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Abstract

Atherosclerotic coronary artery disease, which can result in coronary artery stenosis, acute 

coronary artery occlusion, and eventually myocardial infarction, is a major cause of morbidity and 

mortality worldwide. Non-invasive characterization of coronary blood flow is important to 

improve understanding, prevention, and treatment of this disease. Computational simulations can 

now produce clinically relevant hemodynamic quantities using only non-invasive measurements, 

combining detailed three dimensional fluid mechanics with physiological models in a multiscale 

framework. These models, however, require specification of numerous input parameters and are 

typically tuned manually without accounting for uncertainty in the clinical data, hindering their 

application to large clinical studies. We propose an automatic, Bayesian, approach to parameter 

estimation based on adaptive Markov chain Monte Carlo sampling that assimilates non-invasive 

quantities commonly acquired in routine clinical care, quantifies the uncertainty in the estimated 

parameters and computes the confidence in local predicted hemodynamic indicators.
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1. Introduction

Acquired cardiovascular disease, specifically atherosclerotic coronary artery disease, 

continues to be a major cause of morbidity and mortality worldwide. About one in seven 

deaths in the United States is caused by obstructive coronary artery disease, with an 

associated total annual cost of about $108.9 billion [1]. Hemodynamics are known to play an 

important role in the pathophysiology of atherosclerotic coronary artery disease [2]. 
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However, current tools to non-invasively study coronary artery hemodynamics are primarily 

deterministic.

Computational simulations of coronary artery flow provide a means to calculate 

hemodynamics that can aid in risk stratification, treatment planning, and improve 

understanding of disease progression. These tools have potential for clinical impact and have 

been used in optimizing coronary stent design [3] thrombotic risk stratification for Kawasaki 

disease [4, 5], analyzing the correlation between wall shear stress and atherosclerosis [6], 

and non-invasive assessment of fractional flow reserve [7].

State-of-the-art cardiovascular simulation tools employ lumped parameter networks (LPN, 

formulated through a set of ODEs) in a multiscale framework to specify the boundary 

conditions at inlets and outlets of a 3D patient-specific model, using circuit element 

representations of the heart and distal circulation [4, 8]. The numerous LPN parameters (e.g. 

resistance, compliance, inductance, etc.) are typically tuned so the simulation results match a 

set of clinical data, such as the patient’s blood pressure, stroke volume, and ejection fraction. 

Using current tools, manual tuning of these parameters is required, but is time consuming, 

operator dependent, and does not account for clinical data uncertainty. To overcome this 

difficulty, various automatic approaches to parameter estimation have been discussed in the 

literature (see, e.g., [9, 10, 11, 12, 13, 14, 15]), in most cases providing only point estimates 

for the unknown parameters.

In this study, we follow a Bayesian perspective on estimation, treating unknown parameters 

as random variables and using an iterative approach with multiple chains to sample from 

their joint posterior distribution. A significant effort is also spent in detecting unimportant 

parameters, using local and global identifiability metrics to reduce the dimensionality of the 

estimation problem, resulting in a reduced set of identifiable parameters. By sub-sampling 

the parameter realizations obtained from DREAM (see Section 4.2) that result in reasonable 

matching among targets, we also compute an ensemble of multiscale model solutions and 

estimate the uncertainty of resulting output quantities of interest (wall shear stress and 

oscillatory stress index maps on the coronary arteries) using Monte Carlo simulation.

The main contributions of this paper are to present an automatic approach (combining 

parameter identifiability and Bayesian estimation) to determine optimal LPN parameters for 

coronary artery simulations from non-invasive clinical targets, and to quantify their 

variability due to both clinical data uncertainty and the presence of non-indentifiable 

parameter combinations. Moreover, we use a Monte Carlo approach to propagate LPN 

parameter uncertainties to full multiscale model results, e.g., time averaged wall shear stress 

(TAWSS) and oscillatory shear index (OSI). This is in contrast to previous deterministic 

approaches in which results are typically obtained for a single set of boundary conditions, 

with no possibility of quantifying confidence in local hemodynamic indicators.

