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Phenomena characterized by power-law probability distributions
abound in nature and the applied sciences. We show that many of
these power laws are well described by the Student, or t, distri-
bution, and we discuss the origin of this universality based on three
examples (Brownian motion, Knudsen diffusion in rough pores,
and bubbly multiphase flow). These case studies are representative
for a large class of systems with heterogeneous features, examples
of which can be found from Earth sciences to astrophysics, and
even in the social sciences. We show that common forms of
polydispersity, such as polydispersity arising naturally as a result of
aggregation–fragmentation phenomena, typically lie at the basis
of the observed scaling. We conclude that complicated arguments
based on long-range correlations or nonergodicity are often in-
correct or misleading in explaining many naturally observed power
laws and, in particular, those described by the Student distribution.

power-law statistics � polydispersity � Student distribution

The abundance of power-law-tailed probability distributions
in nature made them the focus of intense scientific investi-

gation during the last few decades. Significant progress in this
area is primarily due to advances in the physics of disordered
systems (1, 2), critical phenomena (3), and turbulence (4), which
were stimulated by the advent of fractal theory (5) and complex-
systems research.

This article focuses on the Student, or t, distribution, which is
a frequently occurring probability distribution with power-law
tails, as shown below:
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Here, �(z) denotes the probability density function (PDF) of
variable z, and n is the number of ‘‘degrees of freedom’’ (for n3
�, this PDF converges to a Gaussian). A change of variable, x �
z��an, leads to the following alternative form of the above
expression:

��x� � 	1 � ax2
��n�1�/2, [1]

where a is a real parameter. Student’s distribution (Fig. 1) is well
known in statistics, where it quantifies deviations from the mean
in samples for which the standard deviation is unknown. Here,
we propose using Student’s distribution as a parameterized
model for power-law behavior, instead of in its customary
statistical role. As such, it has been largely overlooked, with a few
exceptions in turbulence (6) and finance (7).

Although the subject has received considerable attention, the
origin of power-law statistics is still very much debated. The fact
that such distributions can arise both in the presence and absence
of long-range spatiotemporal correlations has been known for a
long time (2, 8). However, in the recent literature, the tendency
is to attribute the observation of power laws mostly to the
presence of long-range correlations and even to a thermody-
namic theory of nonergodic systems proposed by Tsallis (9), in

which the Boltzmann factor has a Student form. The result of this
study goes against these trends. We demonstrate that the t
distribution provides an accurate representation for power-law
statistics seen in various heterogeneous systems that have poly-
disperse features, that are entirely ‘‘classical’’ in the thermody-
namic sense, and in which spatial or temporal correlations do not
play a major role.

We do not intend to downplay the importance of long-range
correlations or their significant role in scaling phenomena.
Rather, we wish to illustrate that more often than not, simple
uncorrelated polydispersity is sufficient to explain a great num-
ber of phenomena for which an exotic thermodynamic behavior
or difficult to interpret long-range correlations are often ad-
vanced as the primary cause (Occam’s razor).

Polydispersity as a Source of Student’s Distributions
The mechanism that we present for the genesis of Student’s
distributions in uncorrelated systems involves the convolution of
a normal distribution with a gamma or power-law distribution
reflecting polydispersity. As such, the Student distribution is a
member of a larger family known as scale mixtures of normal
distributions (10).

Brownian Motion. An elementary example is an ensemble of
Brownian particles (i.e., a plume) in a fluid. The system is
assumed to be dilute, so the particles do not interact with each
other. Being in thermal equilibrium with its environment, every

Abbreviation: PDF, probability density function.
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Fig. 1. Comparison between Gaussian (dashed lines) and anomalous Student
statistics (solid lines). For the case n � 3 and a � 1, see Eq. 1. (Inset) The log–log
plot of the same curves shows the power-law nature of the tail of Student’s
distribution. The standard deviation of x is indicated by �. Both distributions
are symmetric with respect to x � 0.
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particle undergoes Brownian diffusion, so the probability of
finding it at a later time t around position x is Gaussian as follows:

