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SUMMARY

Little is known about the relationship between attention and learning during decision making. 

Using eye tracking and multivariate pattern analysis of fMRI data, we measured participants’ 

dimensional attention as they performed a trial-and-error learning task in which only one of three 

stimulus dimensions was relevant for reward at any given time. Analysis of participants’ choices 

revealed that attention biased both value computation during choice and value update during 

learning. Value signals in the ventromedial prefrontal cortex and prediction errors in the striatum 

were similarly biased by attention. In turn, participants’ focus of attention was dynamically 

modulated by ongoing learning. Attentional switches across dimensions correlated with activity in 

a frontoparietal attention network, which showed enhanced connectivity with the ventromedial 

prefrontal cortex between switches. Our results suggest a bidirectional interaction between 

attention and learning: attention constrains learning to relevant dimensions of the environment, 

while we learn what to attend to via trial and error.

In Brief

Leong, Radulescu et al. used eye tracking and fMRI to empirically measure fluctuations of 

attention in a multidimensional decision-making task. The authors demonstrate that decision 

making in multidimensional environments is facilitated by a bidirectional interaction between 

attention and trial-and-error reinforcement learning processes.
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INTRODUCTION

The framework of reinforcement learning (RL) has been instrumental in advancing our 

understanding of the neurobiology of trial-and-error learning and decision making (Lee et 

al., 2012). Yet, despite the widespread success of RL algorithms in explaining behavior and 

neural activity on simple learning tasks, these same algorithms become notoriously 

inefficient as the number of dimensions in the environment increases (Bellman, 1957; Sutton 

and Barto, 1998). Nevertheless, animals and humans faced with high-dimensional learning 

problems on a daily basis seem to solve them with ease.

How do we learn efficiently in complex environments? One possibility is to employ selective 

attention to narrow down the dimensionality of the task (Jones and Canas, 2010; Niv et al., 

2015; Wilson and Niv, 2012). Selective attention prioritizes a subset of environmental 

dimensions for learning while generalizing over others, thereby reducing the number of 

different states or stimulus configurations that the agent must consider. However, attention 

must be directed toward dimensions of the environment that are important for the task at 

hand (i.e., dimensions that predict reward) to provide learning processes with a suitable state 

representation (Gershman and Niv, 2010; Wilson et al., 2014). What dimensions are relevant 

to any particular task is not always known and might itself be learned through experience. In 

other words, for attention to facilitate learning, we might first have to learn what to attend to. 

We therefore hypothesize that a bidirectional interaction exists between attention and 

learning in high-dimensional environments.

To test this, we had human participants perform a RL task with compound stimuli—each 

comprised of a face, a landmark, and a tool—while we scanned their brain using fMRI. At 

any one time, only one of the three stimulus dimensions was relevant to predicting reward, 

mimicking real-world learning problems where only a subset of dimensions in the 

environment is relevant for the task at hand. Using eye tracking and multivariate pattern 

analysis (MVPA) of fMRI data, we obtained a quantitative measure of participants’ attention 

to different stimulus dimensions on each trial. We then used trial-by-trial choice data to test 

whether attention biased participants’ valuation of stimuli, their learning from prediction 

errors, or both processes. We generated estimates of participants’ choice value and outcome-

related prediction errors using the best-fitting model and regressed these against brain data 

to further determine the influence of attention on neural signals of value. Finally, we 

analyzed trial-by-trial changes in the focus of attention to study how attention was 

modulated by ongoing experience and to search for neural areas involved in the control of 

attention.

RESULTS

25 participants performed a learning task with multidimensional stimuli and probabilistic 

reward (“Dimensions Task,” Figure 1A). On each trial, participants chose one of three 

compound stimuli—each comprised of a face, a landmark, and a tool—receiving point 

reward. In any one game, only one stimulus dimension (e.g., tools) was relevant for 

predicting reward. Within that dimension, one “target feature” (e.g., wrench) was associated 

with a high probability of reward (p = 0.75) and other features were associated with a low 
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probability of reward (p = 0.25). The relevant dimension and target feature changed every 25 

trials, and this change was signaled to participants (“New game starting”). Through trial and 

error, participants learned to choose the stimulus containing the target feature over the 

course of a game (Figures 1B and 1C). We defined a learned game as one in which 

participants chose the target feature on every one of the last five trials. By this metric, 

participants learned on average 11.3 (SE = 0.7) out of 25 games. The number of learned 

games did not depend on the relevant dimension (F(2,24) = 0.886, p = 0.42).

Attention-Modulated Reinforcement Learning

We obtained two quantitative trial-by-trial measures of participants’ attention to each 

dimension. First, using eye tracking, we computed the proportion of time participants looked 

at each dimension on each trial. Second, using MVPA, we quantified face-, landmark-, and 

tool-selective neural activity on each trial (Norman et al., 2006; see Experimental 

Procedures). Each measure provided a vector of three “attention weights” per trial, denoting 

the proportion of attention toward each of the dimensions on that trial. Average attention 

weights were similar across dimensions (Figures S1 and S2), indicating that neither measure 

was biased toward a particular dimension. The two measures were only moderately 

correlated (r = 0.34, SE = 0.03), suggesting that the separate measures were not redundant. 

We therefore used their smoothed product as a composite measure of attention on each trial, 

which we incorporated into different RL models (see Experimental Procedures).

Attention can modulate RL in two ways. First, attention can bias choice by differentially 

weighing features in different dimensions when computing the value of a composite, 

multidimensional stimulus. Second, attention can bias learning such that the values of 

features on attended dimensions are updated more as a result of a prediction error. To test 

whether and how attention modulated learning in our task, we fit four different RL models to 

the trial-by-trial choice data. In all four models, we assumed that participants chose between 

the available stimuli based on their expected value, computed as a linear combination of 

“feature values” associated with the three features of each stimulus, and that feature values 

were updated after every trial using a prediction error signal (Figure 2) (Rescorla and 

Wagner, 1972; Sutton and Barto, 1998). In the “uniform attention” (UA) model, all 

dimensions were weighted equally when computing and updating values. That is, the value 

of a stimulus was the average values of all its features, and once the outcome of the choice 

was revealed, the prediction error was equally divided among all features of the chosen 

stimulus. In the “attention at choice” (AC) model, the value of each stimulus was computed 

as a weighted sum of feature values, with attention to the respective dimensions on that trial 

serving as weights. All dimensions were still weighted equally at learning. In contrast, in the 

“attention at learning” (AL) model, the update of feature values was differentially weighted 

by attention; however, all dimensions were equally weighted when computing the value of 

stimuli for choice. Finally, the “attention at choice and learning” (ACL) model combined the 

AC and AL models so that both choice and learning were biased by attention. The free 

parameters of each model were fit to each participant’s choices (see Experimental 

Procedures; Table S1).
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Both Choice and Learning Are Biased by Attention

To assess how well the models explained participants’ behavior, we used a leave-one-game-

out cross-validation procedure to compute the likelihood per choice for each participant 

(Experimental Procedures). The higher the average choice likelihood, the better the model 

predicted the data of that participant. As a second metric for model comparison, we 

computed the Bayesian information criterion (BIC; Schwarz, 1978) for each model. In all 

cases, using the composite attention measure provided a better fit to the data than if we used 

the MVPA measure or the eye-tracking measure alone (Figure S4); hence, we use the 

composite attention measure in subsequent analyses unless otherwise noted (see Figures S1–

S3 for characterization of the three attention measures).