2. Multiscale coronary simulations

A multiscale model of the coronary circulation is shown in Figure 1 (a) and consists of 

coupling an LPN model with a 3D representation of the aorta and coronary arteries. Patient-
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specific models of the aorta and coronary arteries are constructed from CT images and 

combined with finite element flow simulations using the open source software package 

SimVascular [16]. The finite element mesh consists of tetrahedral elements, and a stabilized 

finite element technique using the generalized-α method is used to solve the time dependent 

Navier-Stokes equations [17, 18]. The solutions are then post-processed to obtain quantities 

of interest such as wall shear stress and oscillatory shear index.

The selected LPN layout is inspired by previous work [19] and includes compartments for 

each of the four chambers of the heart, the pulmonary arteries, modified Windkessel models 

for the systemic circulation, and sub-circuits for the coronary circulation which are coupled 

to the left ventricular pressure. It contains 35 parameters with components mimicking 

viscous resistance, vessel compliance, and blood inertia. Ventricular contraction is modeled 

using an elastance formulation [20], while an activation function formulation is used for the 

atria. The governing equations for the coronary LPN are outlined in [19], with a key 

difference in this study being that the relative coronary outlet resistances are scaled 

according to Murray’s Law [21]. We finally stress that the similarities between the proposed 

approach and [19] are only relative to the lumped parameter model layout used to simulate 

coronary flow. The parameter estimation approach is, however, fundamentally different. In 

[19] the authors used deterministic patient-specific parameters to quantify coronary 

hemodynamics, studying the effect of changes in graft path and angle of anastamosis. Here, 

we focus on an automated approach to estimate the uncertainty in the LPN parameters 

induced by clinical data variability. We then use Monte Carlo simulation to quantify the 

uncertainty in local hemodynamic results, allowing estimation of confidence in the 3D 

results. Instead of performing a multi-scale simulation for a single set of boundary 

conditions, we rather explore an ensemble of realizations of boundary conditions, all of 

which are compatible with the patient-specific data.

One of the goals of this multiscale framework is to model the out of phase behavior of 

coronary flow. As shown in Figure 1(b), the left coronary waveform is described by low flow 

in systole and high flow in diastole, while the right coronary waveform is characterized by 

nearly equal flow peaks in systole and diastole. This result is in agreement with clinical 

observation.

3. Clinical targets

The clinical targets considered in this study were acquired through routine measurements, 

population average values, echocardiography data, and literature data to supplement the non-

invasive measurements on coronary flow. A list of the clinical targets, including a short 

description, associated uncertainties, and assigned weight factors (see Section 4.1) can be 

found in Table 1.

The aortic pressures are the patient’s cuff pressures taken at the time of the echocardiogram, 

which is a good approximation of the aortic pressure. The patient-specific data collected 

from echocardiography include: stroke volume [22], ejection fraction, ratio of early to late 

flows into the left ventricle, valve opening times relative to the heart cycle duration, systolic 

pressure difference between the right ventricle and right atrium measured from tricuspid 
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valve regurgitation [23], and the mean right atrial pressure estimated from the diameter and 

degree of inspiratory collapse of the inferior vena cava [24] (refer to [25, 26, 27] for modern 

guidelines on performing and interpreting echocardiograms).

Literature data was included to improve identifiability of the model parameters. Specifically, 

we assumed a mean pulmonary pressure of 14.0 mmHg [28] and that 4% of the cardiac 

output is distributed to the coronaries [29]. We also used the Doppler flow wire 

measurements reported in [30] as a reference for the out of phase behavior of the left and 

right coronary waveforms. This includes diastolic to systolic peak flow ratio, the diastolic to 

systolic blood volume flowing through the coronary arteries, and the ratio of the flow 

occurring in the first 1/3 and 1/2 of the heart cycle.

Standard deviations for these targets were determined from the literature and personal 

communication with clinicians about their relative confidence in each measurement. 

Measurements of ejection fraction have relatively small uncertainty, since they depend only 

on tracking the left ventricular wall during echocardiography. The geometry of the left 

ventricular wall can clearly be seen throughout the cardiac cycle, thus these quantities are 

determined with good confidence. Other echocardiographic measurements depend on the 

reliability of echocardiography to measuring flow. Doppler flow measurements depend on 

the orientation of the measuring probe relative to the direction of flow, and some patients do 

not admit clear flow profiles. The targets depending on echocardiographic flow 

measurements (mitral valve E/A ratio, amount of time the valves are open, and max Prv − 

Pra) thus are assigned higher uncertainties. Finally, the heart rate is assumed deterministic 

(not subject to tuning), and is collected at the time of echocardiography.

