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Two billion years of magmatism recorded from a single
Mars meteorite ejection site
Thomas J. Lapen,1* Minako Righter,1 Rasmus Andreasen,1,2 Anthony J. Irving,3

Aaron M. Satkoski,4,5 Brian L. Beard,4,5 Kunihiko Nishiizumi,6 A. J. Timothy Jull,7 Marc W. Caffee8,9

The timing and nature of igneous activity recorded at a single Mars ejection site can be determined from the iso-
tope analyses of Martian meteorites. Northwest Africa (NWA) 7635 has an Sm-Nd crystallization age of 2.403 ±
0.140 billion years, and isotope data indicate that it is derived from an incompatible trace element–depleted man-
tle source similar to that which produced a geochemically distinct group of 327- to 574-million-year-old “depleted”
shergottites. Cosmogenic nuclide data demonstrate that NWA 7635 was ejected from Mars 1.1 million years ago
(Ma), as were at least 10 other depleted shergottites. The shared ejection age is consistent with a common ejection
site for these meteorites. The spatial association of 327- to 2403-Ma depleted shergottites indicates >2 billion
years of magmatism from a long-lived and geochemically distinct volcanic center near the ejection site.
INTRODUCTION
Insights into the duration of igneous activity and the nature ofmagma
sources in Mars are made from analyses of shergottite meteorites—
mafic to ultramafic igneous rocks fromMars’ crust composed mainly
of pyroxene, plagioclase (commonlymaskelynite), and, inmany cases,
olivine [for example,McSween and Treiman (1)]. Shergottites are also
characterized by their trace element concentrations and the radiogenic
isotope compositions of their mantle sources [for example, Borg and
Draper (2)], which are distinct from those that produced the other
Martian igneous rocks classified as nakhlites and chassignites (3).
The shergottites were launched from Mars’ crust by large bolide im-
pacts (4, 5); however, the unknown spatial associations of these me-
teorites before launch and a relatively narrow range of crystallization
ages from 150 to 574 million years (My) (6–8) have limited our
understanding of long-term igneous processes.

Geochemical data obtained from Northwest Africa (NWA) 7635,
a 195.8-g partly fusion-crusted olivine-plagioclase-phyric rock that
was found in Algeria in 2012, both extend the recognized period of
shergottite magmatism and provide constraints on the prelaunch
spatial association of a suite of geochemically related shergottite spe-
cimens. This specimen is porphyritic with phenocrysts (up to 200 mm)
of plagioclase completely converted to maskelynite, Fe-rich olivine,
augite, and low-Ti magnetite in a finer-grained matrix composed
mainly of igneous-zoned, Fe-rich augite (see Fig. 1 and the Supple-
mentary Materials). Accessory pyrrhotite and rare ilmenite are pres-
ent, but no identifiable phosphate grains have been found. Although
NWA 7635 does not contain pigeonite, we consider it to be a petro-
logic variant of a typical shergottite, in much the same way the petro-
logic variants of the type specimen Shergotty (9, 10) have been
included in the shergottite group. Shock features include the presence
of maskelynite and glassy veins that crosscut the igneous texture, but
there is no evidence for shock-induced reequilibration of igneous tex-
tures and compositional zoning. Furthermore, there is no evidence for
terrestrial desert weathering products in the sample aliquot analyzed
in this study. Isotope analyses of Sm-Nd, Lu-Hf, and Rb-Sr that con-
strain the age and mantle source compositions were conducted on a
2.2-g portion from the interior of NWA 7635 (table S1). Cosmogenic
nuclide concentrations of 10Be (half-life, 1.36 My) and 26Al (half-life,
0.705 My) were measured to constrain the cosmic-ray exposure age,
and 14C (half-life, 5730 years) was measured to constrain the terres-
trial age; the sum of exposure and terrestrial ages is the time since the
launch from the surface of Mars (ejection age).
RESULTS
A 147Sm-143Nd isochron age of 2403 ± 140 million years ago (Ma) (2s)
was determined from seven mineral and leachate measurements (see
Fig. 2, table S2, and the Supplementary Materials for details). This
early Amazonian age is about 1.8 billion years older than that of
any other recognized shergottite, whose ages fall into the middle-
to-late Amazonian epoch in Mars’ geologic history. The mantle source
isotope compositions for NWA 7635 were calculated from initial Nd,
Hf, and Sr isotope compositions of samples F1 and F5-R (table S3).
The calculated initial e143Nd(CHUR), e

