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Abstract

Computer-aided histological image classification systems are important for making objective and 

timely cancer diagnostic decisions. These systems use combinations of image features that 

quantify a variety of image properties. Because researchers tend to validate their diagnostic 

systems on specific cancer endpoints, it is difficult to predict which image features will perform 

well given a new cancer endpoint. In this paper, we define a comprehensive set of common image 

features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We 

use a data-mining approach to determine which feature subsets and image properties emerge as 

part of an “optimal” diagnostic model when applied to specific cancer endpoints. Our goal is to 

assess the performance of such comprehensive image feature sets for application to a wide variety 

of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype 

endpoints and 6 renal cancer grade endpoints. Keywords-histology, image mining, computer-aided 

diagnosis

Section I. Introduction

Computer-aided histopathological analysis provides tools for quantitative and timely cancer 

diagnosis. As a result, the literature is rich with computer-aided diagnostic systems based on 

various image properties such as color, texture, topology, and shape. These systems employ 

different image features to capture image properties. The results of these systems suggest 

that some features work well for specific endpoints. For example, multiwavelet [1] or fractal 

features [2] work well for prostate Gleason grading However, because of varying image 

properties and multiple features that capture the same image properties, it is unclear which 

set of features is optimal for new cancer endpoints. So far, research has focused on 

developing new innovative feature sets for specific cancer endpoints. However, little work 

has focused on developing a general model with a comprehensive list of features that can be 
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applied to multiple endpoints [3]. In this paper, we develop a comprehensive system that 

consists of 12 feature subsets capturing different image properties. We evaluate the 

diagnostic performance of this comprehensive system on a variety of renal cancer endpoints. 

For each endpoint, specific feature subsets tend to emerge as part of the best-performing 

predictive models. Many of these emergent feature subsets for disease endpoints can be 

interpreted biologically. This suggests that such a comprehensive analysis can reveal 

biological clues for disease diagnosis.

Section II. Methods

A. Datasets

We perform this study on hematoxylin and eosin (H&E) stained histological RGB image 

datasets acquired from renal tumor tissue samples. In this study we use two separately 

acquired datasets (Figure 1). Dataset 1 includes subtype information and contains 48 images 

with 12 images of each subtype—chromophobe (CH), clear cell (CC), papillary (PA), and 

oncocytoma (ON). Dataset 2 includes information for Fuhrman grade and subtype. Its 58 

images include 20, 17, 16, and 5 images of CH, CC, PA, and ON subtypes respectively. 

Excluding benign ON samples, among the remaining 53 images, 13, 13, 13, and 14 images 

are of grade 1 to 4, respectively. For the subtyping study, we combine all samples from both 

of the datasets. For grading, we consider malignant tumor images from dataset 2. Each 

sample image is about 1200×1600 pixels.

B. Image features

We crop 512×512 pixel non-overlapping, adjacent tiles from the central portion of each 

image sample. We extract features from each tile, and unless mentioned otherwise, we 

average features over all tiles to represent the sample. We extract a comprehensive set of 

2671 features from each sample. This set includes 12 feature subsets extracted from different 

processed forms of the original sample images.

Table I lists the 12 feature subsets and their combination set (i.e., the All set). Figure 2 

describes the flow of feature extraction, where green boxes represent different forms of the 

processed image while pink boxes represent feature subsets. We generate the “Normalized 

Sample Image” using a color map quantile normalization method [4]. For the “Color 

Quantized Image”, we quantize the color space using self-organizing maps [5], [6] with the 

following parameters: 64 levels, I-by-64 grid size, linear initialization along the greatest 

Eigen vector, and ‘rectangular’ lattice type. The “Stain Segmented Image” is a four-level 

grayscale image, where gray-levels of 1, 2, 3 and 4 correspond to nuclear, red-blood cells, 

cytoplasmic and glandular structures respectively. These structures correspond to distinct 

H&E color stains and we segment them using an automatic color segmentation method [4]. 

We then extract binary masks for “Nuclear”, “Cytoplasmic” and “Glandular” structures in 

the image based on segmentation labels. We further segment the nuclear clusters in the 

nuclear mask into individual nuclei to produce the “Segmented Nuclei” [7], [8].

The Color feature set corresponds to distributions of R, G, and B channel intensities with 16 

bins per histogram [3]. The Texture1 feature set is a combination of Haralick, Gabor, 
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wavelet packet and multiwavelet features. We extract and sum 64-level GLCM matrices over 

all tiles. Thereafter, we extract 13 Haralick features from the summed GLCM matrix [9]. We 

generate 28 unique Gabor filters for different values of sinusoid frequency, f, and 

orientation, θ[10]. We consider θ={0,π/4,π/2,3π/4} radians and 

 cycles per pixel. We 

calculate energy (E) and entropy (H) [1] of each Gabor filter response image giving 56 

features per tile. We perform wavelet packet decomposition of the grayscale image using 

‘db6’ and ‘db20’ wavelets [11]. We extract level-3 sub-matrices (total 64 sub-matrices per 

wavelet type) for each tile and then extract energy and entropy [1] of these sub-matrices. 

