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Abstract

Background—Underage drinking is widely recognized as a leading public health and social 

problem for adolescents in the United States. Being able to identify at-risk children before they 

initiate heavy alcohol use could have immense clinical and public health implications; however, 

few investigations have explored individual-level precursors of adolescent substance use. This 

prospective investigation used machine learning with demographic, neurocognitive, and 

neuroimaging data in substance-naïve adolescents to predict alcohol use initiation by age 18.

Materials and Methods—Participants (N=137) were healthy substance-naïve adolescents (ages 

12–14) who underwent neuropsychological testing and structural and functional magnetic 

resonance imaging (sMRI and fMRI), then were followed annually. By age 18, 70 youth (51%) 

initiated moderate-to-heavy alcohol use and 67 remained non-users. Random forests classification 

generated individual alcohol use outcome predictions based on demographic, neuropsychological, 

sMRI, and fMRI data.

Results—The final random forests model was 74% accurate, with good sensitivity (74%) and 

specificity (73%) and included 34 predictors contributing to alcohol use by age 18, including 

several demographic and behavioral factors (being male, higher socioeconomic status, early 

dating, more externalizing behaviors, positive alcohol expectancies), worse executive functioning, 

and thinner cortices and less brain activation in diffusely distributed regions of the brain. Inclusion 

of neuropsychological, sMRI, and fMRI data significantly increased the prediction accuracy of the 

model.
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Discussion—Identification of at-risk youth is not validated for clinical use. Its value is for 

research to address brain mechanisms that predispose to early drinking.

INTRODUCTION

Underage drinking is widely recognized as one of the leading public health and social 

problem for adolescents in the United States. This is concerning, as teen drinking is very 

common in the United States, with approximately 66% of 18 year olds reporting alcohol use 

(1). Adverse consequences of adolescent drinking include higher rates of violence, missing 

school, drunk driving, riding with a drunk driver, suicide, and risky sexual behavior and 

accounts for over 5,000 deaths per year (2). Thus, being able to identify at-risk children 

before they initiate heavy alcohol use could have immense clinical and public health 

implications. However, few investigations have been conducted to gain a greater 

understanding of individual differences that could lead to adolescent substance use.

Previous findings have suggested that a mix of social, psychological, and biological 

mechanisms contribute to alcohol use during adolescence (for review (3–5). Demographic 

risk factors for alcohol initiation include being male, having higher levels of psychological 

problems and externalizing behaviors, and having positive expectations about the effects of 

alcohol (5). Neuropsychological and neuroimaging data may provide quantification of 

underlying behavioral mechanisms of substance use risk. Several studies suggest that poorer 

performance on tests of executive functioning (6), as well as less brain activation compared 

to controls during tasks of working memory, inhibition, and reward processing can be used 

predict which youth will initiate alcohol use during adolescence (7–11). Additionally, less 

volume in brain regions involved in impulsivity, reward sensitivity, and decision-making 

appear to influence initiation of alcohol and other substance use during adolescence (7, 11). 

Understanding factors involved in the initiation and escalation of alcohol use during 

adolescence could provide crucial information for preventions and interventions.

Machine learning approaches (12–17) are increasingly being used to generate predictions 

based on complex data like brain imaging (18, 19). Random forests (20) is a machine 

learning tool that is one of the most consistently robust predictive techniques, yielding 

superior performance in independent replication (21). The random forests technique consists 

of a complex partitioning of the predictor variable space and can be used when the number 

of predictor variables is much larger than the number of subjects, as is typically the case 

with neuroimaging data. Moreover, random forests has a low tendency to over-fit, and the 

stepwise partitioning of the predictor space can yield high-order interactions among many 

predictor variables that cannot be identified using other classification procedures (22). 

Random forests models have successfully been used to detect a number of clinical outcomes 

and predict behaviors (23), but have not been used to generate substance use outcome 

predictions.

The present study uses random forests models in combination with multimodal imaging and 

neuropsychological test data to predict which substance-naïve adolescents would initiate 

moderate to heavy alcohol use by age 18. Based on previous research, initiation of substance 

use was expected to be associated with key demographic factors (e.g., being male, endorsing 
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more externalizing behaviors and psychopathology, having positive expectancies about 

alcohol use), neuropsychological performance (e.g., poorer performance on executive 

functioning tasks), and thinner cortices and less brain activation in key brain regions 

involved in executive functioning and decision making. Unlike other studies that focused on 

initiation of any alcohol use (11), we were interested in factors that predicted a pattern of 

more frequent and intense alcohol use, as these have been associated with poorer cognitive 

(7, 24) and social (5) outcomes.

MATERIALS AND METHODS

Participants

Participants were 137 healthy 12–14 year-olds (44% female) from a larger ongoing 

neuroimaging study recruited through flyers sent to households of students attending local 

middle schools (see Table 1). Extensive screening and background information were 

obtained from the youth, their biological parent, and one other parent or close relative. All 

primary informants lived with the youth. The study protocol was executed in accordance 

with the standards approved by the University of California, San Diego Human Research 

Protections Program.

Strict exclusionary criteria for project entry included: experience with alcohol or drugs, 

defined as ≥10 total days in their life on which drinking had occurred, or > 2 drinks in a 

week (i.e., two drinks on one occasion or one drink on two occasions in the same week); ≥3 

lifetime experiences with marijuana and any use in the past three months; ≥5 lifetime 

cigarette uses; and any history of other intoxicant use; any suggestion of prenatal alcohol (>2 

drinks during a given week) or any illicit drug exposure; premature birth (i.e., born prior to 

35th gestational week); history of any neurological or DSM-IV Axis I disorder, determined 

by the NIMH Diagnostic Interview Schedule for Children –version 4.0, head trauma or loss 

of consciousness (>2 minutes), chronic medical illness, learning disability or mental 

retardation, or use of medications potentially affecting the brain; contraindication to MRI 

(e.g., braces); inadequate comprehension of English; and non-correctable sensory problems.

