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Abstract

Background—uUnderage drinking is widely recognized as a leading public health and social
problem for adolescents in the United States. Being able to identify at-risk children before they
initiate heavy alcohol use could have immense clinical and public health implications; however,
few investigations have explored individual-level precursors of adolescent substance use. This
prospective investigation used machine learning with demographic, neurocognitive, and
neuroimaging data in substance-naive adolescents to predict alcohol use initiation by age 18.

Materials and Methods—~Participants (N=137) were healthy substance-naive adolescents (ages
12-14) who underwent neuropsychological testing and structural and functional magnetic
resonance imaging (sSMRI and fMRI), then were followed annually. By age 18, 70 youth (51%)
initiated moderate-to-heavy alcohol use and 67 remained non-users. Random forests classification
generated individual alcohol use outcome predictions based on demographic, neuropsychological,
SMRI, and fMRI data.

Results—The final random forests model was 74% accurate, with good sensitivity (74%) and
specificity (73%) and included 34 predictors contributing to alcohol use by age 18, including
several demographic and behavioral factors (being male, higher socioeconomic status, early
dating, more externalizing behaviors, positive alcohol expectancies), worse executive functioning,
and thinner cortices and less brain activation in diffusely distributed regions of the brain. Inclusion
of neuropsychological, SMRI, and fMRI data significantly increased the prediction accuracy of the
model.
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Jolla, CA 92093; stapert@ucsd.edu.
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Discussion—Identification of at-risk youth is not validated for clinical use. Its value is for
research to address brain mechanisms that predispose to early drinking.

INTRODUCTION

Underage drinking is widely recognized as one of the leading public health and social
problem for adolescents in the United States. This is concerning, as teen drinking is very
common in the United States, with approximately 66% of 18 year olds reporting alcohol use
(1). Adverse consequences of adolescent drinking include higher rates of violence, missing
school, drunk driving, riding with a drunk driver, suicide, and risky sexual behavior and
accounts for over 5,000 deaths per year (2). Thus, being able to identify at-risk children
before they initiate heavy alcohol use could have immense clinical and public health
implications. However, few investigations have been conducted to gain a greater
understanding of individual differences that could lead to adolescent substance use.

Previous findings have suggested that a mix of social, psychological, and biological
mechanisms contribute to alcohol use during adolescence (for review (3-5). Demographic
risk factors for alcohol initiation include being male, having higher levels of psychological
problems and externalizing behaviors, and having positive expectations about the effects of
alcohol (5). Neuropsychological and neuroimaging data may provide quantification of
underlying behavioral mechanisms of substance use risk. Several studies suggest that poorer
performance on tests of executive functioning (6), as well as less brain activation compared
to controls during tasks of working memory, inhibition, and reward processing can be used
predict which youth will initiate alcohol use during adolescence (7-11). Additionally, less
volume in brain regions involved in impulsivity, reward sensitivity, and decision-making
appear to influence initiation of alcohol and other substance use during adolescence (7, 11).
Understanding factors involved in the initiation and escalation of alcohol use during
adolescence could provide crucial information for preventions and interventions.

Machine learning approaches (12-17) are increasingly being used to generate predictions
based on complex data like brain imaging (18, 19). Random forests (20) is a machine
learning tool that is one of the most consistently robust predictive techniques, yielding
superior performance in independent replication (21). The random forests technique consists
of a complex partitioning of the predictor variable space and can be used when the number
of predictor variables is much larger than the number of subjects, as is typically the case
with neuroimaging data. Moreover, random forests has a low tendency to over-fit, and the
stepwise partitioning of the predictor space can yield high-order interactions among many
predictor variables that cannot be identified using other classification procedures (22).
Random forests models have successfully been used to detect a number of clinical outcomes
and predict behaviors (23), but have not been used to generate substance use outcome
predictions.

The present study uses random forests models in combination with multimodal imaging and
neuropsychological test data to predict which substance-naive adolescents would initiate

moderate to heavy alcohol use by age 18. Based on previous research, initiation of substance
use was expected to be associated with key demographic factors (e.g., being male, endorsing

Am J Psychiatry. Author manuscript; available in PMC 2018 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Squeglia et al. Page 3

more externalizing behaviors and psychopathology, having positive expectancies about
alcohol use), neuropsychological performance (e.g., poorer performance on executive
functioning tasks), and thinner cortices and less brain activation in key brain regions
involved in executive functioning and decision making. Unlike other studies that focused on
initiation of any alcohol use (11), we were interested in factors that predicted a pattern of
more frequent and intense alcohol use, as these have been associated with poorer cognitive
(7, 24) and social (5) outcomes.