This results in 256 features per tile. We also perform a two-level multiwavelet transform of 

the grayscale image with multiwavelets-GHM, SL and SA4 [1]. We obtain 28 sub-matrices 

per multiwavelet type and calculate their energy and entropy resulting in 168 features per 

tile. The Texture2 feature set is a combination of Texture1 features, gray-level distribution, 

and fractal features. Gray-level distribution captures the distribution of gray-levels in a 

grayscale image using 64 bins in the histogram. We extract eight fractal dimensions for the 

grayscale image using the method described by Huang and Lee [2]. The Texture3 feature set 

is a combination of Texture1 features and stain co-occurrence features. Stain co-occurrence 

captures the frequency of adjacent stains in a histological image [12]. The Texture4 feature 

set is a combination of gray-level distribution and Haralick features applied to specific 

stains. We capture the grayscale texture of the cytoplasmic or nuclear stain areas in the 

grayscale image bounded by their respective masks. The Shape feature set captures shape 

properties of the structures in three segmentation masks. Among the structures identified by 

segmentation, we eliminate noise using a 20-pixel area threshold. The description for pixel 

area, convex hull area, solidity, perimeter, elliptical properties (area, major-minor axes 

lengths, eccentricity and orientation) and bending energy is available in [13]. We extract 

boundary fractal dimension, using box counting on a binary object image. We extract 

Fourier shape descriptor error (i.e., RMS error) in reproducing the shape using 1, 2, …, 20 

harmonics [14]. We estimate the distribution of each of the 31 measures over the objects in 

all the tiles. We then represent this distribution using eight statistics: mean, median, 

minimum, maximum, standard deviation, inter-quartile range, skewness and kurtosis. In 

addition to these features, we also use object count as a feature. Therefore, the Shape feature 

set consists of 249 features. We extract Topology features using elliptical centers from 

unsegmented nuclear stain objects and segmented individual nuclei. We extract topology 

features by measuring properties of spatial graphs such Deluanay triangulation (areas and 

side lengths), Voronoi diagram (area, side length and perimeter) and minimum spanning tree 

side lengths [15]. We also measure object closeness, which is the average distance of an 

object to its five closest neighbors [7]. We represent the distribution of these seven topology 

measures for a single image using the same eight statistics used for Shape features, resulting 

in 56 features. The Nuclear Shape feature set is a combination of nucleus count, elliptical 

properties (the same as those of Shape features) and cluster size. Cluster size measures the 

number of nuclei in a cluster. Because it is a distribution, we estimate the same eight 

statistics as object shape features.
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C. Feature selection and classification

In this study, we consider all binary endpoints comparing pairs of classes. Both grading and 

subtyping datasets have 4 classes and 6 endpoints. We develop classification models for all 

combinations of binary endpoint (total of 12) and feature subset (total of 13, Table I). We 

consider four classification methods (Bayesian, Logistic Regression, k-NN and Linear 

SVM) with a fixed set of parameters. For Bayesian, we consider both pooled and un-pooled 

variance with spherical and diagonal variance matrices. For k-NN, we consider ten values 

from 1 to 10. For SVM, we consider 28 cost values (0.1:0.1:0.9, 1:1:9, and 10:10:100 (start 

value: step: end value)). Logistic regression has no additional parameters. For each classifier 

model, we consider five feature selection techniques including t-test, Wilcoxon rank sum 

test, Significance Analysis of Microarrays (SAM) [16], and two types of mRMR (Minimum 

redundancy and maximum relevance): mRMR-d (difference) and mRMR-q (quotient) [17]. 

We consider 45 feature sizes ranging from 1 to 45. Thus, for each combination of endpoint 

and feature subset, we use cross validation to find optimal classification models from among 

9,675 models. We identify optimal classification models for each endpoint using stratified 

nested cross-validation with 10 iterations and 5 folds in both the outer and inner cross-

validation. The inner cross-validation is used for identifying optimal model parameters (i.e., 

feature selection method, feature size, classifier, and classifier parameters). The performance 

of each optimal model is then assessed using the testing set from outer cross-validation. We 

select the simplest classification models that are within one standard deviation of the best 

performing model. The simplest models are defined as those with the smallest feature size, 

highest k for k-NN models, and smallest cost for SVM models. For Bayesian models, we 

prefer pooled over unpooled covariance and spherical over diagonal covariance. We have not 

assigned any preference to any particular classification method or feature selection method. 