Measures

Substance use measures—At baseline and follow-ups, the Customary Drinking and 

Drug Use Record (25) was administered to obtain quantity and frequency of lifetime and 

recent (past year) alcohol, marijuana, and other drug use, withdrawal/hangover symptoms, 

and DSM-IV abuse and dependence criteria. Breathalyzer and urine toxicology screens 

confirmed self-report data at baseline. Substance use information was updated every six 

months via phone or in-person after the participant’s baseline assessment. Parent and/or 

informant (sibling, friend, roommate) report of youth substance use was collected as 

collateral evidence.

Demographic information—The Structured Clinical Interview (26) was administered to 

youth and ascertained information about the child’s sex, age, race, academic functioning 

(i.e., grade point average; GPA on a 4.0 scale), grade in school, family characteristics (i.e., 

birth order, living situation, parent’s marital status), dating status (e.g., never dated vs. 
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history of dating), involvement in extracurricular activities, and hours of video games played 

per week.

Socioeconomic status—Socioeconomic background information (i.e., educational 

attainment, occupation, and salary of each parent) was obtained from parents and converted 

to a Hollingshead Index of Social Position score (27).

Family background—At baseline, the Family History Assessment Module (28) was 

administered to parents and youth and ascertained familial density of alcohol and drug use 

disorders in first- and second-degree relatives. Family history density scores were calculated 

by adding 0.5 for each biological parent and 0.25 per biological grandparent endorsed by 

either youth or parent as having AUD or SUD for a possible score of 0 to 4.

Pubertal Development—The Pubertal Development Scale (29) ascertained current level 

of pubertal development for girls and boys separately with five sex-specific items, with 

scores ranging from 1 (prepubertal) to 4 (postpubertal). Participants in this sample were, on 

average early-to mid-pubertal at baseline, and late- to post-pubertal at follow-up.

Psychopathology and mood—The parent-administered Child Behavior Checklist 

(CBCL; (30) provided age- and gender-normed continuous measures of externalizing and 

internalizing psychopathology. T-scores from the following CBCL subscales were used in 

analyses: withdrawn, somatic complaints, anxious/depressed, social problems, thought 

problems, attention problems, delinquent behavior, aggressive behavior scores, and three 

summary score representing externalizing, internalizing, and total problems. Youth 

completed the Conduct Disorder Questionnaire (31), which determined DSM-IV diagnostic 

criteria for conduct disorder; total symptom count was used in analyses. Beck Depression 

Inventory-II (BDI-II; (32) and State-Trait Anxiety Inventory (STAI; (33) assessed recent 

depressive and anxiety state symptoms in youth.

Alcohol Expectancy Questionnaire-Adolescent Version—Youth completed the 

Alcohol Expectancy Questionnaire-Adolescent version (AEQ-A; (34), which was developed 

to assess beliefs about the anticipated effects of alcohol. This version yields a total score 

(AEQ Total Score) and seven empirically derived factor scores indicating expectations for 

the effects of drinking alcohol including: (1) global positive changes (AEQ Global Positive), 

(2) enhancement/impedance of social behavior (AEQ Social Behavior Change), (3) 

improvement in cognitive/behavioral functioning (AE Q Improved Performance), (4) 

enhancement of sexuality (AEQ Sexual Enhancement), (5) deterioration in cognitive/

behavioral functioning (AEQ Impaired Performance), (6) increased arousal, (AEQ Increased 

Arousal) and (7) promotion of relaxation/tension reduction (AEQ Relaxation).

Neurocognition—A comprehensive neuropsychological battery was completed by youth 

at baseline to assess cognitive functioning on several cognitive domains that could 

potentially affect initiation of alcohol and marijuana use during adolescence. See Table 1 for 

neuropsychological test and domains assessed and Supplementary References for 

neuropsychological testing material citations.
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Follow-up procedures—At baseline, 12 to 14 year old youth were administered a 

baseline interview, neuropsychological testing, and structural and functional neuroimaging 

session. Every 6 months, over-the-phone or in-person interviews assessed current substance 

use and psychiatric functioning. At baseline, all participants were considered controls, and 

had never had more than 10 lifetime alcohol use occasions, with never more than 1 drink per 

occasion, and no more than 3 lifetime marijuana use episodes. Ninety-seven percent of the 

sample had never used alcohol and 98% had never used marijuana. Rigorous follow-up 

procedures were utilized to ensure excellent follow-up rates (96%). At follow-up (age ~18), 

participants were classified as continuous controls (baseline control who maintained 

abstinence over the follow-up, defined as 0–4 drinks on an occasion and <12 lifetime 

drinking occasions; 61% continued to remain completely alcohol-naïve at follow-up) or 

moderate-heavy drinking initiators (baseline control who transitioned into moderate or 

heavy alcohol use, defined as 3–29 drinks on an occasion and 3–834 drinking occasions; see 

Figure 1 for classification). Participants who had fewer drinking days, but drank 

significantly on those occasions (e.g., 3 lifetime occasions, 15 drinks per occasion) were 

classified as moderate-heavy drinkers to capture the fact they had initiated significant levels 

of alcohol use. Sixty-seven participants were classified as continuous controls, while 70 

(51%) were moderate-heavy drinking initiators (see Table 1; 27% met criteria for moderate 

drinking, while 73% met criteria for heavy drinking). Continuous non-users were at least 17 

years of age at follow-up, to allow sufficient time to transition into alcohol use. Sixteen-

year-old substance users were included, as it was clear that substance use had onset by that 

age. For this sample, rates of alcohol initiation were consistent with the general US 

adolescent population (1).

Procedures

Image acquisition—High-resolution anatomical and functional images were collected at 

the UC San Diego Center for fMRI on a 3-Tesla CXK4 short bore Excite-2 MR system 

(General Electric, Milwaukee, WI) with an 8-channel phase-array head coil. Participants 

were placed comfortably on the scanner table and the head was stabilized within the head 

coil using foam cushions (NoMoCo, La Jolla, CA). Scan sessions involved a 10-second 

scout scan to assure good head placement and slice selection covering the whole brain 

followed by a high-resolution T1-weighted sequence using a sagittally-acquired spoiled 

gradient recalled sequence (FOV 24 cm, 256 × 256 × 192 matrix, .94 × .94 × 1 mm voxels, 

176 slices, TR=20 ms, TE=4.8 ms; flip angle 12°, acquisition time 7:26 minutes). BOLD 

response contrast was measured with T2*-weighted axially acquired echo-planar images 

(FOV=24 cm, 64 × 64 matrix, 3.75 × 3.75 × 3.8 mm voxels, 32 slices, TE=30 ms, TR=2000 

ms, flip angle 90°, ramped bandwidth 250 KHz). Field maps were acquired to minimize 

warping and signal dropout (~4 minutes total) and employed 2 different echo times to assess 

field inhomogeneities and signal distortions under the same grid parameters as echo-planar 

images were acquired.