MATERIALS AND METHODS

Participants

Participants were 137 healthy 12-14 year-olds (44% female) from a larger ongoing
neuroimaging study recruited through flyers sent to households of students attending local
middle schools (see Table 1). Extensive screening and background information were
obtained from the youth, their biological parent, and one other parent or close relative. All
primary informants lived with the youth. The study protocol was executed in accordance
with the standards approved by the University of California, San Diego Human Research
Protections Program.

Strict exclusionary criteria for project entry included: experience with alcohol or drugs,
defined as =10 total days in their life on which drinking had occurred, or > 2 drinks in a
week (i.e., two drinks on one occasion or one drink on two occasions in the same week); =3
lifetime experiences with marijuana and any use in the past three months; =5 lifetime
cigarette uses; and any history of other intoxicant use; any suggestion of prenatal alcohol (>2
drinks during a given week) or any illicit drug exposure; premature birth (i.e., born prior to
35t gestational week); history of any neurological or DSM-IV Axis | disorder, determined
by the NIMH Diagnostic Interview Schedule for Children —version 4.0, head trauma or loss
of consciousness (>2 minutes), chronic medical illness, learning disability or mental
retardation, or use of medications potentially affecting the brain; contraindication to MRI
(e.g., braces); inadequate comprehension of English; and non-correctable sensory problems.

Measures

Substance use measures—At baseline and follow-ups, the Customary Drinking and
Drug Use Record (25) was administered to obtain quantity and frequency of lifetime and
recent (past year) alcohol, marijuana, and other drug use, withdrawal/hangover symptoms,
and DSM-1V abuse and dependence criteria. Breathalyzer and urine toxicology screens
confirmed self-report data at baseline. Substance use information was updated every six
months via phone or in-person after the participant’s baseline assessment. Parent and/or
informant (sibling, friend, roommate) report of youth substance use was collected as
collateral evidence.

Demographic information—The Structured Clinical Interview (26) was administered to
youth and ascertained information about the child’s sex, age, race, academic functioning
(i.e., grade point average; GPA on a 4.0 scale), grade in school, family characteristics (i.e.,
birth order, living situation, parent’s marital status), dating status (e.g., never dated vs.
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history of dating), involvement in extracurricular activities, and hours of video games played
per week.

Socioeconomic status—Socioeconomic background information (i.e., educational
attainment, occupation, and salary of each parent) was obtained from parents and converted
to a Hollingshead Index of Social Position score (27).

Family background—At baseline, the Family History Assessment Module (28) was
administered to parents and youth and ascertained familial density of alcohol and drug use
disorders in first- and second-degree relatives. Family history density scores were calculated
by adding 0.5 for each biological parent and 0.25 per biological grandparent endorsed by
either youth or parent as having AUD or SUD for a possible score of 0 to 4.

Pubertal Development—The Pubertal Development Scale (29) ascertained current level
of pubertal development for girls and boys separately with five sex-specific items, with
scores ranging from 1 (prepubertal) to 4 (postpubertal). Participants in this sample were, on
average early-to mid-pubertal at baseline, and late- to post-pubertal at follow-up.

Psychopathology and mood—The parent-administered Child Behavior Checklist
(CBCL,; (30) provided age- and gender-normed continuous measures of externalizing and
internalizing psychopathology. T-scores from the following CBCL subscales were used in
analyses: withdrawn, somatic complaints, anxious/depressed, social problems, thought
problems, attention problems, delinquent behavior, aggressive behavior scores, and three
summary score representing externalizing, internalizing, and total problems. Youth
completed the Conduct Disorder Questionnaire (31), which determined DSM-IV diagnostic
criteria for conduct disorder; total symptom count was used in analyses. Beck Depression
Inventory-11 (BDI-11; (32) and State-Trait Anxiety Inventory (STAI; (33) assessed recent
depressive and anxiety state symptoms in youth.

Alcohol Expectancy Questionnaire-Adolescent Version—Youth completed the
Alcohol Expectancy Questionnaire-Adolescent version (AEQ-A; (34), which was developed
to assess beliefs about the anticipated effects of alcohol. This version yields a total score
(AEQ Total Score) and seven empirically derived factor scores indicating expectations for
the effects of drinking alcohol including: (1) global positive changes (AEQ Global Positive),
(2) enhancement/impedance of social behavior (AEQ Social Behavior Change), (3)
improvement in cognitive/behavioral functioning (AE Q Improved Performance), (4)
enhancement of sexuality (AEQ Sexual Enhancement), (5) deterioration in cognitive/
behavioral functioning (AEQ Impaired Performance), (6) increased arousal, (AEQ Increased
Arousal) and (7) promotion of relaxation/tension reduction (AEQ Relaxation).