Both model-performance metrics showed that the ACL model, in which attention modulated 

both choice and learning, outperformed the other three models (Figure 3). Average 

likelihood per trial for the ACL model was highest for 21 of 25 subjects, on average 

significantly higher than that for the AC (t24 = 4.72, p < 0.001), AL (t24 = 6.70, p < 0.001), 

and UA (t24 = 8.61, p < 0.001) models (Figure 3A). Both the AC and AL models also 

yielded significantly higher average likelihood per trial than the UA model (AC: t24 = 8.03, p 

< 0.001; AL: t24 = 7.20, p < 0.001). Model comparison using BIC confirmed that the ACL 

model has the lowest (i.e., best) BIC score (Figure 3B). Moreover, the average likelihood per 

trial of the ACL model diverged significantly from that of the other models early in the 

game, when performance was still well below asymptote (as early as trial 2 for AL and UA 

and from trial 7 for AC; Figure 3C). These results were not driven by the learned portion of 

games (in which participants may have focused solely on the relevant dimension), as they 

held when tested on unlearned games only (Figure S5).

The ACL model used the same set of attention weights for choice and learning; however, 

previous theoretical and empirical work suggest that attention at choice might focus on 

stimuli or features that are most predictive of reward (Mackintosh, 1975), whereas at 

learning, one might focus on features for which there is highest uncertainty (Pearce and 

Hall, 1980). To test whether attention at learning and attention at choice were separable, we 

took advantage of the higher temporal resolution of the eye-tracking measure. We 

considered eye positions from 200 ms after stimulus onset to choice as indicating “attention 

at choice” and eye positions during the 500 ms of outcome presentation as a measurement of 

“attention at learning.” Attention at choice and attention at learning on the same trial were 

moderately correlated (average r = 0.56), becoming increasingly correlated over the course 

of a game (F(24,24) = 4.95, p < 0.001; Figure S6). This suggests that as participants figured 

out the relevant dimension, they attended to the same dimension in both phases of the trial. 

When we fit the ACL model using attention at choice to bias value computation and 

attention at learning to bias value update, the model performed slightly, but significantly, 

better than the ACL model that used whole-trial attention weights for both choice and 

learning (Figure S7). This suggests that attentional processes at choice and at learning may 

reflect dissociable contributions to decision making (see also Supplemental Experimental 

Procedures).

Overall, these results suggest that attention processes biased both how values were computed 

during choice and how values were updated during learning. Notably, the partial attention 
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models (AC and AL) also explained participants’ behavior better than the model that 

assumed uniform attention across dimensions (UA), providing additional support for the role 

of attention in participants’ learning and decision-making processes.

Neural Value Signals and Reward Prediction Errors Are Biased by Attention

Having found behavioral evidence that attention biased both choice and learning, we 

hypothesized that neural computations would exhibit similar biases. Previous work has 

identified two neural signals important for RL processes—an expected value signal in the 

ventromedial prefrontal cortex (vmPFC; e.g., Hare et al., 2011; Krajbich et al., 2010; Lim et 

al., 2011) and a reward prediction error signal in the striatum (e.g., O’Doherty et al., 2004; 

Seymour et al., 2004). Our four models made different assumptions about how attention 

biases choice and learning and, as such, generated different estimates of expected value and 

prediction error on each trial.

To test which model was most consistent with the neural value representation, we entered 

the trial-by-trial value estimates of the chosen stimulus generated by all four models into a 

single GLM (GLM1 in Experimental Procedures). This allowed us to search the whole brain 

for clusters of brain activity whose variance was uniquely explained by one of the models 

while simultaneously controlling for the value estimates of the other models. Results showed 

that activity in the vmPFC was significantly correlated with the value estimates of the ACL 

model (Figure 4A), suggesting that the computation and update of the value representation 

in vmPFC was biased by attention. No clusters were significantly correlated with the value 

estimates of the AC and AL model; one cluster in the visual cortex was significantly 

correlated with the value estimates of the UA model (Table S2).

Next, we investigated whether neural prediction error signals were also biased by attention. 

For this, we entered trial-by-trial prediction error regressors generated by each of the four 

models into a single whole-brain GLM (GLM2 in Experimental Procedures). Prediction 

errors generated by the ACL model were significantly correlated with activity in the striatum 

(Figure 4B; Table S2), the area most commonly associated with prediction error signals in 

fMRI studies. Prediction error estimates of the other models were not significantly 

correlated with any cluster in the brain. Together, these results provide neural evidence that 

attention biases both the computation of subjective value as well as the prediction errors that 

drive the updating of those values.

Attention Is Modulated by Value and Reward

In our previous analyses, we demonstrated that attention biased both choice and learning. In 

the subsequent analyses, we focus on the other side of the bidirectional relationship, 

examining how learning modulates attention. As a measure of participants’ attention bias 

(i.e., how strongly participants were attending to one dimension rather than the other two), 

we computed the SD of the three attention weights on each trial. Low SD corresponded to 

relatively uniform attention, while high SD implied that attention was more strongly directed 

to a subset of dimensions.

Participants’ attention bias increased over the course of a game (linear mixed effects model, 

main effect of trial: t(24) = 2.79, p = 0.01), and the increase was marginally greater for 
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learned games than for unlearned games (trial number × learned games interaction: t(22.5) = 

1.8, p = 0.08, Figure S3A), as expected from a narrowing of attention when participants 

learn the target feature and relevant dimension. In parallel, the correlation between the 

vectors of attention weights for consecutive trials increased steadily over the course of a 

game, consistent with attention becoming increasingly consistent across trials (main effect of 

trial number: t(24.0) = 5.6, p < 0.001, Figure S3B). This effect was also more pronounced 

for learned games than for unlearned games (trial × learned games interaction: t(36.5) = 

2.96, p = 0.005).

Next, we asked whether learned value (i.e., expected reward) modulated where participants 

directed their attention. We found that the most strongly attended dimension was often also 

the dimension with the feature of highest value (M = 0.61, SE = 0.02; significantly higher 

than chance, p < 0.001 bootstrap test, see Supplemental Experimental Procedures), 

suggesting that attention was often directed toward aspects of the stimuli that had acquired 

high value. We then tested the interaction between expected reward and the strength of the 

attention bias. A tercile split on the trials based on the strength of attention bias revealed that 

the proportion of trials in which attention was directed to the dimension with the highest 

feature value was higher when attention bias was strong (first tercile, M = 0.72, SE = 0.03) 

than when attention bias was moderate (second tercile, M = 0.61, SE = 0.02) and weak (third 

tercile, M = 0.49, SE = 0.02) (p < 0.001 for all differences, Figure 5A).

We also predicted that feature values would modulate attention so that the greater the 

difference in feature values across dimensions, the greater the attention bias toward the 

feature of the highest value. To test this prediction, we performed a tercile split of each 

participant’s data based on the standard deviation of the values (SDV) of the highest-valued 

feature in each dimension, a measure of the difference in feature values across dimensions. 

Attention bias was stronger on high SDV trials than on middle (p = 0.030) and low (p = 

0.027) SDV trials (Figure 5B) and marginally higher for the middle SDV trials compared to 

the low SDV trials (p = 0.067). Taken together, these results suggest that learned values 

modulated where participants attended to and the strength of their attention bias.

Building on these results, we hypothesized that attention switches would be more likely 

when feature values were similar across dimensions. We defined an attention switch as a 

change in the maximally attended dimension. Our attention measurements suggested that 

participants switched their focus of attention on approximately one-third of the trials (M = 

8.28 [SE = 0.4] switch trials per 25-trial game). Switches were more frequent on low SDV 

trials than on middle (p = 0.014) and high (p = 0.004) SDV trials. Switches were also more 

frequent on middle SDV trials than on high SDV trials (p = 0.002) (Figure 5C). To 

determine the influence of recent reward on attention switches, we ran a logistic regression 

predicting attention switches from outcome (reward versus no reward) on the preceding five 

trials. We found that absence of reward in previous trials (up to four trials back) was a 

significant predictor of attention switches on the current trial t (p < 0.01), with regression 

coefficients decreasing and no longer significantly different from zero at trial t-5 (t24 = 1.72, 

p = 0.09; Figure 5D). In other words, participants were more likely to switch their focus of 

attention after a string of no reward, and feedback on more recent trials had a greater 

influence than trials further back in the past.
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Finally, we complemented these analyses with a model-based analysis of attention. Here, we 

compared different models of the trial-by-trial dynamic allocation of attention (see 

Experimental Procedures). In particular, we tested whether attention allocation could be 

better explained by choice history (i.e., attention was enhanced for features that have been 

previously chosen), reward history (i.e., attention was enhanced for features that had been 

previously rewarded), or learned value (i.e., attention was enhanced for features associated 

with higher value over the course of a game). Cross-validated model comparison revealed 

that the empirical attention data were best explained by a model that tracked feature values. 