Visual Working Memory Task—All participants were administered the same fast event 

related visual working memory task (35) during fMRI acquisition, which has been shown to 

predict future initiation of alcohol use (8). Participants were required to indicate whether dot 

arrays presented with a 2000ms inter-stimulus interval were identical or differed (i.e., one 

Squeglia et al. Page 5

Am J Psychiatry. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dot was of a different color). Each subject completed 30 trials of each level of complexity (2, 

4, or 6 dots) presented randomly, in addition to 69 null trials of 2000 ms each interspersed to 

provide an optimized fast-event related sequence (256 repetitions in all; 8 minutes and 32 

seconds). The 6-dot condition is considered supra-span (i.e., higher than most people’s 

working memory span) and the 2-dot condition is sub-span (i.e., well within most people’s 

working memory load capacity (36). None of the 137 total runs used during analysis had 

performance at or below chance level (50%) on the 2-dot (i.e., low-capacity/easy condition). 

A greater BOLD response contrast (i.e., larger fit coefficient) to the 6-dot (supra-span) 

relative to the 2-dot (sub-span) condition was interpreted as more cognitive energy expended 

to complete the challenging supra-span trials.

Data Analysis

Structural image processing—FreeSurfer (version 5.0, surfer.nmr.mgh.harvard.edu) 

was used for cortical surface reconstruction and cortical thickness estimation (37, 38) of the 

high-resolution T1-weighted MR data. The FreeSurfer program utilizes a series of 

automated imaging algorithms to produce measures of cortical thickness. One rater (LMS), 

blind to participant characteristics, followed the reconstruction procedures (http://

surfer.nmr.mgh.harvard.edu/fswiki/RecommendedReconstruction) to identify and correct 

any errors made during the cortical reconstruction. Following inspection, an automated 

parcellation procedure divided each hemisphere into 32 independent cortical regions based 

on gyral and sulcal features (39). See Table 2 for list of parcellated brain regions. Cortical 

thickness estimates of each region were extracted for subsequent statistical analyses.

Functional image processing—Analysis of Functional NeuroImages (AFNI; (40) was 

used to process functional images. Artifact and aberrant signal levels were examined in each 

repetition of each slice using an automated program developed by the UCSD Laboratory of 

Cognitive Neuroimaging. Motion in time series data were corrected by registering each 

acquisition to the maximally stable base volume with an iterated least squares algorithm (41) 

to estimate three rotational and three displacement parameters for each participant. An 

output file specifying adjustments made controlled for spin history effects in analyses if no 

significant task-correlated motion was found. To evaluate task-related motion, the reference 

vector was correlated with the six motion parameters for each dataset. Datasets with 

significant task-correlated or bulk motion (>2mm) were excluded from analyses. Two 

trained raters then scanned the time series en cine to omit any remaining repetitions with 

visually discernible motion; if more than 15% of repetitions in a task were discarded, the run 

was not used (n=10, not described in this paper).

Raw time series data were standardized to percent signal change from baseline, and 

deconvolution was conducted with a reference function that convolved the behavioral stimuli 

with a hemodynamic response model, while covarying for linear trends and motion 

correction, ignoring the first three repetitions (42). This resulted in a functional image in 

which every voxel contains a fit coefficient representing the change in signal across 

behavioral conditions, as well as percent signal change and threshold statistics. Standardized 

Talairach transformations were made for each high-resolution anatomical image, and 

functional datasets were warped in accordance to manage individual anatomical variability. 
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Functional data were resampled into isotropic voxels (3 mm3), and a spatial smoothing 

Gaussian filter (full-width half maximum 5 mm) was applied to minimize the influence of 

individual anatomic variability. Co-registration of structural images to functional images was 

performed with a mutual information registration program (41) that robustly handles images 

with different signal characteristics and of different spatial resolutions.

Volumetric and functional image alignment—The AFNI SUrface MApper (SUMA; 

(43) program was used to align segmented volumetric and functional datasets to the same 

template space. SUMA programs allow for fine control over the mapping between volume 

and surface domains produced by the FreeSurfer segmentation process while maintaining a 

direct link to volumetric data from which surface models and data originated. Combination 

of functional and structural neuroimaging data using SUMA is described in detail in 

Squeglia et al (44). BOLD response values, averaged across the parcellation regions derived 

from FreeSurfer (39), were imported from AFNI to SPSS.

Statistical analysis

Independent sample t-tests or Chi-square tests (for dichotomous variables) compared 

differences between groups (Table 1). Random forests classification was implemented in R 

statistics (http://cran.r-project.org; randomForest library) to predict alcohol initiator status, 

with missing data handled using the rfimpute function (see Table 1 for sample sizes per 

variable). Default parameters for the randomForest function were used, with the exception of 

expanding the number of trees to 2000 (45).

Random forests classification has been described in detail elsewhere (20, 23). Briefly, 

random forests classification has two primary parameters: the number of trees (2000 used in 

these analyses) and the number of variables tried at each node (as recommended (20), the 

square root of the total number of variables). In addition, trees were grown to the maximum 

possible number of nodes such that all participants in the bootstrap training sample were 

accurately classified. Variable selection was accomplished using permutation importance 

scores, defined as the mean decrease in model accuracy when a predictor variable’s values 

are randomly permuted. Specifically, the random forests algorithm was first run 500 times 

on the entire set of possible predictors, to generate stable importance scores for each 

predictor (based on the median score across the 500 repetitions). The removal of poor 

performing variables can increase overall accuracy by increasing the relevance of included 

data to outcome prediction. Therefore, these importance scores were used to select which 

predictor variables would be included in a more parsimonious final model. Because negative 

permutation importance scores are due to random variation around zero of the poor predictor 

variables (22), only variables with an importance score greater than the magnitude of the 

most negative score were used in the final model (22, 23).