4. Methods

4.1. Statistical model

Consider a set of d parameters, y = {y1, …, yd} statistically characterized by their joint 

probability distribution ρ (y) and denote yk as a generic realization sampled from ρ (y). Also 

consider a set of m outputs o = {o1, …, om}, one for each of the m clinical targets d = {d1, 

…, dm} with joint distribution ρ (d). We then consider the LPN model as a map G : ℝd → 
ℝm, that returns a vector of results ok given a vector of input parameters yk, or in other 

words, ok = G(yk). The error ε between the model outputs and our clinical targets is

(1)

and accounts for both the uncertainty in the clinical measurements and approximations due 

to modeling a complex physiological behavior with a simplified LPN model. Since we do 

not have any knowledge about how these clinical measurements might be correlated, we 

assume a diagonal covariance for ε. With these assumptions, the likelihood function takes 

the form:
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(2)

where di is the i-th clinical target with variance , Gi(y) is the corresponding model output, 

and ωi is a weight factor. The weights are included to modulate our ability to match certain 

targets. For the purpose of tuning boundary conditions, we have chosen to place higher 

priority (i.e., ωi = 1) on the targets that directly affect the 3D results, such as the aortic 

pressure and the various coronary flow targets, and lower priority (i.e., ωi > 1) on the targets 

in the heart compartment, which have a smaller impact.

Once the likelihood for a given parameter realization has been determined, the posterior 

distribution of the model parameters conditioned on the clinical data can be formulated 

through Bayes’ Rule, P (y|d) ∝ P (d|y) P (y). In our study, we use uniform priors defined 

through admissible parameter ranges. The adoption of more informative priors would, in 

general, be beneficial and likely result in reduced parameter variances. But we were cautious 

in assigning reasonable admissible intervals, so as not to compromise our ability to represent 

a wide range of patient-specific physiologies. Application of the proposed approach to large 

cohorts of patients will allow us to identify improved non-uniform priors.

We also note that additional information on the correlation between clinical targets would 

likely improve the estimation process. However, data scarcity poses severe limitations in this 

regard. Repeated patient-specific measurements are rarely available and data from the 

literature is useful in characterizing population variances rather than personalized data 

uncertainty. Correlation information could be used to eliminate redundant measurements 

from the tuning process, but for the present study we feel that such removal would prevent 

us from gathering useful information about possible physiological inconsistencies. 

Simultaneous estimation of both parameters and correlations in the clinical data is not 

addressed in this study and will be the subject of future work.

4.2. MCMC with the DREAM algorithm

MCMC provides a way to iteratively sample from a distribution that may not be known 

analytically, as in equation (2) [31]. Moreover, this distribution is not necessarily convex due 

to the underlying non-linear model, the selected model parameterization, and the availability 

of clinical targets. As a result, classical Metropolis MCMC with a fixed proposal distribution 

may experience slow convergence. Several strategies to adaptively modify the proposal 

distribution are discussed in the literature [32, 33, 34], leading to improved convergence 

rates. An interesting recent development, DREAM [35], combines differential evolution [36] 

and self adaptive randomized subspace sampling, showing improvements over other 

methods when sampling from heavily tailed or multi-modal distributions. Moreover, 

adoption of parallel Markov chains improves both the computational performance and offers 

better diagnostics to check convergence. Extensions of DREAM are discussed, for example, 

in [37] where parallel implementation in combination with a multiple-try-Metropolis 
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strategy were used to sample from hydrologic models with up to 241 random parameters. 

These are the main reasons behind selecting the DREAM algorithm for our computations.

Note also that MCMC merely produces samples from a distribution (the stationary posterior 

distribution of the parameters) for which point-wise evaluations are available up to a 

constant. While the density of samples is expected to be larger on the posterior peaks, 

MCMC only provides a random exploration of the space of parameters, rather than a 

computation of the maximum of this posterior distribution. Hence, to determine a maximum 

a priori parameter estimate, we use Nelder-Mead optimization [38] using the parameter 

sample with maximum posterior value from MCMC as an initial guess.