In particular, the “Value” model outperformed the next-best “Recent Reward History” model 

for both the eye-tracking (lowest root-mean-square deviation [RMSD] in 17/25 subjects, 

paired-sample t test, t(24) = 2.77, p < 0.05, Figure 5E) and composite attention (lowest 

RMSD in 18/25 subjects, paired-sample t test, t(24) = 2.41, p < 0.05, Figure S8) measures. 

For the MVPA data, the Value model did not significantly improve upon the predictions of 

the Recent Reward History model (lowest RMSD in 16/25 subjects, paired-sample t test, 

t(24) = 1.02, p = 0.31, Figure 5F); however, it still performed significantly better than the 

“Recent Choice History” model (paired-sample t test, t(24) = 3.83, p < 0.001).

In summary, both model-based and model-free results suggest that attention was 

dynamically modulated by ongoing learning. As participants learned to associate value with 

features over the course of a game, attention was directed toward dimensions with features 

that acquired high value (which, in our task, are also the features that are most predictive of 

reward) in accord with Mackintosh’s theory of attention (Mackintosh, 1975). The greater the 

feature values in a dimension, the stronger the attention bias was toward that dimension. 

Conversely, when feature values across dimensions were similar, attention was less focused 

and switches between dimensions were more likely. Finally, attention was better explained 

as a function of learned value rather than simpler models of reward or choice history.

Attention Switches Correlate with Activity in a Frontoparietal Control Network

Our results suggest that ongoing learning and feedback dynamically modulated participants’ 

deployment of attention. How might the brain be realizing these attention dynamics? To 

answer this, we searched for brain areas that were more active during switches in attention. 

As in our previous analyses, we labeled trials on which the maximally attended dimension 

was different from that of the preceding trial as switch trials and the rest as stay trials. A 

contrast searching for more activity on switch rather than stay trials (GLM3 in Experimental 

Procedures) showed clusters in the dorsolateral prefrontal cortex (dlPFC), intraparietal 

sulcus (IPS), frontal eye fields (FEF), pre-supplementary motor area (preSMA), precuneus, 

and fusiform gyrus (Figure 6; Table S3). These brain regions are part of a frontoparietal 

network that has been implicated in the executive control of attention (Corbetta and 

Shulman, 2002; Petersen and Posner, 2012). Our results suggest that this attentional-control 

system also supports top-down allocation of attention during learning and decision making 

in multidimensional environments.

We next asked whether this network was activated only by attention switches, or perhaps it 

was involved in the accumulation of evidence leading up to an attention switch. The latter 

hypothesis would predict that activity in these regions would ramp up on trials prior to a 
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switch. To test for this, we defined regions of interest (ROIs) in the dlPFC, IPS, and preSMA 

using Neurosynth (http://neurosynth.org). For each ROI, we extracted the mean time course 

during each run and modeled these data using a GLM with regressors for attention switch 

trials, as well as four trials preceding each switch (GLM4 in Experimental Procedures). In 

all three ROIs, we found that activity increased only on attention-switch trials and not the 

trials preceding them, suggesting that this network was involved in switching attention rather 

than accumulating evidence for the switch (Figure 7).

Enhanced Functional Connectivity between vmPFC and Frontoparietal Network between 
Switches

Finally, we searched for the neural mechanism mediating the interaction between learning 

and attention. For this, we performed a psychophysiological interaction (PPI) analysis that 

searched for brain areas that exhibit enhanced functional connectivity with the vmPFC that 

is specific to switch trials or to stay trials (GLM5 in Experimental Procedures). This showed 

that connectivity between parts of the frontoparietal attention network and vmPFC differed 

according to whether participants switched attention on the current trial or not: bilateral 

dlPFC and preSMA (as well as the striatum and ventrolateral PFC) were significantly anti-

correlated with vmPFC on stay trials, above and beyond the baseline functional connectivity 

between these regions (Figure 8; Table S4). This suggests that as value—signaled by the 

vmPFC—increased, activity in the dlPFC and preSMA decreased, reducing the tendency to 

switch attention between task dimensions (and vice versa when the value signal decreased). 

The connectivity on switch trials was not significantly different from baseline. However, we 

note that interpretations of the direction of interaction are difficult as they are relative to the 

baseline connectivity between vmPFC and other regions (as modeled in the GLM), and 

therefore the above interpretation should be treated with caution.

DISCUSSION

Learning and attention play complementary roles in facilitating adaptive decision making 

(Niv et al., 2015; Wilson and Niv, 2012). Yet, there has been surprisingly little work in 

cognitive neuroscience addressing how attention and learning interact. Here, we combined 

computational modeling, eye tracking, and fMRI to study the interaction between trial-and-

error learning and attention in a decision-making task. We used eye tracking and pattern 

classification of multivariate fMRI data to measure participants’ focus of attention as they 

learned which of three dimensions of task stimuli was instrumental to predicting and 

obtaining reward. Model-based analysis of both choice and neural data indicated that 

attention biased how participants computed the values of stimuli and how they updated these 

values when obtained reward deviated from expectations. The strength and focus of the 

attention bias was, in turn, dynamically modulated by ongoing learning, with trial-by-trial 

allocation of attention best explained as following learned value rather than the history of 

reward or choices. Blood-oxygen-level-dependent (BOLD) activity in a frontoparietal 

executive control network correlated with switches in attention, suggesting that this network 

is involved in the control of attention during reinforcement learning.

Leong et al. Page 8

Neuron. Author manuscript; available in PMC 2018 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://neurosynth.org


Our study builds on a growing body of literature in which RL models are applied to 

behavioral and neural data. Converging evidence suggests that the firing of midbrain 

dopamine neurons during reward-driven learning corresponds to a prediction error signal 

that is key to learning (Lee et al., 2012; Schultz et al., 1997; Steinberg et al., 2013). The 

dopamine prediction error hypothesis has generated much excitement, as it suggests that RL 

algorithms provide a formal description of the mechanisms underlying learning. However, it 

is becoming increasingly apparent that this story is far from complete (Dayan and Niv, 2008; 

O’Doherty, 2012). In particular, RL algorithms suffer from the “curse of dimensionality”: 

they are notoriously inefficient in realistic, high-dimensional environments (Bellman, 1957; 

Sutton and Barto, 1998).

How can the RL framework be extended to provide a more complete account of real-world 

learning? A key insight is that learning can be facilitated by taking advantage of regularities 

in tasks. For example, humans can aggregate temporally extended actions into subroutines 

that reduce the number of decision points for which policies have to be learned (Botvinick, 

2012). Here, we highlight a parallel strategy whereby participants employ selective attention 

to simplify the state representation of the task. While real-world decisions often involve 

multidimensional options, not all dimensions are relevant to the task at hand. By attending to 

only the task-relevant dimensions, one can effectively reduce the number of environmental 

states to learn about. In our task, for example, attending to only the face dimension 

simplifies the learning problem to one with three states (each of the faces) rather than 27 

states corresponding to all possible stimulus configurations. Selective attention thus 

performs a similar function as dimensionality-reduction algorithms that are often applied to 

solve computationally complex problems in the fields of machine learning and artificial 

intelligence (Ponsen et al., 2010).