176Hf(CHUR), and
87Sr/86Sr are

+29.3 ± 3.1, +39.5 ± 7.8, and 0.699901 ± 0.000025, respectively (all
Fig. 1. False-color x-ray compositional map showing the mineralogy and min-
eral textures of NWA 7635. Mineral labels: O, olivine; P, plagioclase (maskelynite);
C, clinopyroxene (augite). Chemical compositions: Fe (purple), Mg (green), Ca (blue),
Ti (magenta), and S (yellow). Purple colors in the mesostasis represent Fe-rich augite.
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uncertainties are at the 95% confidence level; see the Supplementary
Materials). On the basis of these values, as well as (i) a two-stage
mantle evolution model (2), (ii) a source formation age of 4504 Ma
(11), (iii) a chondritic bulk Mars, and (iv) a Mars formation age of
4567 Ma, the 147Sm/144Nd, 176Lu/177Hf, and 87Rb/86Sr ratios of the hy-
bridized source are 0:3035þ0:0052

�0:0059, 0:0629
þ0:0035
�0:0040, and 0:0217þ0:0017

�0:0019, re-
spectively (Fig. 3). These ratios indicate that NWA 7635 is derived
from the most incompatible trace element (ITE)–depleted source yet
measured for any Martian rock.
DISCUSSION
Source Sm/Nd and Lu/Hf ratios for shergottites (Fig. 3A) [and, for
orthopyroxenite Allan Hills 84001 (ALH 84001), see Lapen et al.
(12)] show an array that can be interpreted as a three-component
mixing relationship between ITE-depleted deep mantle, ITE-depleted
shallowmantle, and ITE-enriched shallow uppermantle end-member
compositions calculated by Debaille et al. (13). The source composi-
tional range for shergottites can be explained by mixing these three
distinct end-members that are hypothesized to have formed during
differentiation of a Mars magma ocean (2, 13). A plot of source Rb/
Sr versus Sm/Nd ratios of shergottites (inset of Fig. 3A) does not show
the three-component mixing relationships because the Rb/Sr and Sm/
Nd ratios of the two ITE-depleted end-members are nearly identical.
The distribution of shergottite data on the mixing diagrams indicates
that there are three distinct clusters of shergottites: those that are ITE-
enriched, ITE-depleted, and occupy a discrete intermediate position.
Shergottites are thus classified into these three distinct isotopic groups
designated enriched, depleted, and intermediate, based on these iso-
tope systematics and source compositions (Fig. 3A), as well as trace
element abundances (6, 14, 15). The source compositions of NWA
7635 suggest that it is derived from source mixtures that are similar
to those that produced the other known depleted shergottites.
Lapen et al. Sci. Adv. 2017;3 : e1600922 1 February 2017
The mantle source connections between other shergottites and
NWA 7635 are further evaluated with the short-lived 146Sm-142Nd iso-
tope system, a monitor of mantle source reservoirs inMars that formed
in the first 100 to 200 My after planet formation (3). An average of
measured 142Nd/144Nd ratios from each aliquot measured (see the Sup-
plementary Materials) yields e142Nd = 0.918 ± 0.077. When compared
to other shergottites on a e142Nd versus present-day source e143Nd di-
agram (Fig. 3B), NWA 7635 is indistinguishable in its isotope charac-
teristics from the linear source mixing trend defined by the other
shergottite data. The slope of the data array defines an apparent
142Nd-143Nd age of 4504 ± 6Ma, identical to that reported in the study
by Borg et al. (11). Although the nakhlites and chassignites are evidently
derived frommantle sources distinct from those of shergottites (16), the
isotope data presented here do not indicate that NWA 7635 is derived
from mantle sources that are different from those that produced the
other depleted shergottites. NWA 7635 is derived from Mars mantle
source mixtures that are the most ITE-depleted, yet it shares mantle
source characteristics with other shergottites.