Importantly, this technique utilizes bootstrapped cross-validation to reduce overfitting. In 

addition, using variable importance in the initial models to select predictors, and reporting 

accuracy, sensitivity, and specificity only from the final model avoids the problem of 

“double dipping”, i.e. the repeated extraction of test statistics from the same sample. This 

approach is consistent with Ball et al., 2014 (23).
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Three sequential models were built in order to compare the following sets of variables (see 

Table 2): 1) demographic/behavioral variables only, 2) demographic/behavioral and 

neuropsychological test variables, and 3) demographic/behavioral, neuropsychological, and 

neuroimaging variables. See Supplementary Materials for models were run on 26 

neuropsychological and 136 neuroimaging variables separately. The relatively wide range in 

baseline age (12 to 14 years) could have biased findings since those enrolled at age 14 

survived two more years without initiating alcohol use; this was accounted for by including 

baseline and follow-up age in the models. McNemar’s Chi-squared test was used to compare 

the three models. Fifty-one percent of participants (n=70) transitioned into moderate to 

heavy alcohol use (using Figure 1 classification) by age 18. Therefore, model accuracy for 

each random forests model was also compared to the base response rate using McNemar’s 

Chi-squared test.

RESULTS

Demographics model

The initial model was comprised of 41 demographic and psychological variables (see Table 

2) as predictors of moderate-heavy alcohol initiation. Eleven variables met criteria for 

inclusion in the final model: sex, age at follow-up, socioeconomic status, pubertal 

development, dating status, GPA, Child Behavior Checklist total problems, Conduct 

Disorder Questionnaire total problems count, AEQ total score, AEQ Global Positive total, 

and AEQ Social Behavior Change total. The final model with these variables yielded 

accuracy of 62%, which was not statistically different from the base rate (51%) of youth 

transitioning into moderate-heavy drinking (p=.07). Sensitivity was 0.60, and specificity was 

0.64. The positive predictive value (PPV) was 64% and the negative predictive value (NPV) 

was 61%. The positive likelihood ratio of 1.67 (95% CI: 1.15, 2.43) and the negative 

likelihood ratio of 0.62 (95% CI: 0.44, 0.87) were statistically significantly different from 

each other and from 1.0 (p<0.05).

Demographics and neuropsychological performance model

After adding neuropsychological test variables (26 variables; see Table 2) to the first model 

(41 variables), 13 out of the 67 total variables met criteria for inclusion in the final model; 8 

of 11 from the previous model: sex; age at follow-up; socioeconomic status; dating status; 

Conduct Disorder Questionnaire total problems count; AEQ total score, AEQ Global 

Positive total, and AEQ Social Behavior Change total; and 5 additional variables: Digit 

Vigilance Test total time; WASI Block Design, Matrix Reasoning, and Vocabulary total raw 

scores; and D-KEFS Trails Condition 4 (Number-Letter Switching) time to complete. The 

final model with these variables yielded accuracy of 69%, which was not statistically 

significantly different from the model based on demographics only (p=.12), but was 

significantly different from the model based on initiation rate alone (p=.004). Sensitivity was 

0.67, and specificity was 0.70. PPV was 70% and NPV was 67%. The positive likelihood 

ratio of 2.25 (95% CI: 1.50, 3.36) and the negative likelihood ratio of 0.47 (95% CI: 0.32, 

0.68) were statistically significantly different from each other and from 1.0 (p<0.05).
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Demographics, neuropsychological performance, and neuroimaging model

After including the neuroimaging data (see Table 2; cortical thickness and BOLD response 

for each of the 68 brain regions), 34 out of the 203 total variables met criteria for inclusion 

in the final model (see Table 2 and Figure 2). The final model with these variables yielded 

accuracy of 74%, which was statistically significantly a better model fit based on base rates 

(p<.001) and demographic information alone (p=.03); however, it was not statistically 

different from the neuropsychological model (p=.30). Sensitivity was 0.74 and specificity 

was 0.73. PPV was 74% and NPV was 73%. The positive likelihood ratio of 2.77 (95% CI: 

1.82, 4.20) and the negative likelihood ratio of 0.35 (95% CI: 0.23, 0.54) were statistically 

significantly different from each other and from 1.0 (p<0.05). Sixteen out of 19 moderate 

drinkers were correctly classified as drinkers (84%), suggesting the model was able to 

accurately predict transition to both moderate and heavy drinking status.

Further Investigation of Model 3

The precise contribution of each variable to the outcome prediction is complex, due to the 

high-order interactions critical to the success of random forests. However, main effects can 

be investigated straightforwardly. As shown in Table 3, alcohol initiators had less brain 

activation contrast between supra- and sub-span conditions than continuous non-using 

controls in all 7 brain regions and thinner cortices in 13 out of 15 brain regions in the final 

model. The lingual gyrus and lateral occipital gyrus were thicker in future alcohol initiators. 

Neuropsychological test variables that predicted future initiation of drinking included: faster 

Digit Vigilance time and poorer performance on Block Design and Matrix Reasoning. 

Demographic predictors of initiating alcohol use included: being male, higher 

socioeconomic status, starting to date at an earlier age (by age 14), greater endorsement of 

conduct disorder-related behaviors, higher positive alcohol expectancies (i.e., higher AEQ 

Global Positive, Social Behavior change, and Total scores), and more motion repetitions 

during the fMRI task. See Table 3 for variables, in order of importance, in the final model 

(Model 3), including which variables were statistically different between continuous non-

users and moderate-heavy alcohol initiators. Importantly, while each variable by itself may 

not differentiate continuous controls from drinkers (as shown by the p-values in Table 3), all 

variables included in the model contribute to accurate prediction via interaction effects, 

supporting the importance of using statistical techniques such as random forests that can 

model these complex, high-order interaction terms.

DISCUSSION

This study aimed to address an important public health issue: generating individual-level 

predictions of who is at an elevated risk for initiating alcohol use during adolescence. 

Findings show that a mix of demographic, neuropsychological, and brain imaging indices 

were able to predict which 12–14 year-olds would initiate moderate-to-heavy alcohol use by 

approximately age 18. Notably, the overall model was 74% accurate in predicting a behavior 

that is influence by a multitude of factors, not all of which could be collected in one study. 