Drawing on theories of visuospatial attention (Desimone and Duncan, 1995), we 

conceptualized attention as weights that determine how processing resources are allocated to 

different aspects of the environment. In our computational models of choice behavior, these 

weights influenced value computation in choice and value update in learning. Several 

previous studies have taken a similar approach to investigate the relationship between 

attention and learning (Jones and Canas, 2010; Marković et al., 2015; Wilson and Niv, 2012; 

Wunderlich et al., 2011), and recently, we demonstrated that neural regions involved in 

control of attention are also engaged during learning in multidimensional environments, 

providing neural evidence for the role of attention in learning (Niv et al., 2015). These prior 

studies, however, have relied on inferring attention weights indirectly from choice behavior 

or from self-report.

Here, we obtained a direct measure of attention, independent of choice behavior, using eye 

tracking and MVPA analysis of fMRI data. Attention and eye movements are functionally 

related (Kowler et al., 1995; Smith et al., 2004) and share underlying neural mechanisms 

(Corbetta et al., 1998; Moore and Fallah, 2001). Attention is also known to enhance the 

neural representation of the attended object category (O’Craven et al., 1999), which can be 

decoded from fMRI data using pattern classification (Norman et al., 2006). Therefore, as a 

second proxy for attention, we quantified the level of category-selective neural patterns of 

activity on each trial. By incorporating attention weights derived from the two measures into 
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computational models fitted to participants’ choices, we provide evidence for the influence 

of attention processes on both value computation and value updating during RL.

Previous work has shown that value computation is guided by attention (Krajbich et al., 

2010) and that value signals in the vmPFC are biased by attention at the time of choice 

(Hare et al., 2011; Lim et al., 2011). For example, Hare et al. (2011) found that when 

attention was called to the health aspects of food choices, value signals in the vmPFC were 

more responsive to the healthiness of food options, and participants were more likely to 

make healthy choices. Here, we extend those findings and demonstrate that attention biases 

not only value computation during choice, but also the update of those values following 

feedback. Another neural signal guiding decision making is the reward prediction error 

signal, which is reflected in BOLD activity in the striatum, a major site of efferent 

dopaminergic connections (O’Doherty et al., 2004; Seymour et al., 2004). We found that this 

prediction error signal was also biased by attention, providing additional evidence that RL 

signals in the brain are attentionally filtered.

But how does the brain know what to attend to? To facilitate choice and learning, attention 

has to be directed toward stimulus dimensions that are relevant to obtaining reward, such 

that learning processes operate on the correct state representation of the task. However, at 

the beginning of each game in our task, participants did not know which dimension is 

relevant. Our results suggest that without explicit cues, participants can learn to attend to the 

dimension that best predicts reward and dynamically modulate both what they attend to and 

how strongly they attend based on ongoing feedback. These findings are consistent with the 

view of attention as an information-seeking mechanism that selects information that best 

informs behavior (Gottlieb, 2012). In particular, a model in which attention was allocated 

based on learned value provided the best fit to the empirical attention measures. Notably, 

this model is closely related to Mackintosh (1975)’s model of associative learning, which 

assumes that attention is directed to features that are most predictive of reward.

An alternative view of how attention changes with learning was suggested by Pearce and 

Hall (1980). According to their model, attention should be directed to the most uncertain 

features in the environment—that is, the features that participants know the least about and 

that have been associated with more prediction errors. In support of this theory, errors in 

prediction have been shown to enhance attention to a stimulus and increase the learning rate 

for that stimulus (Esber et al., 2012; Holland and Gallagher, 2006). The seemingly 

contradictory Mackintosh and Pearce-Hall theories of attention have both received extensive 

empirical support (Pearce and Mackintosh, 2010). Dayan et al. (2000) offered a resolution 

by suggesting that when making choices, one should attend to the most reward-predictive 

features, whereas when learning from prediction errors, one should attend to the most 

uncertain features. When we separately assessed attention at choice and attention at learning 

in our task, we found that the two measures were correlated. Nevertheless, a model with 

separate attention weights at choice and learning fit participants’ data better than the same 

model that used the same whole-trial attention weights at both phases. Our results thus 

support a dissociation between attention at choice and learning, although further work is 

clearly warranted to determine how attention in each phase is determined. In particular, our 

task was not optimally designed for separately measuring attention at choice and attention at 
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learning as the outcome was only presented for 500 ms, during which participants also had 

to saccade to the outcome. Our task is also not well suited to test the Pearce-Hall framework 

for attention at learning because, in our task, the features associated with more prediction 

errors are features in the irrelevant dimensions that participants were explicitly instructed to 

try to ignore.

Neurally, our results suggest that the flexible deployment of attention during learning and 

decision making is controlled by a frontoparietal network that includes the IPS, FEF, 

precuneus, dlPFC, and preSMA. This network has been implicated in the executive control 

of attention in a variety of cognitive tasks (Corbetta and Shulman, 2002; Petersen and 

Posner, 2012), and the dlPFC in particular is thought to be involved in switching among 

“task sets” by inhibiting irrelevant task representations when task demands change (Dias et 

al., 1996; Hyafil et al., 2009). Our findings demonstrate that the same neural mechanisms 

involved in making cued attention switches can also be triggered in response to internal 

signals that result from learning from feedback over time. We interpret these findings as 

suggesting that the frontoparietal executive control network flexibly adjusts the focus of 

attention in response to ongoing feedback, such that learning can operate on the correct task 

representation in multidimensional environments.

How does the frontoparietal network know when to initiate an attention switch? Behavioral 

data suggested that outcomes on preceding trials influenced participants’ decision to switch 

their focus of attention. BOLD activity in this network, however, was only higher on the trial 

of the switch and not on the preceding trials, suggesting that the frontoparietal network was 

involved in mediating attention switches rather than accumulating evidence for the switch. 

Given our finding that learned value influenced the focus and magnitude of attention bias, 

we also tested for a functional interaction between value representations in the vmPFC and 

attentional switches. We found evidence of increased anti-correlation between vmPFC and a 

subset of areas in the frontoparietal network on trials in which attention was not switched, 

supporting a role for high learned values in decreasing the tendency to switch attention, and 

of low values in instigating attentional switches. However, we note that the temporal 

resolution of the BOLD signal prevents us from making strong claims about the 

directionality of information flow.

In summary, our study provides behavioral and neural evidence for a dynamic relationship 

between attention and learning—attention biases what we learn about, but we also learn 

what to attend to. By incorporating attention into the reinforcement learning framework, we 

provide a solution for the seemingly computationally intractable task of learning and 

decision making in high-dimensional environments. Our study also demonstrates the 

potential of using eye tracking and MVPA to measure trial-by-trial attention in cognitive 

tasks. Combining such measures of attention with computational modeling of behavior and 

neural data will be useful in future studies of how attention interacts with other cognitive 

processes to facilitate adaptive behavior.

Leong et al. Page 11

Neuron. Author manuscript; available in PMC 2018 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EXPERIMENTAL PROCEDURES

Participants

29 participants were recruited from the Princeton community (10 male, 19 female, ages 18–

31, mean age = 21.1). Participants were right handed and provided written, informed 

consent. Experimental procedures were approved by the Princeton University Institutional 

Review Board. Participants received $40 for their time and a performance bonus of up to $8. 

Data from four participants were discarded because of excessive head motion (>3 mm) (one 

participant) or because the participant fell asleep (three participants), yielding an effective 

sample size of 25 participants.

Stimuli

Stimuli were comprised of nine gray-scale images consisting of three famous faces, three 

famous landmarks, and three common tools. Stimuli were presented using MATLAB 

software (MathWorks) and the Psychophysics Toolbox (Brainard, 1997). The display was 

projected to a translucent screen, which participants could view through a mirror attached to 

the head coil.