4.3. 3D model surrogate

Generation of parameter samples from their stationary posterior distribution using DREAM 

typically requires thousands of evaluations of the coronary LPN. Running finite element 

simulations for each of these model evaluations is computationally intractable. To overcome 

this difficulty, we simplify the 3D finite element model by constructing a resistance based 

0D surrogate, thus significantly reducing the computational cost for each model evaluation 

(from several hours to a fraction of a second). In this study, we assumed a non-compliant 3D 

model and negligible pressure losses due to inertia effects. A fully resistive surrogate can 

therefore be used to model the relationship between pressure and flow at each outlet. These 

surrogate resistances were selected such that the discrepancy between equivalent 0D 

surrogate and full multiscale simulation outputs is minimized.

Resistances for the surrogate model are obtained by first setting them equal to their 

respective outlet resistances defined in our coronary LPN in Section 2. The outlet resistances 

provide a nice starting point for determining the surrogate resistances since they ensure that 

the relative flow split between branches in the same system (systemic or coronary) will be 

preserved. To ensure this surrogate model produces output quantities consistent with the 

corresponding 3D simulation, we scale these surrogate resistances to minimize the 

discrepancy between the two models. We define two scaling factors: the first multiplies the 

systemic surrogate resistances and the second multiplies the coronary surrogate resistances. 

These scaling factors are iteratively refined until all target quantities of the surrogate 

simulation match within 10% of the respective 3D result (see Figure 4). The results show 

small differences between the two models, confirming the validity of a resistance-based 

approximation of the three dimensional anatomic model.

4.4. Parameter reduction

Identification of influential parameters and detection of their non-identifiable combinations 

is an important preliminary step that increases the predictive ability of numerical models. In 

this regard, to better understand the role played by the various LPN parameters and 

determine which are the most important, we used a combination of prior experience in 

manual tuning, analysis of structural identifiability through the Fisher Information Matrix 

(FIM), and the ability to learn certain parameters through Bayesian estimation.

We first used previous experience with manual tuning to identify parameters with the most 

significant impact on the subset of manually tuned targets, namely the patient’s blood 
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pressure, stroke volume, flow split between systemic and coronary circulations, and the 

qualitative shape of the waveforms. We found that the left ventricular elastance Elv strongly 

affects the stroke volume and the blood pressure to a lesser extent, while the aortic 

compliance Cao has a strong influence on the difference between the systolic and diastolic 

aortic pressures. The coronary downstream resistance scaling factor Ramcor has a strong 

influence on the flow splits, while the coronary capacitances and dP/dtr (i.e., the 

intramyocardial pressure time derivative) significantly affect the shape of the coronary 

waveforms. Finally, the downstream systemic resistance scaling factor Rrcr strongly 

influences both the aortic pressure amplitude and stroke volume. We included the above 

parameters as important, and confirmed this assumption through the analysis of the FIM 

rank.

The Fisher Information Matrix is a local measure of identifiability of a system, i.e. the 

ability to uniquely characterize parameter combinations from the available observations 

[39]. A statistical model of the form (1) results in a FIM expressed as

(3)

where ∂G(y)/∂y is the sensitivity matrix of local derivatives of the targets with respect to a 

change in the parameters (computed, in this study, using finite differences), and  is the 

inverse diagonal covariance matrix of the clinical targets. The result ℐ (y) is a square matrix 

with dimension equal to the number of LPN parameters. As discussed in [39], if ℐ (y) is full 

rank, then the parameters are said to be locally identifiable given the available set of clinical 

observations. For cases of singular FIM, an analysis of the eigenvectors associated with the 

zero eigenvalues (i.e. null eigenvectors) can be useful in determining which parameters are 

not identifiable under our set of targets. In particular, a null eigenvector having a dominant 

component associated to a single parameter indicates that changes in this parameter do not 

affect the target outputs. This parameter can therefore be eliminated thus reducing the 

complexity of the estimation problem. An example of such a null eigenvector with a single 

dominant component is shown in Figure 2.