Neurocognition—A comprehensive neuropsychological battery was completed by youth
at baseline to assess cognitive functioning on several cognitive domains that could
potentially affect initiation of alcohol and marijuana use during adolescence. See Table 1 for
neuropsychological test and domains assessed and Supplementary References for
neuropsychological testing material citations.
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Follow-up procedures—At baseline, 12 to 14 year old youth were administered a
baseline interview, neuropsychological testing, and structural and functional neuroimaging
session. Every 6 months, over-the-phone or in-person interviews assessed current substance
use and psychiatric functioning. At baseline, all participants were considered controls, and
had never had more than 10 lifetime alcohol use occasions, with never more than 1 drink per
occasion, and no more than 3 lifetime marijuana use episodes. Ninety-seven percent of the
sample had never used alcohol and 98% had never used marijuana. Rigorous follow-up
procedures were utilized to ensure excellent follow-up rates (96%). At follow-up (age ~18),
participants were classified as continuous controls (baseline control who maintained
abstinence over the follow-up, defined as 0-4 drinks on an occasion and <12 lifetime
drinking occasions; 61% continued to remain completely alcohol-naive at follow-up) or
moderate-heavy drinking initiators (baseline control who transitioned into moderate or
heavy alcohol use, defined as 3—29 drinks on an occasion and 3-834 drinking occasions; see
Figure 1 for classification). Participants who had fewer drinking days, but drank
significantly on those occasions (e.g., 3 lifetime occasions, 15 drinks per occasion) were
classified as moderate-heavy drinkers to capture the fact they had initiated significant levels
of alcohol use. Sixty-seven participants were classified as continuous controls, while 70
(51%) were moderate-heavy drinking initiators (see Table 1; 27% met criteria for moderate
drinking, while 73% met criteria for heavy drinking). Continuous non-users were at least 17
years of age at follow-up, to allow sufficient time to transition into alcohol use. Sixteen-
year-old substance users were included, as it was clear that substance use had onset by that
age. For this sample, rates of alcohol initiation were consistent with the general US
adolescent population (1).

Image acquisition—High-resolution anatomical and functional images were collected at
the UC San Diego Center for fMRI on a 3-Tesla CXK4 short bore Excite-2 MR system
(General Electric, Milwaukee, WI) with an 8-channel phase-array head coil. Participants
were placed comfortably on the scanner table and the head was stabilized within the head
coil using foam cushions (NoMoCo, La Jolla, CA). Scan sessions involved a 10-second
scout scan to assure good head placement and slice selection covering the whole brain
followed by a high-resolution T1-weighted sequence using a sagittally-acquired spoiled
gradient recalled sequence (FOV 24 cm, 256 x 256 x 192 matrix, .94 x .94 x 1 mm voxels,
176 slices, TR=20 ms, TE=4.8 ms; flip angle 12°, acquisition time 7:26 minutes). BOLD
response contrast was measured with T2*-weighted axially acquired echo-planar images
(FOV=24 cm, 64 x 64 matrix, 3.75 x 3.75 x 3.8 mm voxels, 32 slices, TE=30 ms, TR=2000
ms, flip angle 90°, ramped bandwidth 250 KHz). Field maps were acquired to minimize
warping and signal dropout (~4 minutes total) and employed 2 different echo times to assess
field inhomogeneities and signal distortions under the same grid parameters as echo-planar
images were acquired.

Visual Working Memory Task—All participants were administered the same fast event
related visual working memory task (35) during fMRI acquisition, which has been shown to
predict future initiation of alcohol use (8). Participants were required to indicate whether dot
arrays presented with a 2000ms inter-stimulus interval were identical or differed (i.e., one
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dot was of a different color). Each subject completed 30 trials of each level of complexity (2,
4, or 6 dots) presented randomly, in addition to 69 null trials of 2000 ms each interspersed to
provide an optimized fast-event related sequence (256 repetitions in all; 8 minutes and 32
seconds). The 6-dot condition is considered supra-span (i.e., higher than most people’s
working memory span) and the 2-dot condition is sub-span (i.e., well within most people’s
working memory load capacity (36). None of the 137 total runs used during analysis had
performance at or below chance level (50%) on the 2-dot (i.e., low-capacity/easy condition).
A greater BOLD response contrast (i.e., larger fit coefficient) to the 6-dot (supra-span)
relative to the 2-dot (sub-span) condition was interpreted as more cognitive energy expended
to complete the challenging supra-span trials.

Data Analysis

Structural image processing—~FreeSurfer (version 5.0, surfer.nmr.mgh.harvard.edu)
was used for cortical surface reconstruction and cortical thickness estimation (37, 38) of the
high-resolution T1-weighted MR data. The FreeSurfer program utilizes a series of
automated imaging algorithms to produce measures of cortical thickness. One rater (LMS),
blind to participant characteristics, followed the reconstruction procedures (http://
surfer.nmr.mgh.harvard.edu/fswiki/RecommendedReconstruction) to identify and correct
any errors made during the cortical reconstruction. Following inspection, an automated
parcellation procedure divided each hemisphere into 32 independent cortical regions based
on gyral and sulcal features (39). See Table 2 for list of parcellated brain regions. Cortical
thickness estimates of each region were extracted for subsequent statistical analyses.