Experimental Task

On each trial, participants were presented with three compound stimuli, each defined by a 

feature on each of the three dimensions (faces, landmarks, and tools), vertically arranged 

into a column. Row positions for the dimensions were fixed for each participant and 

counterbalanced across participants. Stimuli were generated by randomly assigning a feature 

(without replacement) on each dimension to the corresponding row of each stimulus. 

Participants had 1.5 s to choose one of the stimuli, after which the outcome was presented 

for 0.5 s. If participants did not respond within 1.5 s, the trial timed out. The inter-trial 

interval (ITI) was 2 s, 4 s, or 6 s (truncated geometric distribution, mean = 3.5 s), during 

which a fixation cross was presented. Stimulus presentations were timelocked to the 

beginning of a repetition time (TR). In any one game, only one dimension was relevant for 

predicting reward. Within that dimension, one target feature predicted reward with high 

probability. If participants chose the stimulus containing the target feature, they had a 0.75 

probability of receiving reward. If they chose otherwise, they had a 0.25 probability of 

receiving reward. The relevant dimension and target feature were randomly determined for 

each game. Participants were told when a new game started but were not told which 

dimension was relevant or which feature was the target feature. Participants performed four 

functional runs of the task, each consisting of six games of 25 trials each.

Localizer Task

We used a modified one-back task to identify patterns of fMRI activation in the ventral 

visual stream that were associated with attention to houses, landmarks, or faces. Participants 

observed a display of the nine images similar to that used for the main task. On each trial, 

they had to attend to one particular dimension. Participants were instructed to respond with a 

button press if the horizontal order of the three images in the attended dimension repeated 

between consecutive trials. The order of the images on each trial was pseudo-randomly 
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assigned so that participants would respond on average every three trials. Participants were 

told which dimension to attend to at the start of each run, and the attended dimension 

changed every one to five trials, signaled by a red horizontal box around the new attended 

dimension. The sequence of attended dimensions was counterbalanced (Latin square design) 

to minimize order effects. On each trial, the stimulus display was presented for 1.4 s, during 

which participants could make their response. Participants received feedback (500 ms) for 

hits, misses, and false alarms, but not for correct rejections (where a fixation cross was 

presented for 500 ms instead). Each trial was followed by a variable ITI (2 s, 4 s, or 6 s, 

truncated geometric distribution, mean = 3.51 s). Participants performed two runs of the 

localizer task (135 trials each) after completing the main task.

Eye Tracking

Eye-tracking data were acquired using an iView X MRI-LR system (SMI SensoMotoric 

Instruments) with a sampling rate of 60 Hz. System output files were analyzed using in-

house MATLAB code (see “Measures of Attention” below).

fMRI Data Acquisition and Preprocessing

MRI data were collected using a 3T MRI scanner (Siemens Skyra). Anatomical images were 

acquired at the beginning of the session (T1-weighted MPRAGE, TR = 2.3 s, echo time [TE] 

= 3.1 s, flip angle = 9°, voxel size 1 mm3). Functional images were acquired in interleaved 

order using a T2*-weighted echo planar imaging (EPI)pulse sequence(34transverseslices, 

TR= 2 s, TE= 30 ms, flipangle= 71°, voxel size 3 mm3). Image volumes were preprocessed 

using FSL/FEAT v.5.98 (FMRIB software library, FMRIB). Preprocessing included motion 

correction, slice-timing correction, and removal of low-frequency drifts using a temporal 

high-pass filter (100ms cutoff). For MVPA analyses, we trained and tested our classifier in 

each participant’s native space. For all other analyses, functional volumes were first 

registered to participants’ anatomical image (rigid-body transformation with 6° of freedom) 

and then to a template brain in Montreal Neurological Institute (MNI) space (affine 

transformation with 12° of freedom).

Measures of Attention

Eye Tracking—A horizontal rectangular area of interest (AOI) was defined around each 

horizontal dimension in the visual display. Data were preprocessed by low-pass filtering (10 

Hz cutoff) to reduce high-frequency noise, discarding data from the first 200 ms after the 

onset of each trial to account for saccade latency and taking the proportion of time 

participants’ point of gaze resided within each AOI as a measure of attention to the 

corresponding dimension. The level of noise in the eye-tracking measure can vary 

systematically between participants. To account for subject-specific noise, we computed a 

weighted sum between the raw measure and uniform attention (one-third to each 

dimension). The weight ωET, which served to smoothly interpolate between uniform 

attention and the empirical eye-tracking measure, was a free parameter fit to each subject’s 

behavioral data. As ωET decreased, the empirical measure contributed less to the final 

attention vector. Fitting a subject-specific ωET parameter provided us with a data-driven 

method to weigh the empirical measure based on how muchit contributed to explaining 
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choices. For model comparison, the parameter was fit using leave-one-game-out cross-

validation to avoid over-fitting. For the fMRI analyses, the parameter was fit to all games 

(see “Choice Models” below).

MVPA—A linear support vector machine (SVM) was trained on data from the localizer task 

to classify the dimension that participants were attending to on each trial based on patterns 

of BOLD activity. Analysis was restricted to voxels in a ventral visual stream mask 

consisting of the bilateral occipital lobe and ventral temporal cortex. The mask was created 

in MNI space using anatomical masks defined by the Harvard-Oxford Cortical Structural 

Atlas as implemented in FSL. The mask was then transformed into each participant’s native 

space using FSL’s FLIRT implementation, and classification was performed in participants’ 

native space. Cross-validation classification accuracy on the localizer task was 87.4% (SE = 

0.9%; chance level: 33%). The SVM was then applied to data from the Dimensions Task to 

classify participants’ trial-by-trial attention to the three dimensions. Classification was 

performed using the SVM routine LinearNuSVMC (Nu = 0.5) implemented in the PyMVPA 

package (Hanke et al., 2009; see also Supplemental Experimental Procedures). On each trial, 

the classifier returned the probability that the participant was attending to each of the 

dimensions (three numbers summing to 1). Similar to the eye-tracking measure of attention, 

we computed a weighted sum between the probabilities and uniformly distribution attention, 

where the weight ωMVPA was a free parameter fit to each participant’s behavioral data.

Composite Measure—To combine the two measures of attention, we computed a 

composite measure as the product of eye-tracking and MVPA measures of attention, 

renormalized to sum to 1. Taking a product means that each of the two measures contributes 

to the composite according to how strongly the measure is biased toward one dimension and 

not others. For example, a uniform (1/3, 1/3, 1/3) measure contributes nothing to the 

composite measure for that trial. In contrast, if one measure is extremely biased to one 

dimension (e.g., 1, 0, 0), it overrides the other measure completely.

Behavioral Performance

Trials were scored as correct if the participant chose the stimulus containing the target 

feature of that game. We computed individual learning curves by averaging the number of 

correct trials in each trial position across all games. We then computed the group learning 

curve by averaging the individual learning curves over all participants. Overall performance 

was assessed with a paired t test that tested whether the fraction of correct trials was 

significantly higher on the last five trials than on the first five trials. We defined a learned 

game as a game in which the participant chose the stimulus containing the target feature on 

each of the last five trials of the game. A one-way repeated-measures ANOVA was used to 

test whether learning a game depended on the relevant dimension of that game.

Choice Models

We tested four RL models (Sutton and Barto, 1998). All four models assumed that 

participants learned to associate each feature with a value and linearly combined the values 

of features to obtain the value of a compound stimulus:
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Equation 1

where Vt(Si) is the value of stimulus i on trial t, ϕt(d) is the attention weight of dimension d 
and vt(d, Si) denotes the value of the feature in dimension d of stimulus Si. Following 

feedback, a prediction error, δt, was calculated as the difference between observed reward, rt, 

and the expected value of the chosen stimulus Vt(Sc):

Equation 2

δt was then used to update the feature values of the chosen stimulus

Equation 3

where the update is weighted by attention to the respective dimensions and scaled by a 

learning rate or step-size parameter η, which was fit to each participants’ behavioral data. 