However, even after eliminating all the parameters associated with dominant components of 

null eigenvectors, the FIM was still found to be singular, but with non trivial null 

eigenvectors. In other words, non identifiable parameter combinations were still present in 

the LPN model but the analysis of the FIM eigenpairs was unable to suggest 

reparametrizations with improved identifiability.

To continue our effort in reducing the number of parameters, we examined their estimated 

marginal variance as a measure of global identifiability. Due to the Bayesian nature of the 

proposed framework, we defined the ability to learn a certain parameter by comparing the 

posterior and prior marginal variances as follows
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(4)

Well-learned parameters will have a much smaller variance after being conditioned to the 

clinical targets with θi being close to one. Poorly learned parameters, on the other hand, will 

have resulting variances that are close to their prior variance, with a corresponding θi close 

to zero. Intuitively, parameters associated with large marginal variances will likely have a 

limited impact on the model results selected for identification, since these parameters can 

take on a wide range of values, but produce results with similar posterior.

The parameter learning metrics were first observed using a synthetic set of clinical data 

generated from a known parameter set (hence referred to as truth). This facilitated the 

determination of structural measures of parameter learning by ensuring that this set of 

targets can be exactly represented using the LPN model. As previously performed using the 

FIM identifiability metric, we also observed parameter learning in separate compartments. 

This confirmed the results of the FIM analysis, and provided additional insight on possible 

unimportant parameters. Prior tuning experience, FIM analysis, Bayesian learning metrics, 

and qualitative knowledge of expected physiologic coronary waveforms, allowed us to 

determine a set of 13 parameters. This subset consistently generated excellent agreement 

between model outputs targets, estimated parameters close to the targets, and produced flow 

and pressure waveforms consistent with qualitative expectations.

A reduction in the number of parameters also generally leads to faster convergence in 

sampling from the stationary posterior distribution using DREAM. With 13 parameters, the 

framework is able to reach convergence (as monitored through the Gelman-Rubin criterion 

[40]) within 10,000 to 30,000 generations, depending on the patient, compared to over 

100,000 generations without convergence for the full set.

5. Workflow

After reducing the dimensionality of our estimation problem, we tested the proposed 

framework on six patients with a history of coronary artery bypass graft surgery and one 

patient with normal coronary arteries. All patients were consented under an approved IRB 

protocol. We first created a surrogate 3D model for each patient through the methods 

described in section 4.3.

We then used DREAM to iteratively sample from the joint posterior distribution of 

parameters, which also performs a randomized exploration of the parameter space to search 

for the set of parameters characterized by maximum posterior probability. We then ran 

Nelder-Mead optimization [38] with an initial guess equal to the set of parameters with 

maximum posterior generated from DREAM, thus determining our optimal set. Finally, we 

compared the LPN and full 3D solutions for the optimal set of parameters and use a subset 

of the realizations computed from DREAM to determine the variability of the full multiscale 
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model results. A flowchart summarizing this workflow, with references to specific 

algorithms used, is shown in Figure 3.

6. Results

6.1. Agreement between model outputs and clinical targets

The seven patients selected for this study exhibited a wide range of patient-specific targets. 

For example, diastolic pressures ranged from 59 mmHg to 97 mmHg, systolic pressures 

ranged from 113 mmHg to 143 mmHg, stroke volumes ranged from 52 mL to 116 mL, and 

ejection fractions ranged from 53% to 77%.

Despite these large ranges, clinical targets were closely reproduced. The average percent 

error between simulation results and target values for non-coronary targets across all patients 

is 7.6%, when the uncertainty associated with their measurement is 14.3% on average. For 

the literature coronary targets, the average percent error observed with the simulations is 

28.4%, with the reported standard deviations in these targets being 29.0% on average. Figure 

4 compares the prescribed targets, the optimal outputs for the LPN model with the surrogate, 

and 3D simulation results using the same parameters. Results with the surrogate closely 

matched the 3D simulation results, showing the robustness of a resistive surrogate in 

mimicking a computationally expensive 3D model with rigid walls. The resulting coronary 

waveforms for the analyzed patients using optimal parameters is shown in Figure 5.

