyruvate-protein 
phosphotransferas as well as N-acetylglucosamine 1-carbo-
xyvinyltransferase and ranked them according to confidence 
score (C-score), C-score ranges from 0 to 1 where a higher 
score implies a more reliable prediction. Among the pre-

dicted ligands for phosphoenolpyruvate-protein phospho-
transferase, PPR or 3-phosphonopyruvate was exhibited as 
the top ranked ligand having a confidence score (C-score) of 
0.45 and interacting with total eleven residues (301, 303, 
339, 436, 438, 459, 460, 461, 462, 509, and 510) those are 
also resides within predicted ligand binding pocket of the 
protein. The best predicted ligand for N-acetylglucosamine 
1-carboxyvinyl-transferase was SKP or 5-(1-carboxy-1- 
phosphonooxy-ethoxyl)-shikimate-3-phosphate, represen-
ting C-score 0.41 and interacting with total number of 
sixteen residues (23, 24, 28, 94, 95, 98, 123, 165, 166, 167, 
308, 330, 334, 373, 374, and 400) that are also common in 
the ligand binding pocket of the protein (Fig. 6).

Discussion

To nullify the 2,643 proteins from total 4,630 redundant 
proteins of F. nucleatum stain ATCC 25586 the CD-HIT 
program used at 60% identity [35, 36]. After BLASTP 
analysis, human non-homologous proteins were selected to 
avoid unwanted cross-reactions and cytotoxicity. BLASTP 
against DEG identified the essential genes. The genes that 
are vital to maintain cellular life are referred to as essential 
genes. Essential gene products of pathogen can become 
promising novel drug targets owing to the reason that most 
antibiotics attack cellular processes in bacteria [32, 37]. 
Essential genes which are exclusive to an organism can be 
regarded as species-specific therapeutic targets [33].

Sub-cellular localization of proteins has an important role 
in drug targets prediction arena. Proteins situated in 
cytoplasmic membrane are considered more valuable for 
target site.

3D structure of protein molecules exposes the molecular 
basis of protein function and thus allows an efficient design 
of experiments, for example, site-directed mutagenesis, 
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disease-related mutation analysis, or the structure based 
design of specific inhibitors [38]. That is why, the deter-
mination of the 3D structure of a protein molecule is central 
to its understanding and manipulation of biochemical and 
cellular functions [39].

In case of each protein, greater than 90% confidence 
match was obtained except PTS system fructose-specific 
IIABC component protein. A high confidence match indi-
cates that, overall fold of the models were almost accurate 
and the central core of the model was correct as well [34]. 

Ramachandran plot statistics of phosphoenolpyruvate-p-
rotein phosphotransferase and UDP-N-acetylglucosamine 
1-carboxyvinyltransferase showed that most of the amino 
acid residues (above 90% of amino acid residues) were found 
in most favoured regions indicating that the protein models 
were of very good quality.

The program functions based on the analysis of statistics 
of non-bonded interactions between different atom types 
[40]. Verify 3D graph and a value of 0.85 of phosph-
oenolpyruvate-protein phosphotransferase in contrast to the 
value 0.72 for N-acetylglucosamine 1-carboxyvinyltran-
sferase indicates that environmental profile phosphoen-
olpyruvate-protein phosphotransferase is fairly good [41, 
42]. The QMEAN assesses the global quality of the models 
based on a linear combination of six structural descriptions. 
The local geometry model is analyzed by calculating torsion 
angel potential over three consecutive amino acids. The long 
range interactions are assessed by estimating secondary 
structure specific distance dependent pairwise residue level 
potential. A solvation potential reveals the burial state of the 
residues. Simple sequence editor and auto cross covariance 
conformity indicates that the assessment between the 
predicted and calculated secondary structure and solvent 
accessibility is of good quality [43-45]. 

Specifying exact ligand-binding site on protein is a crucial 
step in rational designing of novel therapeutic molecules to 
modulate the protein functions [46]. TM-SITE and S-SITE, 
along with considering COFACTOR, FINDSITE, and 
CONCAVITY results which increases Matthews correlation 
coefficient by 15% over the best individual predictions and 
these predictions are considered reliable and accurate in 
recent times [47].

Moreover, pharmaco-chemical properties of the PPR and 
SKP that were retrieved from the DrugBank Database 
indicate that these compounds are non-carcinogenic, non-
toxic and moderately absorbable by human intestine (abso-
rption probability, 0.7197 and 0.5233, respectively) [48]. 
Hence, the activity of the phosphoenolpyruvate-protein 
phosphotransferase can be inhibited by the PPR, derivatives 
of PPR or PPR related compounds. Likewise, the activity of 
the N-acetylglucosamine 1-carboxyvinyltransferase probably 

can be hindered by SKP, derivatives of SKP or SKP related 
molecules. Since, phosphoenolpyruvate-protein phospho-
transferase and N-acetylglucosamine 1-carboxyvinyltrans-
ferase were identified as the essential proteins for the 
bacterial survival, blocking the function of these two 
enzymes can be a novel way to treat F. nucleatum–associated 
diseases. However, further research should be conducted 
both in vivo and in vitro to ascertain this result.

Understanding the docking studies with phosphoe-
nolpyruvate-protein phosphotransferase, PTS system fructose- 
specific IIABC component, and UDP-N-acetylglucosamine 
1-carboxyvinyl transferase protein as a receptor and proto-
porphyrin IX as a ligand. Analysis of the lowest docked 
energy value, the involvement of H-bonds, calculated root 
mean square deviation value, and interacting residues was 
considered [49].

The interactions between the amino acid residues in active 
sites and the ligand molecules derived in this study would be 
valuable to understand the potential mechanism of residues 
and the drug binding. It is evident that that protoporphyrin 
IX is involved in similar hydrogen bond interactions with 
proteins and thus the results found in our study are 
significant. However, to consider these proteins as valid 
target for drug designing, the future researchers also need to 
think about the possibility that these same functional 
proteins may exist in some other beneficial bacteria from 
human microbiota.

In conclusion, in this era of genomic science, subtractive 
genomic approach to drug designing has been greatly 
facilitated by the plethora of bacterial genomic information. 
The demand for new classes of antibacterial drug is 
increasingly growing as drug resistance challenges the 
effectiveness of existing therapies. Hence, there are obvious 
benefits for the identification and evaluation of new 
therapeutic targets and which is why this study has 
scrutinized the proteome of oral pathogen F. nucleatum 
adopting the subtractive genomic approach and identified 
two promising novel therapeutic targets along with 
predicting their 3D structures, ligand binding sites and 
corresponding ligands as well. These findings have now 
paved the way for design and development of novel 
inhibitors for F. nucleatum using the structure based drug 
design strategy.
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