Because we computed one prediction error and one update per trial, this model is an instance 

of Rescorla and Wagner (1972)’s learning rule.

In the ACL model, both value computation and value update were biased by attention 

weights. In the AC model, the attention measure was used for value computation, but all 

ϕt(d) were set to one-third during value update such that the three dimensions were updated 

equally during learning. In the AL model, the attention measure was used for value update, 

but all ϕt(d) were set to one-third for value computation, weighting all dimensions equally at 

choice.

In the UA model, ϕt(d) were set to one-third for both value computation and value update.

For all models, choice probabilities were computed according to a softmax action selection 

rule:

Equation 4

where πt(c) is the probability of choosing stimulus c, a enumerates over the three available 

stimuli, and β is a free inverse-temperature parameter that determines how strongly choice is 

biased toward the maximal-valued stimulus.

The three attention models (ACL, AL, and AC) had four free parameters—ωMVPA, ωET, β, 

and η—while the uniform attention model had two free parameters, β and η. Model 

comparison used a leave-one-game-out cross-validation procedure: for each participant and 

for each game, we fit the model to participants’ choices from all other games by minimizing 
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the negative log likelihood of the choices. Given these parameters, we then calculated the 

likelihood of each choice in the held-out game. The total likelihood of the data of each 

participant, computed for each game as it was held out, was then divided by the number of 

trials that the participant played to obtain the geometric average of the likelihood per trial. 

Because we used cross-validation, we could compare between models based on their 

likelihood per trial without fear of over-fitting and did not need to correct for model 

complexity. Best-fit model parameters (fitted to all games to maximize power) are reported 

in Table S1. As a second metric, we compared the models using the BIC (Schwarz, 1978; 

see Supplemental Experimental Procedures).

Modulation of Attention

We analyzed the attention weights used in the ACL model and investigated how they 

changed over time, as well as how they were modulated by value and reward (Figures S1–

S3). These analyses are described in detail in the Supplemental Experimental Procedures.

Attention Models

We developed a series of computational models that made predictions about the allocation of 

attention to face, landmark, and tool dimensions on each trial. The “Full Choice History” 

model allocated attention based on a leaky choice count. On each trial, counts for each of the 

three chosen features were incremented by 1, and counts for the remaining six unchosen 

features were decayed toward 0 at a subject-specific decay rate. Attention to each dimension 

was then determined by the softmax of the maximal count on each dimension. That is, on 

each trial, we took the highest count among the three features of each dimension and passed 

them through a softmax function (see Equation 4) to obtain three attention weights that sum 

up to 1.

The “Recent Choice History” model used a delta-rule update to adjust the weights of the 

chosen features toward 1. For each chosen feature, the weight wt(d, Schosen) was updated as 

wt + 1(d, Schosen) = wt(d, Schosen) + ηa[1 − wt(d, Schosen)], where ηa is a free update rate 

parameter. Here, too, the weights of unchosen features were decayed toward 0 at a subject-

specific decay rate, and the predicted attention weights were determined using soft-max on 

the maximum weights in each dimension.

The “Full Reward History” model allocated attention based on a leaky reward count: on 

rewarded trials, counts of chosen features were incremented by 1 and counts of unchosen 

features were decayed toward 0 at a subject-specific decay rate. No learning or decay 

occurred on unrewarded trials. Again, softmax was applied to the maximum counts in each 

dimension to determine attention.

In the “Recent Reward History” model, analogous to the Recent Choice History model, on 

each rewarded trial a delta-rule update adjusted the weights of the chosen features toward 1, 

and weights of the unchosen features were decayed toward 0.

Finally, in the “Value” model, attention tracked feature values. The value of each stimulus 

was assumed to be the sum of the values of all its features. Feature values were initialized at 

0 and updated via reinforcement learning with decay (see also Niv et al., 2015): on each 
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trial, a prediction error was calculated as the difference between the obtained reward and the 

value of the chosen stimulus. The value of chosen features was updated based on the 

prediction error scaled by a subject-specific update rate, while the value of unchosen 

features was decayed toward 0 at a subject-specific decay rate. As in the other models, the 

maximum feature value in each dimension was then passed through a softmax function to 

obtain the predicted attention vector. Unlike the Recent Reward History model, this model 

learned not only from positive, but also from negative, prediction errors and based error-

driven learning on a stimulus-level prediction error.

In sum, the Full Choice and Recent Choice models allocated attention based on prior 

choices, whereas in the Full Reward, Recent Reward, and Value models, the history of 

reinforcement determined fluctuations in attention. The Full Choice and Full Reward models 

had two free parameters—decay rate and softmax gain. The Recent Choice, Recent History, 

and Value models had an additional free parameter—the update rate. We also compared the 

models to a baseline zero-parameter model in which attention is always uniform (1/3, 1/3, 

1/3). As with our models of choice behavior, we evaluated the attention models using leave-

one-game-out cross-validation: for each participant and for each game, we fit the free 

parameters of the model to all but that game by minimizing the RMSD of the predicted 

attention weights from the measured attention weights. We then used the model to predict 

attention weights for the left-out game to determine the mean RMSD per trial for each 

model. We fit the models separately for the raw (preprocessed but not smoothed) eye-

tracking attention measure, the raw (unsmoothed) MVPA attention measure, and the 

composite measure (with smoothing parameters ωET and ωMVPA determined according to 

the best fit to choice behavior).

fMRI Analyses

We implemented five linear models (GLMs) as design matrices for analysis of the fMRI 

data:

GLM1 served to investigate whether the computation and update of the expected value 

signal in the brain was biased by attention. For each participant, we generated estimates for 

the expected value of the chosen stimulus on each trial using the UA, AC, AL, and ACL 

models. We entered these value estimates into the GLM as parametric modulators of the 

stimulus onset regressor. We did not orthogonalize the regressors because, in linear 

regression, variance shared by different regressors is automatically not attributed to any of 

the regressors. GLM1 could therefore identify regions that are associated with the value 

estimates of each model, while simultaneously controlling for the value estimates of the 

other models. Reaction time, trial outcome, outcome onset, and head movement parameters 

were also added as nuisance regressors. With the exception of head movement parameters, 

all regressors were convolved with the hemodynamic response function. Missed-response 

trials were not modeled as there was no chosen stimulus in those trials. The GLM was 

estimated throughout the whole brain using FSL/FEAT v.5.98 available as part of the 

FMRIB software library (FMRIB). We imposed a family-wise error cluster-corrected 

threshold of p < 0.05 (FSL FLAME 1), with a cluster-forming threshold of p < 0.001. Unless 
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otherwise stated, all GLM analyses included the same nuisance regressors and were 

corrected for multiple comparisons using the same procedure.

GLM2 served to investigate whether prediction error signals were also biased by attention. 

This GLM was identical to GLM1 except that instead of generating estimates of expected 

values, we generated estimates of trial-by-trial prediction errors using the four models and 

entered them into the GLM as parametric modulators of the outcome onset regressor.

GLM3 modeled switch and stay trials as stick functions at the onset of the respective trials. 

We defined switch trials as trials in which the maximally attended dimension was different 

from the previous trial and all the rest as stay trials. A contrast identified clusters that were 

more active during switch versus stay trials.