The mantle source similarities between NWA 7635 and other de-
pleted shergottites permit the inference that all of themmay be derived
from the same magmatic center on Mars. Our ejection age of NWA
7635 is identical to that determined for at least 10 other ITE-depleted
shergottites (17–19): the mean of these 11 ejection ages is 1.1 ± 0.2 My
(Fig. 4). Cosmogenic nuclide studies indicate three separate ejection
events for depleted shergottites overall: one around 1 My [the event
accounting for most of the depleted shergottites (n = 11)], one around
3 My (an event that launched depleted shergottites NWA 5990, NWA
7032, and QUE 94201), and one distinctly old launch event around
18My for Dhofar 019 (17, 18, 20, 21). The meteorites having a 1.1-My
ejection age consist of 11 depleted shergottites, including NWA 7635,
but have no intermediate or enriched shergottites. The identical ejec-
tion ages and similar mantle source compositions for the group of
11 depleted shergottites strongly suggest that they were all launched
from Mars by a single impact.

The igneous crystallization ages of depleted shergottites that have
1-My ejection ages range between 348Ma and 2.4 billion years ago (Ga)
(6, 7, 22–27), which spans close to half ofMars’ history. This long span
of crystallization ages for these depleted shergottites suggests that there
was at least 2 billion years of magmatic activity near the proposed ejec-
tion site on Mars. A crater-counting chronology, based on recently
acquired high-resolution images, indicates that calderas on major
volcanoes from the Elysium and Tharsis regions on Mars have under-
gone repeated activation and resurfacing (28–30). Both the Elysium
and Tharsis volcanoes evidently formed before 3.6 Ga, followed by epi-
sodes of subsequent volcanic eruptions (lava flows). Crater-counting
ages of some of those volcanoes indicate activity spanning more than
3 billion years (that is, AlbaMons, Biblis Tholus, Jovis Tholus, Uranius
Mons, and Hecates Tholus), suggesting a long history of active volcan-
ism from spatially restricted sites onMars (30, 31). The long activity of
Martian volcanic centers from sample and crater chronologies con-
firms the very long-lived mantle plume dynamics in Mars (32, 33).
Shergottites and ALH 84001 (12) share mantle radiogenic isotopic
characteristics, implying that they are part of the same overall mantle-
melting environment, in contrast to that producing the nakhlites and
chassignites (16, 34). Mantle convection that evidently drove this
long-lasting Martian magmatism was ineffective in mixing early
formed and distinct mantle reservoirs, largely because of a lack of
toroidal flow and relatively stable convection cell boundaries in the
mantle (32).
0.515

0.516

0.517

0.518

0.519

0.30 0.36 0.42 0.48

147Sm/144Nd

NWA 7635

Age = 2403 ± 140 Ma
143Nd/144NdI = 0.51102 ± 37

MSWD = 5.1

Weak acid leaches (n = 4)
Phosphate-dominated

WR3 - HF stepwise
dissolution steps (n = 3)

Pyroxene-rich fraction
(residue)

Olivine-rich fraction
(residue)

Whole-rock

WR4 - residue
WR3 - strong HCl leach

147Sm/144Nd

ε14
3 N

d

–2
0.30 0.36 0.42 0.48

–1

0

+1

+2

+140 M
a

–140 Ma

2403 Ma

14
3 N

d
/14

4 N
d

Fig. 2. Seven-point Sm-Nd isochron for NWA 7635 using an Isoplot model
1 solution (40). A weighted average of four separate dilute leaches is calculated