��x, t� �
1

�4�Dt
e�

x2

4Dt , [2]

where the diffusion coefficient is given by Einstein’s formula,
D � kT�6��R, with � being the fluid viscosity (all particles are
released at the same point x � 0 at t � 0). At fixed temperature,
D is a function of the particle size R only. If the system is
polydisperse, with a gamma distribution of particle sizes f(R) �
R�e��R (� � 0), the dispersion of the entire plume is apparently
‘‘anomalous’’ because the averaged � has power-law tails:
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x2����

3
2
. [3]

This distribution is precisely of the Student type (Eq. 1), with
n � 2� � 2 (� � �3�2), and a � 3���2kTt�. This power-law form
of � is obviously not the result of long-range correlations
(correlations are absent here), Lévy statistics, or departure from
thermodynamic equilibrium, but only a reflection of polydisper-
sity. Remarkably, this simple convolution mechanism for pro-
ducing power-law distributions (Fig. 2) can be very prolific
because the required ingredients are abundant in nature. It is
hard to overstate the importance and ubiquity of Gaussian
distributions. They are a direct manifestation of the central-limit
theorem, and the diffusion equation that produces them is one
of the most fundamental equations in physics. Brownian motion
and random walks lie at the origin of all essential theories and
applications of transport. Furthermore, the required form of
polydispersity is also ubiquitous. As a result of Smoluchowski
aggregation–fragmentation kinetics, many particle distributions
in particle technology, atmospheric sciences, and Earth sciences

are gamma-like (11), and thus, distribution 3 is likely to be found
in a broad range of experiments (e.g., dispersion of aerosol
pollutants from industrial smokestacks, dispersion of volcanic
clouds, diffusion of dyes and polymers in solution, diffusion of
cell aggregates in physiological systems, etc.).†

From an experimental viewpoint, it is also noteworthy that a
measurement of distribution 3 allows the extraction of param-
eters describing the heterogeneous nature of the plume: the
exponent of the Student distribution and the prefactor of x2 give
parameters � and � of the gamma distribution, respectively.

Knudsen Diffusion in Rough Pores. A second example with broad
applicability is that of diffusion in disordered media. One of the
most well known approaches to statistical modeling of diffusion
in heterogeneous structures is to consider the time scale of
Brownian motion as a fluctuating variable. In the continuous-
time random-walk model, transport is abstracted as random
hopping on a lattice, with the hopping time sampled from a
probability distribution (1, 12, 13). Such a description corre-
sponds, for example, to particles being trapped at lattice sites for
a variable amount of time tw. The probability density of a hopping
event of size x is given as follows:

��x� � �
0

� 1
�2�tw

e�
x2

2tw f�tw�dtw, [4]

where f(tw) is the distribution of waiting times at a lattice site.
Central to the continuous-time random-walk approach is the
assumption that the distribution of waiting times is sampled
uniformly by the diffusion process. In other words, this process
has no memory and a spatially averaged distribution of trapping
times. This assumption is justified whenever spatial correlations
in the medium have a finite range. The successful application of
the theory to many problems in solid-state physics (NMR
spectroscopy, aging of glasses, conduction in amorphous semi-
conductors, etc., as described in ref. 1 and references therein) is
proof that this assumption is valid in many physical systems.

If the trapping times have a broad distribution with a power-
law tail, f(tw)  tw

��e��/2tw (gamma distribution of hopping
frequency 1�tw), then the probability density �(x) will again have
the Student form as follows:

��x� � �1 �
x2

�
�1/2��

, [5]

provided that � � 1�2.
The background of a power-law distribution of waiting times

f(tw) is very general; it can have either a physical or chemical
nature, reflecting the heterogeneity of the medium. A concrete
example involving a physical trapping mechanism is Knudsen
diffusion in rough pores (Fig. 3). Knudsen diffusion is the main
transport mechanism in porous media, when motion of diffusing
gas molecules is dominated by molecule–wall, rather than in-
termolecular, collisions. It occurs if the pore diameter is smaller
than the mean free path of the molecules, which is frequently the
case in nanoporous media used in catalysis and separation
processes. In a channel with fractally rough walls, recent dynamic
Monte Carlo simulations (14) have shown that Knudsen
‘‘f lights’’ are indeed distributed according to an inverse power
law, with an exponent related to the fractal dimension of the
walls.