GLM4 included one regressor with stick functions at the onset of all switch trials, another 

with stick functions at the onset of all trials immediately preceding a switch trials, and so 

forth for the four trials preceding each switch, totaling to five trial-onset regressors. We used 

this GLM to analyze a set of ROIs in the frontoparietal attention network, dlPFC, IPS, and 

preSMA, pre-defined using the online meta-analytical tool Neurosynth (http://

neurosynth.org). For each region, we generated a meta-analytic reverse inference map 

(dlpfc: 362 studies; ips: 173 studies; pre-sma: 125 studies). We thresholded each map at z > 

5 and retained only the cluster containing the peak voxel in each hemisphere. For each ROI, 

we then extracted the activity time course averaged across voxels. Since we ran the GLM on 

average ROI activity (one test for each ROI), we report uncorrected p values, though we note 

that most of the results would survive a Bonferroni corrected threshold of p < 0.016 (0.05/3).

GLM5 was used for a PPI analysis to find areas in the brain exhibiting differences in 

functional connectivity with the vmPFC on switch trials versus stay trials. A separate GLM 

first identified clusters in the brain that were associated with the value of the chosen stimulus 

on each trial, as estimated using the ACL model. This map was thresholded at p < 0.001 to 

obtain a group-level vmPFC ROI. We then defined a participant-specific vmPFC ROI by 

thresholding the participant-level map at p < 0.01 and retaining clusters that fell within the 

group-level ROI. For each participant, we extracted the mean time course from this ROI and 

used it as the seed regressor for the PPI. We generated two task regressors—one for switch 

trials, one for stay trials—each modeled as a stick function with value of +1 at stimulus 

onset and 0 otherwise and convolved with the hemodynamic function. We then generated 

two PPI regressors by taking the product of each task regressor and the vmPFC time course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Jamil Zaki and Ian Ballard for scientific discussions and helpful comments on earlier versions of the 
manuscript and members of the Y.N. lab for their comments and support. This work was supported by the Human 
Frontier Science Program Organization, grant R01MH098861 from the National Institute for Mental Health, and 
grant W911NF-14-1-0101 from the Army Research Office. The views expressed do not necessarily reflect the 
opinion or policy of the federal government and no official endorsement should be inferred.

Leong et al. Page 18

Neuron. Author manuscript; available in PMC 2018 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://neurosynth.org
http://neurosynth.org


References

Bellman, R. Dynamic Programming. Princeton University Press; 1957. 

Botvinick MM. Hierarchical reinforcement learning and decision making. Curr Opin Neurobiol. 2012; 
22:956–962. [PubMed: 22695048] 

Brainard DH. The psychophysics toolbox. Spat Vis. 1997; 10:433–436. [PubMed: 9176952] 

Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev 
Neurosci. 2002; 3:201–215. [PubMed: 11994752] 

Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen 
SE, Raichle ME, Van Essen DC, Shulman GL. A common network of functional areas for attention 
and eye movements. Neuron. 1998; 21:761–773. [PubMed: 9808463] 

Dayan P, Niv Y. Reinforcement learning: the good, the bad and the ugly. Curr Opin Neurobiol. 2008; 
18:185–196. [PubMed: 18708140] 

Dayan P, Kakade S, Montague PR. Learning and selective attention. Nat Neurosci. 2000; 3:1218–1223. 
[PubMed: 11127841] 

Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995; 
18:193–222. [PubMed: 7605061] 

Dias R, Robbins TW, Roberts AC. Dissociation in prefrontal cortex of affective and attentional shifts. 
Nature. 1996; 380:69–72. [PubMed: 8598908] 

Esber GR, Roesch MR, Bali S, Trageser J, Bissonette GB, Puche AC, Holland PC, Schoenbaum G. 
Attention-related Pearce-Kaye-Hall signals in basolateral amygdala require the midbrain 
dopaminergic system. Biol Psychiatry. 2012; 72:1012–1019. [PubMed: 22763185] 

Gershman SJ, Niv Y. Learning latent structure: carving nature at its joints. Curr Opin Neurobiol. 2010; 
20:251–256. [PubMed: 20227271] 

Gottlieb J. Attention, learning, and the value of information. Neuron. 2012; 76:281–295. [PubMed: 
23083732] 

Hanke M, Halchenko YO, Sederberg PB, Hanson SJ, Haxby JV, Pollmann S. PyMVPA: a python 
toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics. 2009; 7:37–53. 
[PubMed: 19184561] 

Hare TA, Malmaud J, Rangel A. Focusing attention on the health aspects of foods changes value 
signals in vmPFC and improves dietary choice. J Neurosci. 2011; 31:11077–11087. [PubMed: 
21795556] 

Holland PC, Gallagher M. Different roles for amygdala central nucleus and substantia innominata in 
the surprise-induced enhancement of learning. J Neurosci. 2006; 26:3791–3797. [PubMed: 
16597732] 

Hyafil A, Summerfield C, Koechlin E. Two mechanisms for task switching in the prefrontal cortex. J 
Neurosci. 2009; 29:5135–5142. [PubMed: 19386909] 

Jones, M., Canas, F. Integrating reinforcement learning with models of representation learning. In: 
Ohlsson, S., Catrambone, R., editors. Proceedings of the 32nd Annual Conference of the Cognitive 
Science Society; Cognitive Science Society; 2010. p. 1258-1263.

Kowler E, Anderson E, Dosher B, Blaser E. The role of attention in the programming of saccades. 
Vision Res. 1995; 35:1897–1916. [PubMed: 7660596] 

Krajbich I, Armel C, Rangel A. Visual fixations and the computation and comparison of value in 
simple choice. Nat Neurosci. 2010; 13:1292–1298. [PubMed: 20835253] 

Lee D, Seo H, Jung MW. Neural basis of reinforcement learning and decision making. Annu Rev 
Neurosci. 2012; 35:287–308. [PubMed: 22462543] 

Lim S-L, O’Doherty JP, Rangel A. The decision value computations in the vmPFC and striatum use a 
relative value code that is guided by visual attention. J Neurosci. 2011; 31:13214–13223. 
[PubMed: 21917804] 

Mackintosh NJ. A theory of attention: variations in the associability of stimuli with reinforcement. 
Psychol Rev. 1975; 82:276–298.

Marković D, Gläscher J, Bossaerts P, O’Doherty J, Kiebel SJ. Modeling the evolution of beliefs using 
an attentional focus mechanism. PLoS Comput Biol. 2015; 11:e1004558. [PubMed: 26495984] 

Leong et al. Page 19

Neuron. Author manuscript; available in PMC 2018 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Moore T, Fallah M. Control of eye movements and spatial attention. Proc Natl Acad Sci USA. 2001; 
98:1273–1276. [PubMed: 11158629] 

Niv Y, Daniel R, Geana A, Gershman SJ, Leong YC, Radulescu A, Wilson RC. Reinforcement 
learning in multidimensional environments relies on attention mechanisms. J Neurosci. 2015; 
35:8145–8157. [PubMed: 26019331] 

Norman KA, Polyn SM, Detre GJ, Haxby JV. Beyond mind-reading: multi-voxel pattern analysis of 
fMRI data. Trends Cogn Sci. 2006; 10:424–430. [PubMed: 16899397] 

O’Craven KM, Downing PE, Kanwisher N. fMRI evidence for objects as the units of attentional 
selection. Nature. 1999; 401:584–587. [PubMed: 10524624] 

O’Doherty JP. Beyond simple reinforcement learning: the computational neurobiology of reward-
learning and valuation. Eur J Neurosci. 2012; 35:987–990. [PubMed: 22487029] 

O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ. Dissociable roles of ventral and 
dorsal striatum in instrumental conditioning. Science. 2004; 304:452–454. [PubMed: 15087550] 

Pearce JM, Hall G. A model for Pavlovian learning: variations in the effectiveness of conditioned but 
not of unconditioned stimuli. Psychol Rev. 1980; 87:532–552. [PubMed: 7443916] 

Pearce, JM., Mackintosh, NJ. Two theories of attention: a review and possible integration. In: Mitchell, 
CJ., LePelley, ME., editors. Attention and Associative Learning. Oxford University Press; 2010. p. 
11-14.