Functional image processing—Analysis of Functional Neurolmages (AFNI; (40) was
used to process functional images. Artifact and aberrant signal levels were examined in each
repetition of each slice using an automated program developed by the UCSD Laboratory of
Cognitive Neuroimaging. Motion in time series data were corrected by registering each
acquisition to the maximally stable base volume with an iterated least squares algorithm (41)
to estimate three rotational and three displacement parameters for each participant. An
output file specifying adjustments made controlled for spin history effects in analyses if no
significant task-correlated motion was found. To evaluate task-related motion, the reference
vector was correlated with the six motion parameters for each dataset. Datasets with
significant task-correlated or bulk motion (>2mm) were excluded from analyses. Two
trained raters then scanned the time series en cineto omit any remaining repetitions with
visually discernible motion; if more than 15% of repetitions in a task were discarded, the run
was not used (=10, not described in this paper).

Raw time series data were standardized to percent signal change from baseline, and
deconvolution was conducted with a reference function that convolved the behavioral stimuli
with a hemodynamic response model, while covarying for linear trends and motion
correction, ignoring the first three repetitions (42). This resulted in a functional image in
which every voxel contains a fit coefficient representing the change in signal across
behavioral conditions, as well as percent signal change and threshold statistics. Standardized
Talairach transformations were made for each high-resolution anatomical image, and
functional datasets were warped in accordance to manage individual anatomical variability.
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Functional data were resampled into isotropic voxels (3 mm3), and a spatial smoothing
Gaussian filter (full-width half maximum 5 mm) was applied to minimize the influence of
individual anatomic variability. Co-registration of structural images to functional images was
performed with a mutual information registration program (41) that robustly handles images
with different signal characteristics and of different spatial resolutions.

Volumetric and functional image alignment—The AFNI SUrface MApper (SUMA;
(43) program was used to align segmented volumetric and functional datasets to the same
template space. SUMA programs allow for fine control over the mapping between volume
and surface domains produced by the FreeSurfer segmentation process while maintaining a
direct link to volumetric data from which surface models and data originated. Combination
of functional and structural neuroimaging data using SUMA is described in detail in
Squeglia et al (44). BOLD response values, averaged across the parcellation regions derived
from FreeSurfer (39), were imported from AFNI to SPSS.

Statistical analysis

Independent sample t-tests or Chi-square tests (for dichotomous variables) compared
differences between groups (Table 1). Random forests classification was implemented in R
statistics (http://cran.r-project.org; randomfForestlibrary) to predict alcohol initiator status,
with missing data handled using the rfimpute function (see Table 1 for sample sizes per
variable). Default parameters for the randomForest function were used, with the exception of
expanding the number of trees to 2000 (45).

Random forests classification has been described in detail elsewhere (20, 23). Briefly,
random forests classification has two primary parameters: the number of trees (2000 used in
these analyses) and the number of variables tried at each node (as recommended (20), the
square root of the total number of variables). In addition, trees were grown to the maximum
possible number of nodes such that all participants in the bootstrap training sample were
accurately classified. Variable selection was accomplished using permutation importance
scores, defined as the mean decrease in model accuracy when a predictor variable’s values
are randomly permuted. Specifically, the random forests algorithm was first run 500 times
on the entire set of possible predictors, to generate stable importance scores for each
predictor (based on the median score across the 500 repetitions). The removal of poor
performing variables can increase overall accuracy by increasing the relevance of included
data to outcome prediction. Therefore, these importance scores were used to select which
predictor variables would be included in a more parsimonious final model. Because negative
permutation importance scores are due to random variation around zero of the poor predictor
variables (22), only variables with an importance score greater than the magnitude of the
most negative score were used in the final model (22, 23).

Importantly, this technique utilizes bootstrapped cross-validation to reduce overfitting. In
addition, using variable importance in the initial models to select predictors, and reporting
accuracy, sensitivity, and specificity only from the final model avoids the problem of
“double dipping”, i.e. the repeated extraction of test statistics from the same sample. This
approach is consistent with Ball et al., 2014 (23).

Am J Psychiatry. Author manuscript; available in PMC 2018 February 01.


http://cran.r-project.org

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Squeglia et al.