Specifically, demographic factors revealed that youth who were male and from higher 

socioeconomic backgrounds were more likely to initiate drinking by ~18. In terms of early 

adolescent behavior and cognitions, those who reported dating, had more externalizing 
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behaviors, and believed alcohol would affect them positively (particularly in social settings) 

by age 14 initiated alcohol use by age ~18 at higher rates. In terms of neuropsychological 

functioning, adolescents who showed poorer performance on executive functioning tests and 

were faster on sustained attention tests (perhaps indicating impulsivity) during early 

adolescence had higher rates of alcohol initiation, consistent with previous findings (46). 

The neuroimaging features of thinner cortices and less BOLD response contrast to a 

cognitive challenge by age 14 contributed to risk of moderate to heavy drinking before age 

~18, consistent with previous findings (5, 8, 11). Interestingly, more head movement (yet 

still within the acceptable limits to be included in analyses) while in the scanner was 

included in the final model, perhaps representing a phenotypic marker of impulsivity. 

Baseline alcohol, cigarette, and marijuana use was not predictive of substance use initiation; 

however, this is not surprising given our sample was almost completely substance naïve at 

baseline (97% had never tried alcohol). These findings build on previous reports (11), with a 

specific focus on predicting patterns of more frequent and intense alcohol use as opposed to 

initiation alone.

The addition of neuroimaging indices to the predictive model significantly increased 

accuracy, with 5 of the 10 most important predictors being MRI and fMRI variables (see 

Table 3). Morphometry or activation of twenty diffusely distributed brain regions 

substantially contributed to alcohol initiation (see Figure 1). Cortical thickness and BOLD 

response prediction regions did not overlap, except in the right precuneus and right frontal 

pole, similar to previous studies showing that structural and functional maturation tend to 

show distinct developmental trajectories during early adolescence (44). More “mature” 

neural functioning (i.e., thinner cortices and less BOLD response contrast) was related to 

greater rates of transitioning into substance use, which is consistent with previous findings 

(8–10, 47). This “pseudomaturity” in at risk-youth has also been observed in other 

behavioral studies, including a 33-year longitudinal study that found more mature behavior 

during childhood (based on psychiatrist ratings) predicted greater nicotine dependence in 

adulthood (48). Early maturation of neural features could be considered a vulnerability for 

youth, increasing the likelihood of engaging in sensation-seeking behaviors at an earlier age. 

Neurodevelopmentally precocious youth may have a greater tendency to initiate and escalate 

risk-taking behaviors (e.g., early dating, substance use) relative to peers. Longitudinal 

studies with three or more time points will be needed to elucidate the trajectory of youth 

with these different outcomes.

Consistent with epidemiological data, alcohol was the most commonly used substance in 

this sample (1). However, significant marijuana use was reported among the moderate-to-

heavy alcohol initiators. We chose to focus on alcohol initiation specifically as only 15% of 

our overall sample (29% of alcohol initiators) endorsed more than 30 lifetime occasions of 

marijuana use, and most alcohol initiators (80%) used alcohol before trying marijuana. 

However, it is likely that the reported risk factors confer risk not only to use of alcohol, but 

also marijuana and other illicit substances, and potentially additional risky behaviors. Larger 

studies and additional years of follow-up will indicate the extent to which these predictive 

features are replicated, predictive specifically of substance use or to problem behavior more 

broadly, and if, as participants age, these features predict addiction.
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Strengths of this study include the relatively large sample size, extensive neuropsychological 

and multimodal neuroimaging data, and utilization of a robust machine learning technique to 

identify risk factors for adolescent alcohol use. Limitations of this study include the lack of 

an independent replication sample. Nevertheless, random forests is a robust statistical 

technique that is suggested to be superior to other machine learning techniques (21), and 

includes bootstrapped cross-validation, with accuracy determined only for the out-of-bag 

sample to reduce overfitting. In addition, double dipping was avoided by using a different 

metric to select variables (via variable importance scores) than to evaluate the model (via 

accuracy, sensitivity, specificity). Regardless, future work should seek to replicate these 

predictors. To this end, we are publishing the random forests scripts (see Supplementary 

Materials) that we used in the study so other groups can replicate our findings on their own 

datasets (see Supplementary Materials). In random forests analyses, the contribution of each 

variable to the outcome prediction is complex given the high-order interactions critical to the 

success of this technique. While some group differences on individual variables are 

statistically non-significant or would not survive control for multiple comparisons (Table 3), 

each variable contributes significantly to the overall success of the predictive model when 

allowed to interact with other variables. The group differences are presented to better 

understand the direction of the relationship. Genotyping was not included in this study. 

While previous findings suggest a nominal role of genetics in adolescent alcohol initiation 

compared to other personality and environmental factors (11), future studies should explore 

potential genetic risk factors associated with alcohol use and risk-taking generally. The 

participants in this sample came from a relatively high SES, which may limit 

generalizability to low SES youth; published scripts will allow for replication in more 

diverse samples (see Supplemental Materials). A limitation inherent to fMRI is that the 

BOLD findings are task dependent and only have sensitivity to detect regions engaged by 

the task. Therefore, it is possible that functional activity in different regions would be 

predictive of future alcohol use if a different task were used. There is a large quantity/

frequency range covered across the moderate-heavy alcohol initiator category, and predictors 

might vary across the severity of this continuum. While most of our drinkers were not 

drinking frequently, they tended to drink in large quantities (average of >9 drinks on peak 

occasion in the past year), suggesting that we were capturing risky drinking behaviors in this 

group. Continued follow-up of this sample, as some youth transition into alcohol use 

disorders, will help clarify which predictors are most important in identifying problematic 

drinking.

The results provide evidence that multi-modal neuroimaging data, as well as 

neuropsychological testing, can be used to generate predictions of future behaviors with 

significantly better accuracy than demographic information alone. Understanding 

neurocognitive factors that predate substance use initiation is crucial to specifying the 

consequences of substance use on brain development, as well as identifying at-risk youth 

and potential targets of preventive efforts. The random forests scripts (see Supplementary 

Materials) used in this study are now published to allow for other groups to easily replicate 

findings, in hopes that a final, validated model can be used clinically to predict adolescent 

alcohol use.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Special thanks to the Adolescent Brain Imaging Project lab and the participating schools in the San Diego Unified 
School District and their families, as well as Lindsay Meredith for assistance with preparation of this manuscript.