†The assumption that all particles are released at the same position x � 0 at time t � 0 is an
idealization and, in principle, contradicts the statement that the system is dilute. A more
realistic approach considers an initial dispersion �x0 of the plume, which leads to a slight
distortion of the Student distribution near the center. For x �� �x0, Eq. 3 still holds.

Fig. 2. The genesis of an apparently anomalous probability distribution in a
heterogeneous, polydisperse system. (Left) Normal PDF corresponding to a
fixed length scale R. (Right) The polydispersity of the system is reflected in
a broad distribution of sizes f(R). Averaging �R(x) over all length scales, R
results in Student’s PDF, when the variance �2 is proportional to 1�R and f(R) 
R� e��R (gamma polydispersity) (Upper), or �2 � R and f(R)  R�� e��/R (trun-
cated power-law polydispersity) (Lower). Both � and � are positive parameters.
Note that such polydispersity is very common as a result of Smoluchowski-type
aggregation–fragmentation kinetics.
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A consequence of fractal self-similarity is that the walls
contain cascades of ‘‘fjords’’ of a power-law distribution of sizes,
truncated at the upper and lower cutoff of fractal scaling, just
like a natural coastline (15). By projecting the motion onto the
pore axis, diffusion along the channel may be modeled as a
random walk on a coarse-grained lattice, by considering large
fjords as lattice sites. Diffusing particles entering such a fjord are
occasionally trapped inside, colliding many times with the walls
before finally moving to another large fjord (Fig. 3). The motion
between individual lattice sites is completely uncorrelated with
the time a molecule spends at any particular site (i.e., in any
cascade of fjords). This picture is consistent with a continuous-
time random-walk description of pore transport, in which the
diffusive motion of molecules between lattice sites is coupled to
a random waiting time at every site. On very general grounds, it
can be shown that the waiting times have a power-law-tailed
distribution, which reflects the fact that the fjords themselves
have a power-law distribution of sizes. Following the argument
leading to Eq. 5, the continuous-time random-walk approach
yields a Student-like PDF �(x) (e.g., in a catalyst particle with
fractal dimension of pore walls Df � 2.33, simulations yield � �
1.1).

We stress that the power-law statistics are not generated by
spatial correlations associated with fractality: fractally rough
porous solids typically have an upper cutoff of wall roughness
(comparable with the pore diameter), which is many times

smaller than the particle or pore network size (16), so spatial
correlations are very limited in extent. The polydispersity of
fjords leading to a power-law distribution of trapping times is the
sole source of the observed Student-like statistics for displace-
ments x smaller than the largest fjord.

Multiphase Flow. To further illustrate the variety of situations in
which polydispersity induces Student statistics, we present a third
example in the form of a widely used form of chemical reactor,
known as a fluidized bed (17), in which a layer of particles is set
in motion by an upward gas stream (Fig. 4). Because of its
excellent heat and mass transfer properties, the device is used
widely in industry as a catalytic reactor or as a means of heating,
cooling, drying, or coating particles. When the gas flow rate
exceeds a certain threshold, bubbles are formed, and the bed
behaves very much like a boiling liquid.

A measurement of pressure was carried out in such a column
in the bubbling fluidization regime, and the statistics of pressure
increments �P(t, �t) � P(t � �t) � P(t) were calculated (see ref.
18 for details of the experiment). For relatively short time delays
(�t 	 50 ms), and a wide range of process parameters, the PDF
of �P is fitted by a Student distribution, Eq. 1, with remarkable
accuracy (Fig. 4). As the time delay is increased, the PDF of �P
changes from power-law-tailed to Gaussian. A very similar
phenomenon has been observed for the statistics of velocity
increments in single phase turbulence (19, 20), as well as
short-time stock returns (21, 22).