RESULTS

Page 8

Three sequential models were built in order to compare the following sets of variables (see
Table 2): 1) demographic/behavioral variables only, 2) demographic/behavioral and
neuropsychological test variables, and 3) demographic/behavioral, neuropsychological, and
neuroimaging variables. See Supplementary Materials for models were run on 26
neuropsychological and 136 neuroimaging variables separately. The relatively wide range in
baseline age (12 to 14 years) could have biased findings since those enrolled at age 14
survived two more years without initiating alcohol use; this was accounted for by including
baseline and follow-up age in the models. McNemar’s Chi-squared test was used to compare
the three models. Fifty-one percent of participants (#=70) transitioned into moderate to
heavy alcohol use (using Figure 1 classification) by age 18. Therefore, model accuracy for
each random forests model was also compared to the base response rate using McNemar’s
Chi-squared test.

Demographics model

The initial model was comprised of 41 demographic and psychological variables (see Table
2) as predictors of moderate-heavy alcohol initiation. Eleven variables met criteria for
inclusion in the final model: sex, age at follow-up, socioeconomic status, pubertal
development, dating status, GPA, Child Behavior Checklist total problems, Conduct
Disorder Questionnaire total problems count, AEQ total score, AEQ Global Positive total,
and AEQ Social Behavior Change total. The final model with these variables yielded
accuracy of 62%, which was not statistically different from the base rate (51%) of youth
transitioning into moderate-heavy drinking (o=.07). Sensitivity was 0.60, and specificity was
0.64. The positive predictive value (PPV) was 64% and the negative predictive value (NPV)
was 61%. The positive likelihood ratio of 1.67 (95% CI: 1.15, 2.43) and the negative
likelihood ratio of 0.62 (95% CI: 0.44, 0.87) were statistically significantly different from
each other and from 1.0 (p<0.05).

Demographics and neuropsychological performance model

After adding neuropsychological test variables (26 variables; see Table 2) to the first model
(41 variables), 13 out of the 67 total variables met criteria for inclusion in the final model; 8
of 11 from the previous model: sex; age at follow-up; socioeconomic status; dating status;
Conduct Disorder Questionnaire total problems count; AEQ total score, AEQ Global
Positive total, and AEQ Social Behavior Change total; and 5 additional variables: Digit
Vigilance Test total time; WASI Block Design, Matrix Reasoning, and Vocabulary total raw
scores; and D-KEFS Trails Condition 4 (Number-Letter Switching) time to complete. The
final model with these variables yielded accuracy of 69%, which was not statistically
significantly different from the model based on demographics only (p=.12), but was
significantly different from the model based on initiation rate alone (p=.004). Sensitivity was
0.67, and specificity was 0.70. PPV was 70% and NPV was 67%. The positive likelihood
ratio of 2.25 (95% CI: 1.50, 3.36) and the negative likelihood ratio of 0.47 (95% CI: 0.32,
0.68) were statistically significantly different from each other and from 1.0 (p<0.05).
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Demographics, neuropsychological performance, and neuroimaging model

After including the neuroimaging data (see Table 2; cortical thickness and BOLD response
for each of the 68 brain regions), 34 out of the 203 total variables met criteria for inclusion
in the final model (see Table 2 and Figure 2). The final model with these variables yielded
accuracy of 74%, which was statistically significantly a better model fit based on base rates
(p<.001) and demographic information alone (p=.03); however, it was not statistically
different from the neuropsychological model (p=.30). Sensitivity was 0.74 and specificity
was 0.73. PPV was 74% and NPV was 73%. The positive likelihood ratio of 2.77 (95% CI:
1.82, 4.20) and the negative likelihood ratio of 0.35 (95% CI: 0.23, 0.54) were statistically
significantly different from each other and from 1.0 (p<0.05). Sixteen out of 19 moderate
drinkers were correctly classified as drinkers (84%), suggesting the model was able to
accurately predict transition to both moderate and heavy drinking status.

Further Investigation of Model 3

The precise contribution of each variable to the outcome prediction is complex, due to the
high-order interactions critical to the success of random forests. However, main effects can
be investigated straightforwardly. As shown in Table 3, alcohol initiators had less brain
activation contrast between supra- and sub-span conditions than continuous non-using
controls in all 7 brain regions and thinner cortices in 13 out of 15 brain regions in the final
model. The lingual gyrus and lateral occipital gyrus were thicker in future alcohol initiators.
Neuropsychological test variables that predicted future initiation of drinking included: faster
Digit Vigilance time and poorer performance on Block Design and Matrix Reasoning.
Demographic predictors of initiating alcohol use included: being male, higher
socioeconomic status, starting to date at an earlier age (by age 14), greater endorsement of
conduct disorder-related behaviors, higher positive alcohol expectancies (i.e., higher AEQ
Global Positive, Social Behavior change, and Total scores), and more motion repetitions
during the fMRI task. See Table 3 for variables, in order of importance, in the final model
(Model 3), including which variables were statistically different between continuous non-
users and moderate-heavy alcohol initiators. Importantly, while each variable by itself may
not differentiate continuous controls from drinkers (as shown by the p-values in Table 3), all
variables included in the model contribute to accurate prediction via interaction effects,
supporting the importance of using statistical techniques such as random forests that can
model these complex, high-order interaction terms.