Petersen SE, Posner MI. The attention system of the human brain: 20 years after. Annu Rev Neurosci. 
2012; 35:73–89. [PubMed: 22524787] 

Ponsen, M., Taylor, ME., Tuyls, K. Abstraction and generalization in reinforcement learning: a 
summary and framework. In: Taylor, ME., Tuyls, K., editors. Adaptive and Learning Agents. 
Springer; Berlin Heidelberg: 2010. p. 1-32.

Rescorla, RA., Wagner, AR. A theory of Pavlovian conditioning: variations in the effectiveness of 
reinforcement and nonreinforcement. In: Black, AH., Prokasy, WF., editors. Classical 
Conditioning II: Current Research and Theory. Appleton-Century-Crofts; 1972. p. 64-99.

Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997; 
275:1593–1599. [PubMed: 9054347] 

Schwarz G. Estimating the dimension of a model. Ann Stat. 1978; 6:461–464.

Seymour B, O’Doherty JP, Dayan P, Koltzenburg M, Jones AK, Dolan RJ, Friston KJ, Frackowiak RS. 
Temporal difference models describe higher-order learning in humans. Nature. 2004; 429:664–
667. [PubMed: 15190354] 

Smith DT, Rorden C, Jackson SR. Exogenous orienting of attention depends upon the ability to 
execute eye movements. Curr Biol. 2004; 14:792–795. [PubMed: 15120071] 

Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, Janak PH. A causal link between 
prediction errors, dopamine neurons and learning. Nat Neurosci. 2013; 16:966–973. [PubMed: 
23708143] 

Sutton, RS., Barto, AG. Introduction to Reinforcement Learning. MIT Press; 1998. 

Wilson RC, Niv Y. Inferring relevance in a changing world. Front Hum Neurosci. 2012; 5:189. 
[PubMed: 22291631] 

Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. Orbitofrontal cortex as a cognitive map of task 
space. Neuron. 2014; 81:267–279. [PubMed: 24462094] 

Wunderlich K, Beierholm UR, Bossaerts P, O’Doherty JP. The human prefrontal cortex mediates 
integration of potential causes behind observed outcomes. J Neurophysiol. 2011; 106:1558–1569. 
[PubMed: 21697443] 

Leong et al. Page 20

Neuron. Author manuscript; available in PMC 2018 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Attention constrains reinforcement learning processes to relevant task 

dimensions

• Learned values of stimulus features drive shifts in the focus of attention

• Attention biases value and reward prediction error signals in the brain

• Dynamic control of attention is associated with activity in frontoparietal 

network
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Figure 1. The Dimensions Task
(A) Schematic illustration of the task. On each trial, the participant was presented with three 

stimuli, each defined along face, landmark, and tool dimensions. The participant chose one 

of the stimuli, received feedback, and continued to the next trial.

(B) The fraction of trials on which participants chose the stimulus containing the target 

feature (i.e., the most rewarding feature) increased throughout games. Dashed line: random 

choice, shading: SEM.

(C) Participants (dots) chose the stimulus that included the target feature (correct stimulus) 

significantly more often in the last five trials of a game as compared to the first five trials (t24 

= 15.42, p < 0.001). Diagonal: equality line.
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Figure 2. Schematic of the Learning Models
At the time of choice, the value of a stimulus (V) is a linear combination of its feature values 

(v), weighted by attention weights of the corresponding dimension (ϕF, ϕL, ϕT = attention 

weights to faces, landmarks, and tools, respectively). In the UA and AL models, attention 

weights for choice were one-third for all dimensions. Following feedback, a prediction error 

(δ) is calculated. The prediction error is then used to update the values of the three features 

of the chosen stimulus (illustrated here only for the face feature), weighted by attention to 

that dimension and scaled by the learning rate (η). In the UA and AC models, all attention 

weights were one-third at learning.
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Figure 3. The “Attention at Choice and Learning” Model Explains Participants’ Choice Data 
Best
(A) Average choice likelihood per trial for each model and each participant (ordered by 

likelihood of the model that best explained their data) shows that the Attention at Choice and 

Learning (ACL) model predicted the data significantly better than other models (paired t 

tests, p < 0.001). This suggests that attention biased both choice and learning in our task. 

Solid lines: mean for each model across all participants.

(B) BIC scores aggregated over all participants also support the ACL model (lower scores 

indicate better fits to data).

(C) Average choice likelihood of the ACL model was significantly higher than that of the 

AL and UA models from the second trial of a game and onward (paired t tests, p < 0.05) and 

was higher than that of the AC model from as early as trial 7 (paired t tests against AC 

model, *p < 0.05). By the end of the game, the ACL model could predict choice with ~70% 

accuracy. Error bars, within-subject SE.
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Figure 4. Neural Value and Reward Prediction Error Signals Are Biased Both by Attention for 
Choice and by Attention for Learning
(A) BOLD activity in the vmPFC was significantly correlated with the value estimates of the 

ACL model, controlling for the value estimates of the AC, AL, and UA models.

(B) BOLD activity in the striatum correlated with reward prediction errors generated by the 

ACL model, controlling for reward prediction error estimates from the AC, AL, and UA 

models. In sum, the ACL model’s predictions for value and prediction errors best 

corresponded to their respective neural correlates.
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Figure 5. Attention Is Modulated by Ongoing Learning
(A) Proportion of trials in which the most attended dimension was the dimension that 

included the highest-valued feature. This proportion, in all cases significantly above chance, 

was highest in trials with strong attention bias as compared to those with moderate and weak 

attention bias.

(B) Trials with a higher SD of the highest values across dimensions (SDV) showed stronger 

attention bias.

(C) The probability of an attention switch was highest on low SDV trials. Overall, the 

greater the difference between feature values, the stronger the attention bias and the less 

likely participants were to switch attention. Black lines: means of corresponding null 

distributions generated from a bootstrap procedure in which attention weights for each game 

were replaced by weights from a randomly selected game from the same participant.

(D) Coefficients of a logistic regression predicting attention switches from absence of 

reward on the preceding trials. Outcomes of the past four trials predicted attention switches 

reliably.

(E and F) Comparison of models of attention fitted separately to the eye-tracking (E) and the 

MVPA (F) measures, according to the root-mean-square deviation (RMSD) of the model’s 

predictions from the empirical data (lower values indicate a better model). Plotted is the 
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subject-wise average per-trial RMSD calculated from holdout games in leave-one-game-out 

cross-validation (Experimental Procedures). The Value model (dark grey) has the lowest 

RMSD. Error bars, 1 SEM. ***p < 0.001; **p < 0.01; *p < 0.05.
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Figure 6. Neural Correlates of Attention Switches
BOLD activity in a frontoparietal network was higher on switch trials than on stay trials.
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Figure 7. The Frontoparietal Attention Network Is Selectively Activated on Switch Trials
Left: ROIs in the frontoparietal attention network defined using Neurosynth. Right: 

regression co-efficients for switch trials (t) and four trials preceding a switch (t-1 to t-4). 

Mean ROI activity increased at switch trials (regression weights for trial t are significantly 

positive), but not trials preceding a switch. Error bars, SEM. **p < 0.01, *p < 0.05, Tp < 0.1.
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Figure 8. vmPFC and Frontal Attention Regions Were Anticorrelated on Stay Trials
A PPI analysis with vmPFC activity as seed regressor and two task regressors (and PPI 

regressors) for switch trials and for stay trials revealed that activity in the dlPFC, preSMA, 

vlPFC, and striatum (not shown) was anticorrelated with activity in the vmPFC specifically 

on stay trials, above and beyond the baseline connectivity between these areas.
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