A hydrodynamic theory of fluidization (23) can be used to
show that every bubble carries along a pressure perturbation, and
that the variance of measured pressure increments �P(t, �t) for
each bubble is proportional to the bubble radius R. In actual
f luidized beds, bubbles have a broad distribution of sizes, a
consequence of bubble growth that occurs primarily through
coalescence of smaller bubbles. Therefore, the measured distri-
bution of pressure fluctuations is as follows:

���P� � � � c
�R

e�
c
R��P�2

f�R�dR, [6]

where c is a positive constant. The bubble-growth mechanism
can be modeled by using Smoluchowski aggregation–

Fig. 3. Schematic representation of a typical amorphous, porous catalyst
particle. (Top) The particle crisscrossed by a network of pores. (Middle)
Close-up view of an individual pore. The walls are fractally rough on scales
smaller than the pore diameter. A typical trajectory of a molecule diffusing
inside the pore in the Knudsen regime is shown also (note how the molecule
seems to get trapped inside some fjords, occasionally spending a long time
bouncing off the walls). (Bottom) Individual large fjord on the pore wall, with
detail of the trajectory. These large fjords (fractal cascades of smaller fjords)
are considered as lattice sites for the diffusion of molecules along the pore
axis.

Fig. 4. Student’s (solid) and Gaussian (dashed) fit of the PDF of pressure
fluctuations in a gas-fluidized bed of solid particles. Pressure increments �P �
P(t � �t) � P(t) over a time interval �t � 50 ms are normalized to their standard
deviation �. The Student fit yields n � 3. (Inset) Sketch of the pressure
measurement (see ref. 18 for complete details).
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fragmentation equations (24–26), producing a power-law distri-
bution of sizes, f(R)  R��e��/R (�, � � 0), as verified in
experiments and computer models (27). Hence,

���P� � �1 �
c
�

��P�2�1/2��

, [7]

as long as � � 1�2 (fits of actual data yield � � 5�2).
Although the behavior of pressure fluctuations in fluidization

closely resembles that of velocity increments in turbulence and
that of financial market returns, the former system is significantly
different from the latter two. Whereas extended spatial or
temporal correlations can be assumed in turbulence and the
stock market (8), correlations in a fluidized bed are very limited
in extent. Here, power-law statistics seems to be only the
reflection of bubble polydispersity.

The experimentalist will also find it very valuable that a simple
measurement of the distribution 7 can, in principle, completely
quantify heterogeneity; the exponent of the distribution and the
prefactor of (�P)2 give the parameters of the bubble-size dis-
tribution, which are notoriously difficult to measure in mul-
tiphase systems.

Polydispersity vs. Anomalous Thermodynamics
In addition to showing that power-law-tailed distributions com-
monly arise in the absence of long-range correlations, the three
examples presented above are also remarkable for a second
reason. They display Student-like statistics of the relevant vari-
ables instead of the Gaussian expected in normal circumstances
(i.e., in the absence of polydispersity).

It is tempting to label this behavior as thermodynamically
anomalous and to conclude that normal, conventional thermo-
dynamics does not provide a good description of these systems.
In recent years, a rapidly expanding body of literature has
associated Student’s distributions measured in various systems
with a new thermodynamic formalism proposed by Tsallis (9).
This theory is a generalization of statistical mechanics, in which
the Boltzmann factor e�
�, representing the probability � of a
microstate of energy �, is replaced by a power-law form (Fig. 1),

� � 	1 � �q � 1�
̃�

1

1�q, [8]

where q is a positive parameter, whereas 
̃ plays a similar role as

 � 1�kBT of traditional statistical mechanics (kB and T denote
the Boltzmann constant and temperature, respectively). To
preserve the structure of conventional statistical mechanics, the
Tsallis theory requires that the following new expression for
entropy,

Sq �
1

q � 1 �1 � � �q dx� , [9]

replace the celebrated Boltzmann–Gibbs logarithmic form S 
� � log � dx (where dx denotes the volume element in phase
space). Traditional statistical mechanics is recovered in the limit
q3 1. The striking feature of the proposed entropic form is that
it is not additive; i.e., the Tsallis entropy of a system is not the
sum of the individual entropies of its parts. This property
provided the Tsallis theory with the label of ‘‘nonextensive
thermodynamics and generated controversy (28, 29).

In the literature related to nonextensive thermodynamics, � is
often regarded not as energy but as a generic quadratic form (� 
x2), which makes the Boltzmann factor of Eq. 8 precisely of the
Student form. In applications, x has been interpreted as, for
example, the velocity of a diffusing cell in a cellular aggregate
(30), the logarithm of a NASDAQ stock return (22), the velocity

increment of a turbulent field (20), and even the rank of a word
in literary text (31).