6.2. Optimal parameter values and associated uncertainty

Table 2 shows the optimal parameter values for each patient and their associated standard 

deviations, computed from the converged DREAM samples. Parameters associated with 

systems that are well defined by the targets are generally characterized by limited variance. 

In our computations, for example, the systemic circulation is well defined, with associated 

parameters (e.g., Elv, Cao, and Rrcr) showing reduced uncertainty. In other words, changing 

the values of these parameters produces significant changes in several targets, which 

strongly affects the likelihood function (2).

Other parameters are instead characterized by significant uncertainty, most notably Kxpra, 

Caml, Cal, and Camr. The right atrial parameter Kxpra shows significant uncertainty across 

all patients, a direct result of the uncertainty in the right atrial pressure target measured 

through echocardiography [24]. This parameter represents the slope of the passive right 

atrial pressure curve, which is generally small. Thus a variation in this parameter is likely to 

have a limited effect on the mean right atrial pressure target. Finally, all the other parameters 

with high uncertainty govern coronary flow.

6.3. Variability in multiscale model predictions

The ability to learn the distributions of LPN model parameters from uncertain clinical data 

enables one to evaluate the corresponding uncertainty in the hemodynamic indicators 

predicted in the 3D simulation model, e.g., spatial distributions of pressures, velocities, shear 

stresses, oscillatory shear index, etc. This is shown in Figure 6, where the optimal time 

averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) are illustrated 
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together with their standard deviations, for a representative CABG patient and a normal 

control.

A Monte Carlo estimator of the standard deviations was computed from the population 

average for TAWSS and OSI across 50 multiscale simulations associated with 50 parameter 

sets of significant posterior, sub-sampled from those generated by DREAM. TAWSS and 

OSI were selected due to the difficulty of measuring these quantities in vivo, and their effect 

on endothelial function and phenotype (see, e.g., [2]).

We also verified that the standard deviations of the LPN model parameters from the selected 

50 samples were compatible with those of all the samples generated using DREAM. The 

average percent difference was found to be equal to 6.92% for CABG6 and 14.05% in 

Normal1, showing adequate agreement.

We also checked the convergence in the standard deviation of the result quantities (WSS, 

OSI, etc.) as computed through their Monte Carlo estimate. It is well known that the Monte 

Carlo estimate of the mean has a standard deviation proportional to , with σT the true 

standard deviation and n the number of samples. To verify convergence, we compared the 

standard deviations for the TAWSS using the first 10, 20, 30, 40, and 50 samples 

respectively. Figure 7 illustrates the TAWSS standard deviation for both the CABG6 and 

Normal1 patients, showing little noticeable change in the distributions between 40 and 50 

samples.

The Monte Carlo standard deviations for TAWSS and OSI are one order of magnitude 

smaller than their optimal estimates, confirming the reliability of the multi-scale predictions 

of these quantities. This is justified by their strong link with the mean coronary flow, which 

in turn is strongly influenced by the value of Ram. As reported in Table 2, the uncertainty in 

this parameter is limited, resulting in low uncertainty in the TAWSS and OSI.

7. Discussion and Conclusion

This study presents a framework for assimilation of non-invasive clinical data and associated 

uncertainty in multiscale models of the coronary circulation. The proposed framework 

overcomes the problems of manual tuning by automatically determining an optimal 

parameter set that produces results consistent with patient data. Across the six CABG 

patients and one normal control, the average percent error between simulation results and 

targets is 7.6% for patient-specific targets and 28.4% for literature coronary targets, which is 

within their expected uncertainties. This approach also enables quantification of confidence 

in the multiscale predictions (e.g., wall shear stress, oscillatory stress index, etc.) that are 

known to play a role in endothelial response. We have shown the standard deviation in the 

multiscale prediction of these quantities to be one order of magnitude less than their optimal 

estimates, confirming the reliability of these simulations in the presence of clinical data 

uncertainty.

Although the patient-specific targets agreed well with the model results as shown in Figures 

4 (a) to (e), coronary targets from literature could not be matched equally well. Specifically, 

the right coronary volume ratio illustrated in Figure 4 (i) showed poor matching across all 
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patients. These targets are typically associated with large variances due to both measurement 

uncertainty and population variability, and therefore penalized when evaluating the 

likelihood in (2). In other words, agreement of coronary targets is penalized with respect to 

the other patient specific targets due to their larger variance.