DISCUSSION

This study aimed to address an important public health issue: generating individual-level
predictions of who is at an elevated risk for initiating alcohol use during adolescence.
Findings show that a mix of demographic, neuropsychological, and brain imaging indices
were able to predict which 12-14 year-olds would initiate moderate-to-heavy alcohol use by
approximately age 18. Notably, the overall model was 74% accurate in predicting a behavior
that is influence by a multitude of factors, not all of which could be collected in one study.
Specifically, demographic factors revealed that youth who were male and from higher
socioeconomic backgrounds were more likely to initiate drinking by ~18. In terms of early
adolescent behavior and cognitions, those who reported dating, had more externalizing
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behaviors, and believed alcohol would affect them positively (particularly in social settings)
by age 14 initiated alcohol use by age ~18 at higher rates. In terms of neuropsychological
functioning, adolescents who showed poorer performance on executive functioning tests and
were faster on sustained attention tests (perhaps indicating impulsivity) during early
adolescence had higher rates of alcohol initiation, consistent with previous findings (46).
The neuroimaging features of thinner cortices and less BOLD response contrast to a
cognitive challenge by age 14 contributed to risk of moderate to heavy drinking before age
~18, consistent with previous findings (5, 8, 11). Interestingly, more head movement (yet
still within the acceptable limits to be included in analyses) while in the scanner was
included in the final model, perhaps representing a phenotypic marker of impulsivity.
Baseline alcohol, cigarette, and marijuana use was not predictive of substance use initiation;
however, this is not surprising given our sample was almost completely substance naive at
baseline (97% had never tried alcohol). These findings build on previous reports (11), with a
specific focus on predicting patterns of more frequent and intense alcohol use as opposed to
initiation alone.

The addition of neuroimaging indices to the predictive model significantly increased
accuracy, with 5 of the 10 most important predictors being MRI and fMRI variables (see
Table 3). Morphometry or activation of twenty diffusely distributed brain regions
substantially contributed to alcohol initiation (see Figure 1). Cortical thickness and BOLD
response prediction regions did not overlap, except in the right precuneus and right frontal
pole, similar to previous studies showing that structural and functional maturation tend to
show distinct developmental trajectories during early adolescence (44). More “mature”
neural functioning (i.e., thinner cortices and less BOLD response contrast) was related to
greater rates of transitioning into substance use, which is consistent with previous findings
(8-10, 47). This “pseudomaturity” in at risk-youth has also been observed in other
behavioral studies, including a 33-year longitudinal study that found more mature behavior
during childhood (based on psychiatrist ratings) predicted greater nicotine dependence in
adulthood (48). Early maturation of neural features could be considered a vulnerability for
youth, increasing the likelihood of engaging in sensation-seeking behaviors at an earlier age.
Neurodevelopmentally precocious youth may have a greater tendency to initiate and escalate
risk-taking behaviors (e.g., early dating, substance use) relative to peers. Longitudinal
studies with three or more time points will be needed to elucidate the trajectory of youth
with these different outcomes.