Therefore, for each combination of endpoint and feature set, it is possible to obtain multiple 

optimal models. In such cases, we report the average performance of all models.

Section III. Results and Discussion

A. Classification results and emergent feature subsets

We optimize and validate models for every combination of feature subset and binary 

endpoints (both subtyping and grading endpoints). Table II lists average outer cross-

validation accuracy over 10 iterations and 5-folds. It can be observed that all subtyping 

models based on the All subset, with the exception of CH vs. CC and CH vs. ON, perform 

with an average accuracy > 90%. Low performance of these two endpoints is supported by 

the literature, as histologically and genetically, CH is similar to CC and ON. Among grading 

endpoints, binary comparisons of grades differing by two or more levels tend to perform 

better. Intuitively, this makes sense because with greater difference in grades, there are more 

visually apparent changes. It is interesting that the All subset is never the best performing 

subset. The gap between the best performing feature set and the All set is larger for grading 

endpoints. This is probably because, with the large feature list and fewer samples in the 

grading dataset, it is more likely that a model over fits. Hence, it is important to identify 

statistically important feature sets for an endpoint. We investigate the importance of feature 

subsets using a method normally used to identify over- represented Gene Ontology terms in 

a list of genes [18]. For each endpoint, we consider all optimal classification models that 

Kothari et al. Page 4

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



select features from the entire set of 2671 image features. We count the number of features 

drawn from each of the 12 feature subsets and use a one-sided Fisher’s exact test to 

determine if any of the feature subsets are statistically over-represented at a p-value 

threshold of 0.01 (adjusted for multiplicity using the Bonferroni method). A small p-value 

for a subset indicates that the number of features selected from that subset is higher than 

what is expected by random chance. In Table II, for each endpoint, we highlight feature 

subsets that are statistically over-represented. It can be observed that over-represented 

feature subsets tend to correspond to the best performing subsets for each endpoint.

B. Biological Interpretation

Eble et al. provide guidelines for subtyping renal tumors [19]. Here, we can relate these 

biological properties to the feature subsets as follows. CH, with its wrinkled nuclei, granular 

cytoplasm and perinuclear halos, differs from other subtypes in nuclear, texture, and 

glandular object features. This may explain why the NS, NStOS, GT and GOS feature 

subsets are selected as statistically important subsets for endpoints with CH. Due to clear 

cytoplasm, CC differs from other subtypes in terms of color, glandular objects and texture. 

Thus, the C, GT and GOS feature subsets tend to emerge for endpoints with CC. Due to 

nuclear clusters, PA differs from other subtypes in terms of nuclear properties represented by 

the NS, NStT, and NStOS feature subsets. Finally, due to its compact nuclear nests, ON 

differs from CH in terms of topology, represented by the NStTo. Similarly, renal cancer is 

graded using the Fuhrman nuclear grading system [19]. Therefore, we observe nuclear shape 

features and nuclear mask features are the most important feature sets for renal cancer 

grading.

Section IV. Conclusion

We have developed a system with a comprehensive set of existing image features that can be 

applied to a wide variety of histological diagnosis applications. The comprehensive set 

includes 12 feature subsets that capture various histological image properties. We assessed 

the predictive performance of the system by applying it to several renal tumor subtyping and 

grading endpoints. We also evaluated the contribution of feature subsets to each disease 

endpoint in order to reveal emergent properties in the histological images that may relate to 

biological properties. Results indicate that the feature sets that emerge from the system are 

biologically interpretable.
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Figure 1. 
Sample histological tissue images for four renal tumor subtypes (a–d) and four Fuhrman 

grades (e–f). Images in (a–d) are taken from dataset 1 and have no grade information 

available, while images in (e–f) are various grades of clear cell samples taken from dataset 2.
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Figure 2. 
Flow diagram for image feature extraction. Green boxes: original or processed image. Pink 

boxes: feature subset. Pink box labels correspond to the following set of features—Color: R, 

G, and B histograms. Texture1: Haralick, Gabor, wavelet packet and multiwavelet. Texture2: 

Texture1, gray-level distribution and fractal. Texture3: Texture1 and stain co-occurrence. 

Texture4: Haralick and gray-level distribution. Shape: count, pixel area, convex hull area, 

solidity, perimeter, elliptical properties (area, major-minor axes lengths, eccentricity and 

orientation), boundary fractal, bending energy and Fourier reconstruction error. Topology: 

Delaunay triangle (area and side length), Voronoi diagram (area, side length and perimeter), 

minimum spanning tree edge length and closeness. Nuclear Shape: count, elliptical 

properties and cluster size.
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