Another possible explanation for the mismatch is that our coronary LPN is unable to hit this 

target exactly due to the way we model intramyocardial pressure in the right coronaries. 

Since the right coronary arteries perfuse both sides of the heart, the choice of 

intramyocardial pressure for the right coronaries is not well defined. In our model, we scale 

down the left ventricular pressure and apply it as the intramyocardial pressure for the right 

coronaries. This scaling factor is one of the parameters in the LPN, and ranges from 0.5 to 

1.0. This suggests that additional data on right coronary flow would be beneficial in 

improving our model to capture this phenomena accurately. Another possible reason for this 

inconsistency is that this target quantity is very sensitive to how systole and diastole are 

defined. In our literature review, the criterion used to identify the start of systole and diastole 

is often omitted, and it might differ from the definition used in our study. We defined the 

start of systole to be when the mitral valve closed, and the start of diastole to be when the 

aortic valve closed.

Overall, the computed optimal coronary waveforms were qualitatively consistent with 

coronary waveforms reported in the literature [41, 46, 47, 30], i.e., left coronary waveforms 

were characterized by almost no flow in systole and a large diastolic component, and right 

coronary waveforms exhibited double peaks in systole and diastole, as shown in Figure 5. 

However, even among these sources [41, 46, 47, 30], there is variability in the reported 

shape of the right coronary waveform. This again suggests that more data on right coronary 

flow needs to be collected to improve predictions. But until there is a way to reliably and 

routinely obtain patient-specific coronary flow data non-invasively, we must be satisfied 

with waveforms that are qualitatively consistent with previously reported shapes.

A good degree of robustness is observed under varying availability of clinical targets. For 

example, the absence of regurgitation in the tricuspid valve prevented max(Prv − Pra) to be 

measured for Normal1 and CABG6. As shown in Table 2, this did not significantly alter the 

parameter statistics compared to those obtained from the other patients (where this target 

quantity was available), confirming the applicability of the proposed framework to patients 

for whom limited imaging data prevent acquisition of low priority targets (i.e., those with ωi 

> 1.0 in Table 1).

The physiological consistency produced by the optimal set of parameters can be improved 

by adding clinical or literature data, especially patient-specific targets for the coronary flow. 

Improvements in echo-Doppler technology and availability of literature studies with large 

patient populations will likely increase the number of targets that could be considered by the 

proposed approach. This may expand the number of identifiable parameters, providing more 

flexibility for this framework to more closely represent patient-specific physiology. 

Inclusion of invasive measurements, such as catheter or flow wire data, could also provide 

additional patient-specific measurements that would constrain the coronary parameters and 
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would reduce the need for literature data. However, only non-invasively obtained targets 

were considered for this study, to highlight its use for non-invasive assessment.

A key assumption in this study was the use of rigid vessel walls. Vessel walls are known to 

be compliant structures characterized by finite speed pressure wave propagation [41]. Fluid-

structure interaction (FSI) simulations have been adopted by several research groups [42, 43, 

44], but construction of a robust compliant 3D model surrogate for tuning poses challenges 

that will be addressed in future work. We also note that this study only considers uncertainty 

in the clinical measurements used to tune boundary conditions. We observed small 

uncertainty in the multiscale simulations because the key LPN parameters are characterized 

by small variance (e.g. Ram). Uncertainty also exists in the medical images, which leads to 

uncertainty in the geometry of the 3D model [45]. There is also variability in the physiologic 

state of the patient that is not accounted for, especially with mild exercise and daily activity. 

In the case of FSI, there is also uncertainty in the vessel wall material properties. These all 

lead to additional uncertainties in the 3D results, and the framework presented here is 

general enough to include these additional sources in the future.

The current study focused on patients with a history of coronary artery bypass surgery. 