Consistent with epidemiological data, alcohol was the most commonly used substance in
this sample (1). However, significant marijuana use was reported among the moderate-to-
heavy alcohol initiators. We chose to focus on alcohol initiation specifically as only 15% of
our overall sample (29% of alcohol initiators) endorsed more than 30 lifetime occasions of
marijuana use, and most alcohol initiators (80%) used alcohol before trying marijuana.
However, it is likely that the reported risk factors confer risk not only to use of alcohol, but
also marijuana and other illicit substances, and potentially additional risky behaviors. Larger
studies and additional years of follow-up will indicate the extent to which these predictive
features are replicated, predictive specifically of substance use or to problem behavior more
broadly, and if, as participants age, these features predict addiction.
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Strengths of this study include the relatively large sample size, extensive neuropsychological
and multimodal neuroimaging data, and utilization of a robust machine learning technique to
identify risk factors for adolescent alcohol use. Limitations of this study include the lack of
an independent replication sample. Nevertheless, random forests is a robust statistical
technique that is suggested to be superior to other machine learning techniques (21), and
includes bootstrapped cross-validation, with accuracy determined only for the out-of-bag
sample to reduce overfitting. In addition, double dipping was avoided by using a different
metric to select variables (via variable importance scores) than to evaluate the model (via
accuracy, sensitivity, specificity). Regardless, future work should seek to replicate these
predictors. To this end, we are publishing the random forests scripts (see Supplementary
Materials) that we used in the study so other groups can replicate our findings on their own
datasets (see Supplementary Materials). In random forests analyses, the contribution of each
variable to the outcome prediction is complex given the high-order interactions critical to the
success of this technique. While some group differences on individual variables are
statistically non-significant or would not survive control for multiple comparisons (Table 3),
each variable contributes significantly to the overall success of the predictive model when
allowed to interact with other variables. The group differences are presented to better
understand the direction of the relationship. Genotyping was not included in this study.
While previous findings suggest a nominal role of genetics in adolescent alcohol initiation
compared to other personality and environmental factors (11), future studies should explore
potential genetic risk factors associated with alcohol use and risk-taking generally. The
participants in this sample came from a relatively high SES, which may limit
generalizability to low SES youth; published scripts will allow for replication in more
diverse samples (see Supplemental Materials). A limitation inherent to fMRI is that the
BOLD findings are task dependent and only have sensitivity to detect regions engaged by
the task. Therefore, it is possible that functional activity in different regions would be
predictive of future alcohol use if a different task were used. There is a large quantity/
frequency range covered across the moderate-heavy alcohol initiator category, and predictors
might vary across the severity of this continuum. While most of our drinkers were not
drinking frequently, they tended to drink in large quantities (average of >9 drinks on peak
occasion in the past year), suggesting that we were capturing risky drinking behaviors in this
group. Continued follow-up of this sample, as some youth transition into alcohol use
disorders, will help clarify which predictors are most important in identifying problematic
drinking.

The results provide evidence that multi-modal neuroimaging data, as well as
neuropsychological testing, can be used to generate predictions of future behaviors with
significantly better accuracy than demographic information alone. Understanding
neurocognitive factors that predate substance use initiation is crucial to specifying the
consequences of substance use on brain development, as well as identifying at-risk youth
and potential targets of preventive efforts. The random forests scripts (see Supplementary
Materials) used in this study are now published to allow for other groups to easily replicate
findings, in hopes that a final, validated model can be used clinically to predict adolescent
alcohol use.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Average drinks per
occasion (last 3months):
<1xl/year
<1x/month
Frequency  1-3x/month
4-8x/month

>8x/month

Daily

Control

Figure 1.
Substance use classification chart. “Control” indicates “continuous non-user”. Reprint from

Squeglia et al., 2015; American Journal of Psychiatry. “Largest # drinks in year” refers to
the largest number of alcoholic beverages consumed on one occasion in the past year”.

Am J Psychiatry. Author manuscript; available in PMC 2018 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Squeglia et al. Page 16

L superjor parietal R superior parletal___ R superior frontal

L supramargin _ \

L transverse tempora eral o%ital e e A R frontal pole
L banks of superior temporal siflcus R pars orbitalis

L middle temporal FY%

-

-~

/ L precuneus o -
R posterior.cinguls

R caudal anterior cingulate

fl"‘"’ L rostral.anterior cingulate

L lingual

R temporal pole‘

Figure2.
Twenty brain regions that predicted alcohol initiation by age ~18. YELLOW= Cortical

thickness regions included in the final model; BLUE= BOLD response regions included in
the final model; GREEN (where yellow and blue regions overlapped) = Cortical thickness
and BOLD response in the same brain region. In regards to neuroimaging data, thinner
cortices (in 13 out of the 15 regions) and less BOLD response contrast (in all 7 regions)
predicted initiation of moderate-to-heavy drinking by age 18.
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Table 2

List of variables entered into each model: Model 1 initially included Demographic/Family and Youth
Behavior, Mood, and Cognition variables. Model 2 initially included all of the variables from Model 1 +
Neuropsychological Testing Variables. Model 3 initially included all of the Variables from Models 1 + 2 +
Neuroimaging variables [cortical thickness and blood oxygen level dependent (BOLD) response during a
visual working memory task]. Grayed-out boxes indicate variables that were not selected for the final model.
Demographic and neuropsychological variables predicting initiation into alcohol use by age 18 are marked
with an X. For neuroimaging data (Model 3), Desikan (39) brain region location is specified using R=right
hemisphere, L=left hemisphere, as well as the neuroimaging index CT=cortical thickness and BOLD=BOLD
response contrast during a visual working memory task (6-dot supra-span relative to the 2-dot sub-span
condition).