Funding Support: R01 AA13419, U01 DA041089, and U01 AA021692 (Tapert); K12 DA031794 (Squeglia); T32 
DA031098 (McKenna); T32 AA013525 (Nguyen-Louie); R01 DA016663, P20 DA027843 (Paulus).

References

1. Johnston, LD., O’Malley, PM., Miech, RA., Bachman, JG., Schulenberg, JE. Monitoring the Future 
national survey results on drug use: 1975–2014: Overview, key findings on adolescent drug use. 
Ann Arbor: Institute for Social Research, The University of Michigan; 2015. 

2. Miller JW, Naimi TS, Brewer RD, Jones SE. Binge drinking and associated health risk behaviors 
among high school students. Pediatrics. 2007; 119:76–85. [PubMed: 17200273] 

3. Squeglia LM, Jacobus J, Tapert SF. The effect of alcohol use on human adolescent brain structures 
and systems. Handbook of Clinical Neurology. 2014; 125:501–510. [PubMed: 25307592] 

4. Squeglia LM, Gray KM. Alcohol and drug use and the developing brain. Current Psychiatry 
Reports. 2016; 18:46. [PubMed: 26984684] 

5. Brown SA, McGue M, Maggs J, Schulenberg J, Hingson R, Swartzwelder S, Martin C, Chung T, 
Tapert SF, Sher K, Winters KC, Lowman C, Murphy S. A developmental perspective on alcohol and 
youths 16 to 20 years of age. Pediatrics. 2008; 121:S290–310. [PubMed: 18381495] 

6. Squeglia LM, Jacobus J, Nguyen-Louie TT, Tapert SF. Inhibition during early adolescence predicts 
alcohol and marijuana use by late adolescence. Neuropsychology. 2014; 28:782–790. [PubMed: 
24749728] 

7. Squeglia LM, Tapert SF, Sullivan EV, Jacobus J, Meloy MJ, Rohlfing T, Pfefferbaum A. Brain 
development in heavy-drinking adolescents. American Journal of Psychiatry. 2015; 172:531–542. 
[PubMed: 25982660] 

8. Squeglia LM, Pulido C, Wetherill RR, Jacobus J, Brown GG, Tapert SF. Brain response to working 
memory over three years of adolescence: Influence of initiating heavy drinking. Journal of Studies 
on Alcohol and Drugs. 2012; 73:749–760. [PubMed: 22846239] 

9. Wetherill RR, Squeglia LM, Yang TT, Tapert SF. A longitudinal examination of adolescent response 
inhibition: neural differences before and after the initiation of heavy drinking. Psychopharmacology. 
2013

10. Heitzeg MM, Nigg JT, Hardee JE, Soules M, Steinberg D, Zubieta JK, Zucker RA. Left middle 
frontal gyrus response to inhibitory errors in children prospectively predicts early problem 
substance use. Drug and Alcohol Dependence. 2014; 141:51–57. [PubMed: 24882366] 

11. Whelan R, Watts R, Orr CA, Althoff RR, Artiges E, Banaschewski T, Barker GJ, Bokde AL, 
Büchel C, Carvalho FM, Conrod PJ, Flor H, Fauth-Bühler M, Frouin V, Gallinat J, Gan G, 
Gowland P, Heinz A, Ittermann B, Lawrence C, Mann K, Martinot JL, Nees F, Ortiz N, Paillère-
Martinot ML, Paus T, Pausova Z, Rietschel M, Robbins TW, Smolka MN, Ströhle A, Schumann 
G, Garavan H, IMAGEN Consortium. Neuropsychosocial profiles of current and future adolescent 
alcohol misusers. Nature. 2014; 512:185–189. [PubMed: 25043041] 

12. Passos IC, Mwangi B, Kapczinski F. Big data analytics and machine learning: 2015 and beyond. 
The lancet Psychiatry. 2016; 3:13–15. [PubMed: 26772057] 

13. Patel MJ, Andreescu C, Price JC, Edelman KL, Reynolds CF 3rd, Aizenstein HJ. Machine learning 
approaches for integrating clinical and imaging features in late-life depression classification and 
response prediction. Int J Geriatr Psychiatry. 2015; 30:1056–1067. [PubMed: 25689482] 

Squeglia et al. Page 12

Am J Psychiatry. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Lavagnino L, Amianto F, Mwangi B, D’Agata F, Spalatro A, Zunta-Soares GB, Abbate Daga G, 
Mortara P, Fassino S, Soares JC. Identifying neuroanatomical signatures of anorexia nervosa: a 
multivariate machine learning approach. Psychol Med. 2015; 45:2805–2812. [PubMed: 25990697] 

15. Hajek T, Cooke C, Kopecek M, Novak T, Hoschl C, Alda M. Using structural MRI to identify 
individuals at genetic risk for bipolar disorders: a 2-cohort, machine learning study. J Psychiatry 
Neurosci. 2015; 40:316–324. [PubMed: 25853284] 

16. Sato JR, Moll J, Green S, Deakin JF, Thomaz CE, Zahn R. Machine learning algorithm accurately 
detects fMRI signature of vulnerability to major depression. Psychiatry Res. 2015; 233:289–291. 
[PubMed: 26187550] 

17. Shouval R, Bondi O, Mishan H, Shimoni A, Unger R, Nagler A. Application of machine learning 
algorithms for clinical predictive modeling: a data-mining approach in SCT. Bone marrow 
transplantation. 2014; 49:332–337. [PubMed: 24096823] 

18. Pariyadath V, Stein EA, Ross TJ. Machine learning classification of resting state functional 
connectivity predicts smoking status. Frontiers in Human Neuroscience. 2014; 8:425. [PubMed: 
24982629] 

19. Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, Stephan KE. 
Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage: Clinical. 2013; 
4:98–111. [PubMed: 24363992] 

20. Breiman L. Random forests. Machine Learning. 2001; 45:5–32.

21. Qi Y, Bar-Joseph Z, Klein-Seetharaman J. Evaluation of different biological data and 
computational classification methods for use in protein interaction prediction. Proteins: Structure, 
Function, and Bioinformatics. 2006; 63:490–500.