as one phosphate-dominated leachate measurement, and a re-integration of
three hydrogen fluoride (HF)–based sequential dissolution fractions is calculated
as one measurement of whole-rock residue (see the Supplementary Materials for
details). MSWD, mean square weighted deviation. The inset shows the analytical
uncertainty and scatter in epsilon units of individual points that define the isochron.
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MATERIALS AND METHODS
A total of 2.2 g of interior material was used for isotope analyses.
Petrographic analyses and major and trace element concentration
measurements of constituent phases were made from a representa-
tive polished thick section of the typematerial. Before disaggregation
Lapen et al. Sci. Adv. 2017;3 : e1600922 1 February 2017
for mineral picking, the rock fragments were washed in an ultrasonic
bath with ultrapure H2O for 5 min to remove any surficial contamina-
tion. The fractions analyzed for Lu-Hf, Sm-Nd, and Rb-Sr isotopes
were spiked with 176Lu-178Hf, 149Sm-150Nd, and 87Rb-84Sr isotope tracers
before column chemistry following procedures outlined in the studies
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Fig. 3. (A) Source mixing array for shergottite Lu-Hf and Sm-Nd source compositions calculated using equations of Nyquist et al. (8) and mantle end-member com-
positions of Debaille et al. (13). Inset shows a best-fit mixing hyperbola for source Rb/Sr and Sm/Nd compositions of shergottites. Mixing depleted deep mantle (high
Lu/Hf, high Sm/Nd, and low Rb/Sr) with 0 to 7% depleted shallower mantle material (low Lu/Hf, high Sm/Nd, and low Rb/Sr) and adding 0.5 to 12% enriched mantle
material (low Lu/Hf, low Sm/Nd, and high Rb/Sr) can account for the compositions of depleted, intermediate, and enriched shergottites. NWA 7635 extends the ob-
served range in depleted source compositions for all three isotopic systems. The source composition of ALH 84001 is not used in the regression or modeling but falls within
error of the enriched end-member composition in Lu/Hf-Sm/Nd source space and on the mixing hyperbola for Rb/Sr-Sm/Nd source mixtures. Data sources are listed in
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by Lapen et al. (35) and Beard et al. (36). Analyses of 147Sm/144Nd,
142Nd/144Nd, 143Nd/144Nd, 176Lu/177Hf, and 176Hf/177Hf isotope ratios
were performed on a Nu Instruments Nu Plasma II multicollector
inductively coupled plasmamass spectrometer (ICP-MS) at theUniversity
of Houston, following spike subtraction and instrumental mass fractiona-
tion corrections of Lapen et al. (35). The 87Rb/86Sr and 87Sr/86Sr isotope
ratios were analyzed using a Micromass Sector 54 thermal ioniza-
tion mass spectrometer at the University of Wisconsin–Madison,
following spike subtraction and instrumental mass fractionation cor-
rections described by Beard et al. (36).

Cosmogenic nuclide concentrations of 10Be and 26Alweremeasured
by accelerator mass spectrometry at Purdue University (37), and con-
centration of 14C was measured at the University of Arizona (38). The
measured activities were 9.7- ± 0.1-dpm 10Be/kg, 70- ± 5-dpm 26Al/kg,
and 46- ± 1-dpm 14C/kg. The cosmic-ray exposure age of 1.0 ± 0.1My
was based on 10Be and 26Al concentrations, the chemical composition
of the measured sample, and model production rates (39). This age
agreed with the noble gas exposure age of 1.4 (±0.4) My (17). The ter-
restrial age was 2.3 ± 1.3 ky based on 14C concentration, assuming a
saturated activity of 61 dpm/kg for shergottites. TheMars ejection age
for NWA 7635 was 1.0 ± 0.1 My. Full details of the analytical proce-
dures are reported in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/2/e1600922/DC1
Materials and Methods
fig. S1. Images of the outer and inner portions of NWA 7635.
fig. S2. Plots of chondrite-normalized trace element compositions of shergottites and NWA
7635.
fig. S3. Measured m142Nd values for fractions of NWA 7635, Himalayan garnet schist 1, and
Himalayan garnet schist 2 versus 142Ce interference on 142Nd, 144Sm interference on 144Nd, and
the spike-to-sample ratio.
table S1. List of samples and data sources for source composition calculations.
table S2. 147Sm-143Nd isotopic analyses of NWA 7635.
table S3. Descriptions and weights of NWA 7635 samples analyzed for radiogenic and
cosmogenic isotopes.
table S4. Laser ablation ICP-MS compositions of primary mineral phases in NWA 7635.
table S5. 146Sm-142Nd isotopic analyses of NWA 7635.
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table S6. Lu-Hf isotopic analyses of NWA 7635.
table S7. Rb-Sr isotopic analyses of NWA 7635 maskelynite.
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