Model 1: | Model 2: Model 3:

DEMOGRAPHIC/FAMILY VARIABLES

1. Sex X X X

2. Baseline age

. Follow-up age X X X

. Race

. Hollingshead Index of Social Position score (socioeconomic status) X X X

. Pubertal Development Scale total X

. Grade in school

3
4
5
6. Family history density of alcohol or drug use disorder
7
8
9

. Birth order

10. Living with both parents

11. Parents’ marital status

YOUTH BEHAVIOR, MOOD, AND COGNITION

12. Dating status X X X

13. Child involvement in extracurricular activities

14. Hours of video games per week

15. Grade point average X

16. CBCL Externalizing T-score

17. CBCL Internalizing T-score

18. CBCL Withdrawn T-score

19. CBCL Somatic complaints T-score

20. CBCL Anxious/depressed T-score

21. CBCL Social Problems T-score

22. CBCL Thought Problems T-score

23. CBCL Attention Problems T-score

24. CBCL Delinquent Behavior T-score

25. CBCL Aggressive Behavior T-score

26. CBCL Total Problem T-score X
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Moded 1:

Model 2:

Model 3:

27.

Conduct Disorders Questionnaire total

28.

Beck Depression Inventory-1I total

29.

State Trait Anxiety Inventory total

30.

AEQ Total Score

31

AEQ Global Positive total

32.

AEQ Social Behavior Change total

33.

AEQ Improved Performance total

34.

AEQ Sexual Enhancement total

35.

AEQ Impaired Performance total

36.

AEQ Increased Arousal total

37.

AEQ Relaxation total

38.

CDDR baseline lifetime smoking days (< 5 for all participants)

39

. CDDR baseline lifetime drinking days (<10)

40.

CDDR baseline lifetime marijuana use days (<3)

41.

Repetitions excluded from fMRI series due to motion

NEUROPSYCHOL OGICAL TESTING VARIABLES

. Digit Vigilance total time to complete (sec)

. WASI Block Design raw

. WASI Matrix Reasoning raw

. WASI Vocabulary raw

X | X | X|X

WASI Similarities raw

. D-KEFS Trails Condition 4 (Number-Letter Switching) time to complete (sec)

. D-KEFS Towers Total Achievement Score raw

. D-KEFS Color Word Interference Inhibition time to complete (sec)

1
2
3
4
5.
6
7
8
9

. D-KEFS Color Word Interference Inhibition/Switching time to complete (sec)

10

. ROCF copy accuracy

11

. ROCF delay accuracy

12.

WISC-I111 Digits Forward raw

13.

WISC-I1I Digits Backward raw

14.

WISC-I1I Arithmetic raw

15.

WISC-III Coding raw

16. WISC-I1I Mazes raw

17. WAIS-IV Letter-Number Sequence raw

18. Hooper Visual Organization Test total raw

19. CVLT list A total 1 to 5 raw

20. CVLT list A Trial 1 raw

21. CVLT list A Trial 5 raw

22. CVLT short delay free raw

23. CVLT short delay cued raw
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Moded 1:

Model 2:

Model 3:

24. CVLT long delay free raw

25. CVLT long delay cued raw

26. WRAT-3 Reading raw

CORTICAL THICKNESSAND BOLD REGIONS

Based on Desikan atlas (39),; 34 regions per hemisphere, cortical thickness and fMR/
measures for each region listed; 34 x 2x 2=136 total variables

1. Banks of superior temporal sulcus

L-CT

2. Caudal anterior cingulate

R-BOLD

3. Caudal middle frontal

4. Cuneus

5. Entorhinal

6. Fusiform

7. Inferior parietal

8. Inferior temporal

9. Isthmus cingulate

10. Lateral occipital

L-CT

11. Lateral orbitofrontal

12. Lingual

L-CT

13. Medial orbitofrontal

14. Middle temporal

R-CT, L-BOLD

15. Parahippocampal

16. Paracentral

17. Pars opercularis

18. Pars orbitalis

R-CT

19. Pars triangularis

20. Pericalcarine

21. Postcentral

22. Posterior cingulate

R-BOLD

23. Precentral

24. Precuneus

R-CT, L-BOLD, R-BOLD

25. Rostral anterior cingulate L-CT

26. Rostral middle frontal R-CT

27. Superior frontal R-CT

28. Superior parietal L-CT, R-CT
29. Superior temporal R-BOLD
30. Supramarginal L-CT

31. Frontal pole R-CT, R-BOLD
32. Temporal pole R-CT

33. Transverse temporal L-CT

34. Insula
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CBCL=Child Behavior Checklist; AEQ=Alcohol Expectancy Questionnaire; CDDR =Customary Drinking and Drug Use Record; WAS/=Wechsler
Abbreviated Scale of Intelligence; D-KEFS=Delis-Kaplan Executive Function System; ROCF=Rey-Osterrieth Complex Figure; W/SC-

/1I=Wechsler Intelligence Scale for Children, 3rd edition; WA/S-1V=Wechsler Adult Intelligence Scale; CVLT= California Verbal Learning Test;
WRAT-3= Wide Range Achievement Test-3 Reading scores
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