22. Strobl C, Malley J, Tutz G. An introduction to recursive partitioning: rationale, application, and 
characteristics of classification and regression trees, bagging, and random forests. Psychological 
Methods. 2009; 14:323–348. [PubMed: 19968396] 

23. Ball TM, Stein MB, Ramsawh HJ, Campbell-Sills L, Paulus MP. Single-subject anxiety treatment 
outcome prediction using functional neuroimaging. Neuropsychopharmacology. 2014; 39:1254–
1261. [PubMed: 24270731] 

24. Squeglia LM, Spadoni AD, Infante MA, Myers MG, Tapert SF. Initiating moderate to heavy 
alcohol use predicts changes in neuropsychological functioning for adolescent girls and boys. 
Psychology of Addictive Behaviors. 2009; 23:715–722. [PubMed: 20025379] 

25. Brown SA, Myers MG, Lippke L, Tapert SF, Stewart DG, Vik PW. Psychometric evaluation of the 
Customary Drinking and Drug Use Record (CDDR): A measure of adolescent alcohol and drug 
involvement. Journal of Studies on Alcohol. 1998; 59:427–438. [PubMed: 9647425] 

26. Brown SA, Myers MG, Mott MA, Vik PW. Correlates of success following treatment for 
adolescent substance abuse. Applied & Preventive Psychology. 1994; 3:61–73.

27. Hollingshead, AB. Two-factor index of social position. New Haven, CT: Yale University Press; 
1965. 

28. Rice JP, Reich T, Bucholz KK, Neuman RJ, Fishman R, Rochberg N, Hesselbrock VM, 
Nurnberger JIJ, Schuckit MA, Begleiter H. Comparison of direct interview and family history 
diagnoses of alcohol dependence. Alcoholism: Clinical and Experimental Research. 1995; 
19:1018–1023.

29. Petersen AC, Crockett L, Richards M, Boxer A. A self-report measure of pubertal status: 
Reliability, validity, and initial norms. Journal of Youth and Adolescence. 1988; 17

30. Achenbach, TM., Rescorla, LA. Manual for the ASEBA School-Age Forms & Profiles. Burlington, 
VT: University of Vermont, Research Center for Children, Youth, & Families; 2001. 

31. Brown SA, Gleghorn A, Schuckit MA, Myers MG, Mott MA. Conduct disorder among adolescent 
alcohol and drug abusers. Journal of Studies on Alcohol. 1996; 57:314–324. [PubMed: 8709590] 

32. Beck, AT., Steer, RA., Brown, GK. Manual for the Beck Depression Inventory-2. San Antonio, TX: 
Psychological Corporation; 1996. 

33. Spielberger, CD., Gorsuch, RL., Lushene, RE. Manual for the State-Trait Anxiety Inventory. Palo 
Alto, CA: Consulting Psychologists Press; 1970. 

Squeglia et al. Page 13

Am J Psychiatry. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Brown SA, Christiansen BA, Goldman MS. The Alcohol Expectancy Questionnaire: An instrument 
for the assessment of adolescent and adult alcohol expectancies. Journal of Studies on Alcohol. 
1987; 48:483–491. [PubMed: 3669677] 

35. Tapert SF, Pulido C, Paulus MP, Schuckit MA, Burke C. Level of response to alcohol and brain 
response during visual working memory. Journal of Studies on Alcohol. 2004; 65:692–700. 
[PubMed: 15700505] 

36. Luck SJ, Vogel EK. The capacity of visual working memory for features and conjunctions. Nature. 
1997; 390:279–281. [PubMed: 9384378] 

37. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface 
reconstruction. NeuroImage. 1999; 9:179–194. [PubMed: 9931268] 

38. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a 
surface-based coordinate system. NeuroImage. 1999; 9:195–207. [PubMed: 9931269] 

39. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, 
Maguire RP, Hyman BT, Albert MS, Killiany RJ. An automated labeling system for subdividing 
the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 
2006:968–980.

40. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance 
neuroimages. Computers and Biomedical Research. 1996; 29:162–173. [PubMed: 8812068] 

41. Cox RW, Jesmanowicz A. Real-time 3D image registration for functional MRI. Magnetic 
Resonance in Medicine. 1999; 42:1014–1018. [PubMed: 10571921] 

42. Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE. Temporal 
dynamics of brain activation during a working memory task. Nature. 1997; 386:604–608. 
[PubMed: 9121583] 

43. Saad ZS, Reynolds RC. SUMA. NeuroImage. 2012; 62:768–773. [PubMed: 21945692] 

44. Squeglia LM, McKenna BS, Jacobus J, Castro N, Sorg SF, Tapert SF. BOLD response to working 
memory not related to cortical thickness during early adolescence. Brain Research. 2013; 
1537:59–68. [PubMed: 24012876] 

45. Genuer R, Poggi JM, Tuleau-Malot C. Variable selection using random forests. Pattern Recognition 
Letters. 2010; 31:2225–2236.

46. Peeters M, Janssen T, Monshouwer K, Boendermaker W, Pronk T, Wiers R, Vollebergh W. 
Weaknesses in executive functioning predict the initiating of adolescents’ alcohol use. 
Developmental Cognitive Neuroscience. 2015; 16:139–146. [PubMed: 25936585] 

47. Squeglia LM, Rinker DA, Bartsch H, Castro N, Chung Y, Dale AM, Jernigan TL, Tapert SF. Brain 
volume reductions in adolescent heavy drinkers. Developmental Cognitive Neuroscience. 2014; 
9:117–125. [PubMed: 24632141] 

48. Castellanos FX. personal communication.

Squeglia et al. Page 14

Am J Psychiatry. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Substance use classification chart. “Control” indicates “continuous non-user”. Reprint from 

Squeglia et al., 2015; American Journal of Psychiatry. “Largest # drinks in year” refers to 

the largest number of alcoholic beverages consumed on one occasion in the past year”.
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Figure 2. 
Twenty brain regions that predicted alcohol initiation by age ~18. YELLOW= Cortical 

thickness regions included in the final model; BLUE= BOLD response regions included in 

the final model; GREEN (where yellow and blue regions overlapped) = Cortical thickness 

and BOLD response in the same brain region. In regards to neuroimaging data, thinner 

cortices (in 13 out of the 15 regions) and less BOLD response contrast (in all 7 regions) 

predicted initiation of moderate-to-heavy drinking by age 18.
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Table 2

List of variables entered into each model: Model 1 initially included Demographic/Family and Youth 

Behavior, Mood, and Cognition variables. Model 2 initially included all of the variables from Model 1 + 

Neuropsychological Testing Variables. Model 3 initially included all of the Variables from Models 1 + 2 + 

Neuroimaging variables [cortical thickness and blood oxygen level dependent (BOLD) response during a 

visual working memory task]. Grayed-out boxes indicate variables that were not selected for the final model. 