The ‘‘nonextensive’’ framework was introduced for systems
that have a fractal phase space, are nonergodic and far from
thermal equilibrium, and do not sample phase space in the dense
and uniform way that is required in some formulations of
classical thermodynamics. As such, the Tsallis formalism has
been proven to be relevant for systems operating at the edge of
chaos (32), as well as for many-body systems with long-range
interactions (33). Probability distributions of the type given in
Eq. 8 were also found to be solutions of a certain class of
nonlinear Fokker–Planck equations (34–36).

Clearly, none of the examples discussed in this article fits these
categories. All three instances of Student statistics were ex-
plained based on elementary statistical ingredients, such as
convolution, and within the assumption of thermal equilibrium.‡
The conclusion that Student’s distributions often arise from
polydispersity casts some doubts on the relevance of the Tsallis
formalism for many systems, and on their frequent interpreta-
tion as being nonextensive.

Noah vs. Joseph
Mandelbrot (5) illustrates the contrast between uncorrelated
polydispersity and long-range correlations, as different sources
for power-law behavior, by using the following two citations.
Genesis, chapter 6, verses 11 and 12 (story of Noah), reads:
‘‘...were all of the fountains of the great deep broken up, and the
windows of heaven were opened. And the rain was upon the
earth forty days and forty nights,’’ whereas Genesis, chapter 41,
verses 29 and 30 (story of Joseph), reads: ‘‘...there came seven
years of great plenty throughout the land of Egypt. And there
shall arise after them seven years of famine.’’

The first citation emphasizes the importance of isolated,
uncorrelated extreme events, the statistics of which may be
crucial in cases in which rare events carry enormous costs. The
occurrence of natural disasters is an obvious example of the
‘‘Noah effect,’’ as Mandelbrot calls it. The second citation refers
to the ‘‘Joseph effect,’’ which is the clustering of events, with
strong correlations and persistence over a long time or distance.
Both classes of phenomena may display power-law statistics, i.e.,
large events that occur rarely, but not nearly as rarely as would
be anticipated from a normal or Gaussian distribution. In fact,
the Joseph and Noah effects may even occur together, as in
financial time series (8) and diffusion processes (2), but they are
essentially unrelated statistical phenomena.

In statistical analysis, great care needs to be taken in the
interpretation of power laws. PDFs or Fourier spectra of vari-
ables that characterize a process or phenomenon convey only
information about the frequency of individual events and not
about their spatial or temporal distribution. Clustering, inter-
mittency, and persistence are studied by correlation analysis,
either local or global. Despite this clear difference, Noah and
Joseph are still often confused. The Noah effect accounts for all
power-law distributions discussed in this article.

Conclusion
The three examples analyzed in this article are representative for
a common mechanism that produces Student distributions with-
out any assumption of nonergodicity, long-range correlations, or

‡Advocates of nonextensive thermodynamics (37, 20) used a similar convolution argument
to model systems in which temperature fluctuates with gamma statistics. Such ‘‘exotic’’
systems are continuously out of thermal equilibrium (they never relax to Boltzmann
statistics), so the use of Tsallis thermodynamics in their description may be justified. Here,
we argue that a scenario involving polydispersity (i.e., in which features of the system
other than the temperature fluctuate with a broad distribution) may often provide a
simple alternative explanation for the occurrence of experimentally measured distribu-
tions of the type shown in Fig. 1.
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thermodynamic nonequilibrium. Instead, we show that polydis-
persity can make systems seem anomalous by featuring non-
Gaussian statistics, when in fact they are normal in the conven-
tional thermodynamic sense and in local equilibrium.

In many systems, power-law statistics of the Student type arises
from the convolution of the normal distribution with either a
gamma or a power-law distribution (see Fig. 2). The Gaussian
distribution usually appears by the action of the central-limit
theorem, and its convolution partner is a manifestation of the
polydispersity of the system, seen in a broad sense. An important

source of the kind of polydispersity that is required to produce
Student statistics is Smoluchowski aggregation–fragmentation
kinetics (24–26), which describes a wide variety of systems from
particle technology to astrophysics, biology, geophysics, and
even sociology. The abundance of such systems may account for
the ubiquity of power-law distributions of the Student type
throughout the natural world.
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