Applying the same methodology to patients with obstructive coronary artery disease who 

have not undergone bypass surgery and to patients with other types of coronary artery 

pathology (i.e. Kawasaki Disease) is also planned.
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Highlights

• A framework is presented for automated tuning of lumped parameter network 

boundary conditions in cardiovascular simulations

• An automated Bayesian approach is employed, achieving excellent agreement 

with clinical targets

• The method is demonstrated using patient specific data for 6 coronary bypass 

patients and one normal

• Uncertainties are propagated to 3D simulation results to demonstrate success 

of the method in a multiscale framework.
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Figure 1. 
(a) Schematic view of a multiscale patient-specific model of the coronary circulation and (b) 

typical left (top) and right (bottom) coronary artery flow waveforms. A scaled down aortic 

pressure waveform is shown to highlight the out of phase nature of coronary flow.
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Figure 2. 
(a) Null eigenvector for entire system shows multiple parameters with significant weight, 

making it difficult to justify elimination. (b) Null eigenvector for the systemic circulation 

shows Crcr is locally unidentifiable. This is due to the fact that no clinical targets are 

associated with the systemic compliance, thus changing this parameter has minimal impact 

on the target results.
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Figure 3. 
Automated Tuning with Uncertainty Quantification Workflow
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Figure 4. 
Target matching across all patients for priority targets. White bars indicate targets for each 

patient, and the error bars indicate either the measurement uncertainty for patient-specific 

targets or reported standard deviations for literature targets. Black bars represent model 

outputs with the surrogate model, and striped bars represent model outputs from full 

multiscale simulations.
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Figure 5. 
Resulting coronary waveforms with optimally tuned parameters for all patients in this study. 

Top figures show the left coronary waveform and bottom figures show the right coronary 

waveform.
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Figure 6. 
Multi-scale simulation results (optimal parameters and standard deviations) for CABG6 and 

Normal1.

Tran et al. Page 22

Comput Fluids. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Convergence of 3D Monte Carlo approximations for standard deviations in TAWSS
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Table 1

List of clinical targets considered in this study. Uncertainties are represented as standard deviations from the 

measured quantity for patient-specific targets, or standard deviations from the mean reported in literature.

Target Description Uncertainty Weight Specific/Literature

Min Pao Diastolic aortic pressure 10% measured 1 Patient-specific

Max Pao Systolic aortic pressure 10% measured 1 Patient-specific

Mean Pao Mean aortic pressure 10% measured 1 Patient-specific

Aor − Cor flow split Percentage of cardiac output to coronaries 10% mean 1 Literature

Stroke Volume Blood volume ejected each heart contraction 10% measured 1 Patient-specific

Mean Ppulm Mean pulmonary pressure 3.3 mmHg 2 Literature

Ejection Fraction Percentage of LV blood volume ejected per contraction 10% measured 1 Patient-specific

Mitral E/A ratio Ratio of early to late flows into the LV 20% measured 2 Patient-specific

Mitral valve open % Percentage of cardiac cycle that mitral valve is open 15% measured 2 Patient-specific

Aortic valve open % Percentage of cardiac cycle that aortic valve is open 15% measured 2 Patient-specific

Pulm valve open % Percentage of cardiac cycle that pulmonary valve is open 15% measured 2 Patient-specific

Max Prv − Pra Systolic pressure difference between the RV and RA 25% measured 2 Patient-specific

Mean Pra Mean RA pressure 40% measured 1 Patient-specific

Lcor peak ratio Left coronary peak flow ratio in diastole vs. systole 0.8 1 Literature

Lcor total ratio Left coronary flow volume ratio in diastole vs. systole 2.53 1 Literature

Lcor 1/3 FF Percentage of left coronary flow volume in first 1/3 of cardiac 
cycle

0.02 1 Literature

Lcor 1/2 FF Percentage of left coronary flow volume in first 1/2 of cardiac 
cycle

0.03 1 Literature

Rcor peak ratio Right coronary peak flow ratio in diastole vs. systole 0.3 1 Literature

Rcor total ratio Right coronary flow volume ratio in diastole vs. systole 1.08 1 Literature

Rcor 1/3 FF Percentage of right coronary flow volume in first 1/3 of cardiac 
cycle

0.07 1 Literature

Rcor 1/2 FF Percentage of right coronary flow volume in first 1/2 of cardiac 
cycle

0.07 1 Literature
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