Demographic and neuropsychological variables predicting initiation into alcohol use by age 18 are marked 

with an X. For neuroimaging data (Model 3), Desikan (39) brain region location is specified using R=right 

hemisphere, L=left hemisphere, as well as the neuroimaging index CT=cortical thickness and BOLD=BOLD 

response contrast during a visual working memory task (6-dot supra-span relative to the 2-dot sub-span 

condition).

Model 1: Model 2: Model 3:

DEMOGRAPHIC/FAMILY VARIABLES

1. Sex X X X

2. Baseline age

3. Follow-up age X X X

4. Race

5. Hollingshead Index of Social Position score (socioeconomic status) X X X

6. Family history density of alcohol or drug use disorder

7. Pubertal Development Scale total X

8. Grade in school

9. Birth order

10. Living with both parents

11. Parents’ marital status

YOUTH BEHAVIOR, MOOD, AND COGNITION

12. Dating status X X X

13. Child involvement in extracurricular activities

14. Hours of video games per week

15. Grade point average X

16. CBCL Externalizing T-score

17. CBCL Internalizing T-score

18. CBCL Withdrawn T-score

19. CBCL Somatic complaints T-score

20. CBCL Anxious/depressed T-score

21. CBCL Social Problems T-score

22. CBCL Thought Problems T-score

23. CBCL Attention Problems T-score

24. CBCL Delinquent Behavior T-score

25. CBCL Aggressive Behavior T-score

26. CBCL Total Problem T-score X
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Model 1: Model 2: Model 3:

27. Conduct Disorders Questionnaire total X X X

28. Beck Depression Inventory-II total

29. State Trait Anxiety Inventory total

30. AEQ Total Score X X X

31. AEQ Global Positive total X X X

32. AEQ Social Behavior Change total X X X

33. AEQ Improved Performance total

34. AEQ Sexual Enhancement total

35. AEQ Impaired Performance total

36. AEQ Increased Arousal total

37. AEQ Relaxation total

38. CDDR baseline lifetime smoking days (< 5 for all participants)

39. CDDR baseline lifetime drinking days (<10)

40. CDDR baseline lifetime marijuana use days (<3)

41. Repetitions excluded from fMRI series due to motion X

NEUROPSYCHOLOGICAL TESTING VARIABLES

1. Digit Vigilance total time to complete (sec) X X

2. WASI Block Design raw X X

3. WASI Matrix Reasoning raw X X

4. WASI Vocabulary raw X

5. WASI Similarities raw

6. D-KEFS Trails Condition 4 (Number-Letter Switching) time to complete (sec) X

7. D-KEFS Towers Total Achievement Score raw

8. D-KEFS Color Word Interference Inhibition time to complete (sec)

9. D-KEFS Color Word Interference Inhibition/Switching time to complete (sec)

10. ROCF copy accuracy

11. ROCF delay accuracy

12. WISC-III Digits Forward raw

13. WISC-III Digits Backward raw

14. WISC-III Arithmetic raw

15. WISC-III Coding raw

16. WISC-III Mazes raw

17. WAIS-IV Letter-Number Sequence raw

18. Hooper Visual Organization Test total raw

19. CVLT list A total 1 to 5 raw

20. CVLT list A Trial 1 raw

21. CVLT list A Trial 5 raw

22. CVLT short delay free raw

23. CVLT short delay cued raw
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Model 1: Model 2: Model 3:

24. CVLT long delay free raw

25. CVLT long delay cued raw

26. WRAT-3 Reading raw

CORTICAL THICKNESS AND BOLD REGIONS

Based on Desikan atlas (39); 34 regions per hemisphere, cortical thickness and fMRI 
measures for each region listed; 34 × 2 × 2=136 total variables

1. Banks of superior temporal sulcus L-CT

2. Caudal anterior cingulate R-BOLD

3. Caudal middle frontal

4. Cuneus

5. Entorhinal

6. Fusiform

7. Inferior parietal

8. Inferior temporal

9. Isthmus cingulate

10. Lateral occipital L-CT

11. Lateral orbitofrontal

12. Lingual L-CT

13. Medial orbitofrontal

14. Middle temporal R-CT, L-BOLD

15. Parahippocampal

16. Paracentral

17. Pars opercularis

18. Pars orbitalis R-CT

19. Pars triangularis

20. Pericalcarine

21. Postcentral

22. Posterior cingulate R-BOLD

23. Precentral

24. Precuneus R-CT, L-BOLD, R-BOLD

25. Rostral anterior cingulate L-CT

26. Rostral middle frontal R-CT

27. Superior frontal R-CT

28. Superior parietal L-CT, R-CT

29. Superior temporal R-BOLD

30. Supramarginal L-CT

31. Frontal pole R-CT, R-BOLD

32. Temporal pole R-CT

33. Transverse temporal L-CT

34. Insula
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CBCL=Child Behavior Checklist; AEQ=Alcohol Expectancy Questionnaire; CDDR =Customary Drinking and Drug Use Record; WASI=Wechsler 
Abbreviated Scale of Intelligence; D-KEFS=Delis-Kaplan Executive Function System; ROCF=Rey-Osterrieth Complex Figure; WISC-

III=Wechsler Intelligence Scale for Children, 3rd edition; WAIS-IV=Wechsler Adult Intelligence Scale; CVLT= California Verbal Learning Test; 
WRAT-3= Wide Range Achievement Test-3 Reading scores
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